482 lines
12 KiB
C
482 lines
12 KiB
C
/*
|
|
* Request reply cache. This is currently a global cache, but this may
|
|
* change in the future and be a per-client cache.
|
|
*
|
|
* This code is heavily inspired by the 44BSD implementation, although
|
|
* it does things a bit differently.
|
|
*
|
|
* Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/sunrpc/clnt.h>
|
|
#include <linux/highmem.h>
|
|
|
|
#include "nfsd.h"
|
|
#include "cache.h"
|
|
|
|
#define NFSDDBG_FACILITY NFSDDBG_REPCACHE
|
|
|
|
#define HASHSIZE 64
|
|
|
|
static struct hlist_head * cache_hash;
|
|
static struct list_head lru_head;
|
|
static struct kmem_cache *drc_slab;
|
|
static unsigned int num_drc_entries;
|
|
static unsigned int max_drc_entries;
|
|
|
|
/*
|
|
* Calculate the hash index from an XID.
|
|
*/
|
|
static inline u32 request_hash(u32 xid)
|
|
{
|
|
u32 h = xid;
|
|
h ^= (xid >> 24);
|
|
return h & (HASHSIZE-1);
|
|
}
|
|
|
|
static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
|
|
static void cache_cleaner_func(struct work_struct *unused);
|
|
static int nfsd_reply_cache_shrink(struct shrinker *shrink,
|
|
struct shrink_control *sc);
|
|
|
|
struct shrinker nfsd_reply_cache_shrinker = {
|
|
.shrink = nfsd_reply_cache_shrink,
|
|
.seeks = 1,
|
|
};
|
|
|
|
/*
|
|
* locking for the reply cache:
|
|
* A cache entry is "single use" if c_state == RC_INPROG
|
|
* Otherwise, it when accessing _prev or _next, the lock must be held.
|
|
*/
|
|
static DEFINE_SPINLOCK(cache_lock);
|
|
static DECLARE_DELAYED_WORK(cache_cleaner, cache_cleaner_func);
|
|
|
|
/*
|
|
* Put a cap on the size of the DRC based on the amount of available
|
|
* low memory in the machine.
|
|
*
|
|
* 64MB: 8192
|
|
* 128MB: 11585
|
|
* 256MB: 16384
|
|
* 512MB: 23170
|
|
* 1GB: 32768
|
|
* 2GB: 46340
|
|
* 4GB: 65536
|
|
* 8GB: 92681
|
|
* 16GB: 131072
|
|
*
|
|
* ...with a hard cap of 256k entries. In the worst case, each entry will be
|
|
* ~1k, so the above numbers should give a rough max of the amount of memory
|
|
* used in k.
|
|
*/
|
|
static unsigned int
|
|
nfsd_cache_size_limit(void)
|
|
{
|
|
unsigned int limit;
|
|
unsigned long low_pages = totalram_pages - totalhigh_pages;
|
|
|
|
limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
|
|
return min_t(unsigned int, limit, 256*1024);
|
|
}
|
|
|
|
static struct svc_cacherep *
|
|
nfsd_reply_cache_alloc(void)
|
|
{
|
|
struct svc_cacherep *rp;
|
|
|
|
rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
|
|
if (rp) {
|
|
rp->c_state = RC_UNUSED;
|
|
rp->c_type = RC_NOCACHE;
|
|
INIT_LIST_HEAD(&rp->c_lru);
|
|
INIT_HLIST_NODE(&rp->c_hash);
|
|
}
|
|
return rp;
|
|
}
|
|
|
|
static void
|
|
nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
|
|
{
|
|
if (rp->c_type == RC_REPLBUFF)
|
|
kfree(rp->c_replvec.iov_base);
|
|
hlist_del(&rp->c_hash);
|
|
list_del(&rp->c_lru);
|
|
--num_drc_entries;
|
|
kmem_cache_free(drc_slab, rp);
|
|
}
|
|
|
|
static void
|
|
nfsd_reply_cache_free(struct svc_cacherep *rp)
|
|
{
|
|
spin_lock(&cache_lock);
|
|
nfsd_reply_cache_free_locked(rp);
|
|
spin_unlock(&cache_lock);
|
|
}
|
|
|
|
int nfsd_reply_cache_init(void)
|
|
{
|
|
register_shrinker(&nfsd_reply_cache_shrinker);
|
|
drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
|
|
0, 0, NULL);
|
|
if (!drc_slab)
|
|
goto out_nomem;
|
|
|
|
cache_hash = kcalloc(HASHSIZE, sizeof(struct hlist_head), GFP_KERNEL);
|
|
if (!cache_hash)
|
|
goto out_nomem;
|
|
|
|
INIT_LIST_HEAD(&lru_head);
|
|
max_drc_entries = nfsd_cache_size_limit();
|
|
num_drc_entries = 0;
|
|
return 0;
|
|
out_nomem:
|
|
printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
|
|
nfsd_reply_cache_shutdown();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void nfsd_reply_cache_shutdown(void)
|
|
{
|
|
struct svc_cacherep *rp;
|
|
|
|
unregister_shrinker(&nfsd_reply_cache_shrinker);
|
|
cancel_delayed_work_sync(&cache_cleaner);
|
|
|
|
while (!list_empty(&lru_head)) {
|
|
rp = list_entry(lru_head.next, struct svc_cacherep, c_lru);
|
|
nfsd_reply_cache_free_locked(rp);
|
|
}
|
|
|
|
kfree (cache_hash);
|
|
cache_hash = NULL;
|
|
|
|
if (drc_slab) {
|
|
kmem_cache_destroy(drc_slab);
|
|
drc_slab = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Move cache entry to end of LRU list, and queue the cleaner to run if it's
|
|
* not already scheduled.
|
|
*/
|
|
static void
|
|
lru_put_end(struct svc_cacherep *rp)
|
|
{
|
|
rp->c_timestamp = jiffies;
|
|
list_move_tail(&rp->c_lru, &lru_head);
|
|
schedule_delayed_work(&cache_cleaner, RC_EXPIRE);
|
|
}
|
|
|
|
/*
|
|
* Move a cache entry from one hash list to another
|
|
*/
|
|
static void
|
|
hash_refile(struct svc_cacherep *rp)
|
|
{
|
|
hlist_del_init(&rp->c_hash);
|
|
hlist_add_head(&rp->c_hash, cache_hash + request_hash(rp->c_xid));
|
|
}
|
|
|
|
static inline bool
|
|
nfsd_cache_entry_expired(struct svc_cacherep *rp)
|
|
{
|
|
return rp->c_state != RC_INPROG &&
|
|
time_after(jiffies, rp->c_timestamp + RC_EXPIRE);
|
|
}
|
|
|
|
/*
|
|
* Walk the LRU list and prune off entries that are older than RC_EXPIRE.
|
|
* Also prune the oldest ones when the total exceeds the max number of entries.
|
|
*/
|
|
static void
|
|
prune_cache_entries(void)
|
|
{
|
|
struct svc_cacherep *rp, *tmp;
|
|
|
|
list_for_each_entry_safe(rp, tmp, &lru_head, c_lru) {
|
|
if (!nfsd_cache_entry_expired(rp) &&
|
|
num_drc_entries <= max_drc_entries)
|
|
break;
|
|
nfsd_reply_cache_free_locked(rp);
|
|
}
|
|
|
|
/*
|
|
* Conditionally rearm the job. If we cleaned out the list, then
|
|
* cancel any pending run (since there won't be any work to do).
|
|
* Otherwise, we rearm the job or modify the existing one to run in
|
|
* RC_EXPIRE since we just ran the pruner.
|
|
*/
|
|
if (list_empty(&lru_head))
|
|
cancel_delayed_work(&cache_cleaner);
|
|
else
|
|
mod_delayed_work(system_wq, &cache_cleaner, RC_EXPIRE);
|
|
}
|
|
|
|
static void
|
|
cache_cleaner_func(struct work_struct *unused)
|
|
{
|
|
spin_lock(&cache_lock);
|
|
prune_cache_entries();
|
|
spin_unlock(&cache_lock);
|
|
}
|
|
|
|
static int
|
|
nfsd_reply_cache_shrink(struct shrinker *shrink, struct shrink_control *sc)
|
|
{
|
|
unsigned int num;
|
|
|
|
spin_lock(&cache_lock);
|
|
if (sc->nr_to_scan)
|
|
prune_cache_entries();
|
|
num = num_drc_entries;
|
|
spin_unlock(&cache_lock);
|
|
|
|
return num;
|
|
}
|
|
|
|
/*
|
|
* Search the request hash for an entry that matches the given rqstp.
|
|
* Must be called with cache_lock held. Returns the found entry or
|
|
* NULL on failure.
|
|
*/
|
|
static struct svc_cacherep *
|
|
nfsd_cache_search(struct svc_rqst *rqstp)
|
|
{
|
|
struct svc_cacherep *rp;
|
|
struct hlist_node *hn;
|
|
struct hlist_head *rh;
|
|
__be32 xid = rqstp->rq_xid;
|
|
u32 proto = rqstp->rq_prot,
|
|
vers = rqstp->rq_vers,
|
|
proc = rqstp->rq_proc;
|
|
|
|
rh = &cache_hash[request_hash(xid)];
|
|
hlist_for_each_entry(rp, hn, rh, c_hash) {
|
|
if (xid == rp->c_xid && proc == rp->c_proc &&
|
|
proto == rp->c_prot && vers == rp->c_vers &&
|
|
rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) &&
|
|
rpc_get_port(svc_addr(rqstp)) == rpc_get_port((struct sockaddr *)&rp->c_addr))
|
|
return rp;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Try to find an entry matching the current call in the cache. When none
|
|
* is found, we grab the oldest unlocked entry off the LRU list.
|
|
* Note that no operation within the loop may sleep.
|
|
*/
|
|
int
|
|
nfsd_cache_lookup(struct svc_rqst *rqstp)
|
|
{
|
|
struct svc_cacherep *rp, *found;
|
|
__be32 xid = rqstp->rq_xid;
|
|
u32 proto = rqstp->rq_prot,
|
|
vers = rqstp->rq_vers,
|
|
proc = rqstp->rq_proc;
|
|
unsigned long age;
|
|
int type = rqstp->rq_cachetype;
|
|
int rtn;
|
|
|
|
rqstp->rq_cacherep = NULL;
|
|
if (type == RC_NOCACHE) {
|
|
nfsdstats.rcnocache++;
|
|
return RC_DOIT;
|
|
}
|
|
|
|
spin_lock(&cache_lock);
|
|
rtn = RC_DOIT;
|
|
|
|
rp = nfsd_cache_search(rqstp);
|
|
if (rp)
|
|
goto found_entry;
|
|
|
|
/* Try to use the first entry on the LRU */
|
|
if (!list_empty(&lru_head)) {
|
|
rp = list_first_entry(&lru_head, struct svc_cacherep, c_lru);
|
|
if (nfsd_cache_entry_expired(rp) ||
|
|
num_drc_entries >= max_drc_entries) {
|
|
lru_put_end(rp);
|
|
prune_cache_entries();
|
|
goto setup_entry;
|
|
}
|
|
}
|
|
|
|
spin_unlock(&cache_lock);
|
|
rp = nfsd_reply_cache_alloc();
|
|
if (!rp) {
|
|
dprintk("nfsd: unable to allocate DRC entry!\n");
|
|
return RC_DOIT;
|
|
}
|
|
spin_lock(&cache_lock);
|
|
++num_drc_entries;
|
|
|
|
/*
|
|
* Must search again just in case someone inserted one
|
|
* after we dropped the lock above.
|
|
*/
|
|
found = nfsd_cache_search(rqstp);
|
|
if (found) {
|
|
nfsd_reply_cache_free_locked(rp);
|
|
rp = found;
|
|
goto found_entry;
|
|
}
|
|
|
|
/*
|
|
* We're keeping the one we just allocated. Are we now over the
|
|
* limit? Prune one off the tip of the LRU in trade for the one we
|
|
* just allocated if so.
|
|
*/
|
|
if (num_drc_entries >= max_drc_entries)
|
|
nfsd_reply_cache_free_locked(list_first_entry(&lru_head,
|
|
struct svc_cacherep, c_lru));
|
|
|
|
setup_entry:
|
|
nfsdstats.rcmisses++;
|
|
rqstp->rq_cacherep = rp;
|
|
rp->c_state = RC_INPROG;
|
|
rp->c_xid = xid;
|
|
rp->c_proc = proc;
|
|
rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
|
|
rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
|
|
rp->c_prot = proto;
|
|
rp->c_vers = vers;
|
|
|
|
hash_refile(rp);
|
|
lru_put_end(rp);
|
|
|
|
/* release any buffer */
|
|
if (rp->c_type == RC_REPLBUFF) {
|
|
kfree(rp->c_replvec.iov_base);
|
|
rp->c_replvec.iov_base = NULL;
|
|
}
|
|
rp->c_type = RC_NOCACHE;
|
|
out:
|
|
spin_unlock(&cache_lock);
|
|
return rtn;
|
|
|
|
found_entry:
|
|
nfsdstats.rchits++;
|
|
/* We found a matching entry which is either in progress or done. */
|
|
age = jiffies - rp->c_timestamp;
|
|
lru_put_end(rp);
|
|
|
|
rtn = RC_DROPIT;
|
|
/* Request being processed or excessive rexmits */
|
|
if (rp->c_state == RC_INPROG || age < RC_DELAY)
|
|
goto out;
|
|
|
|
/* From the hall of fame of impractical attacks:
|
|
* Is this a user who tries to snoop on the cache? */
|
|
rtn = RC_DOIT;
|
|
if (!rqstp->rq_secure && rp->c_secure)
|
|
goto out;
|
|
|
|
/* Compose RPC reply header */
|
|
switch (rp->c_type) {
|
|
case RC_NOCACHE:
|
|
break;
|
|
case RC_REPLSTAT:
|
|
svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
|
|
rtn = RC_REPLY;
|
|
break;
|
|
case RC_REPLBUFF:
|
|
if (!nfsd_cache_append(rqstp, &rp->c_replvec))
|
|
goto out; /* should not happen */
|
|
rtn = RC_REPLY;
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
|
|
nfsd_reply_cache_free_locked(rp);
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Update a cache entry. This is called from nfsd_dispatch when
|
|
* the procedure has been executed and the complete reply is in
|
|
* rqstp->rq_res.
|
|
*
|
|
* We're copying around data here rather than swapping buffers because
|
|
* the toplevel loop requires max-sized buffers, which would be a waste
|
|
* of memory for a cache with a max reply size of 100 bytes (diropokres).
|
|
*
|
|
* If we should start to use different types of cache entries tailored
|
|
* specifically for attrstat and fh's, we may save even more space.
|
|
*
|
|
* Also note that a cachetype of RC_NOCACHE can legally be passed when
|
|
* nfsd failed to encode a reply that otherwise would have been cached.
|
|
* In this case, nfsd_cache_update is called with statp == NULL.
|
|
*/
|
|
void
|
|
nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
|
|
{
|
|
struct svc_cacherep *rp = rqstp->rq_cacherep;
|
|
struct kvec *resv = &rqstp->rq_res.head[0], *cachv;
|
|
int len;
|
|
|
|
if (!rp)
|
|
return;
|
|
|
|
len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
|
|
len >>= 2;
|
|
|
|
/* Don't cache excessive amounts of data and XDR failures */
|
|
if (!statp || len > (256 >> 2)) {
|
|
nfsd_reply_cache_free(rp);
|
|
return;
|
|
}
|
|
|
|
switch (cachetype) {
|
|
case RC_REPLSTAT:
|
|
if (len != 1)
|
|
printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
|
|
rp->c_replstat = *statp;
|
|
break;
|
|
case RC_REPLBUFF:
|
|
cachv = &rp->c_replvec;
|
|
cachv->iov_base = kmalloc(len << 2, GFP_KERNEL);
|
|
if (!cachv->iov_base) {
|
|
nfsd_reply_cache_free(rp);
|
|
return;
|
|
}
|
|
cachv->iov_len = len << 2;
|
|
memcpy(cachv->iov_base, statp, len << 2);
|
|
break;
|
|
case RC_NOCACHE:
|
|
nfsd_reply_cache_free(rp);
|
|
return;
|
|
}
|
|
spin_lock(&cache_lock);
|
|
lru_put_end(rp);
|
|
rp->c_secure = rqstp->rq_secure;
|
|
rp->c_type = cachetype;
|
|
rp->c_state = RC_DONE;
|
|
spin_unlock(&cache_lock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Copy cached reply to current reply buffer. Should always fit.
|
|
* FIXME as reply is in a page, we should just attach the page, and
|
|
* keep a refcount....
|
|
*/
|
|
static int
|
|
nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
|
|
{
|
|
struct kvec *vec = &rqstp->rq_res.head[0];
|
|
|
|
if (vec->iov_len + data->iov_len > PAGE_SIZE) {
|
|
printk(KERN_WARNING "nfsd: cached reply too large (%Zd).\n",
|
|
data->iov_len);
|
|
return 0;
|
|
}
|
|
memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
|
|
vec->iov_len += data->iov_len;
|
|
return 1;
|
|
}
|