433 lines
12 KiB
C
433 lines
12 KiB
C
/*
|
|
* Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
|
|
* August 2002: added remote node KVA remap - Martin J. Bligh
|
|
*
|
|
* Copyright (C) 2002, IBM Corp.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/swap.h>
|
|
|
|
#include <asm/e820.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/mmzone.h>
|
|
#include <bios_ebda.h>
|
|
|
|
struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
|
|
EXPORT_SYMBOL(node_data);
|
|
bootmem_data_t node0_bdata;
|
|
|
|
/*
|
|
* numa interface - we expect the numa architecture specific code to have
|
|
* populated the following initialisation.
|
|
*
|
|
* 1) node_online_map - the map of all nodes configured (online) in the system
|
|
* 2) node_start_pfn - the starting page frame number for a node
|
|
* 3) node_end_pfn - the ending page fram number for a node
|
|
*/
|
|
unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
|
|
unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
|
|
|
|
|
|
#ifdef CONFIG_DISCONTIGMEM
|
|
/*
|
|
* 4) physnode_map - the mapping between a pfn and owning node
|
|
* physnode_map keeps track of the physical memory layout of a generic
|
|
* numa node on a 256Mb break (each element of the array will
|
|
* represent 256Mb of memory and will be marked by the node id. so,
|
|
* if the first gig is on node 0, and the second gig is on node 1
|
|
* physnode_map will contain:
|
|
*
|
|
* physnode_map[0-3] = 0;
|
|
* physnode_map[4-7] = 1;
|
|
* physnode_map[8- ] = -1;
|
|
*/
|
|
s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
|
|
EXPORT_SYMBOL(physnode_map);
|
|
|
|
void memory_present(int nid, unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
|
|
nid, start, end);
|
|
printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
|
|
printk(KERN_DEBUG " ");
|
|
for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
|
|
physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
|
|
printk("%ld ", pfn);
|
|
}
|
|
printk("\n");
|
|
}
|
|
|
|
unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
unsigned long nr_pages = end_pfn - start_pfn;
|
|
|
|
if (!nr_pages)
|
|
return 0;
|
|
|
|
return (nr_pages + 1) * sizeof(struct page);
|
|
}
|
|
#endif
|
|
|
|
extern unsigned long find_max_low_pfn(void);
|
|
extern void add_one_highpage_init(struct page *, int, int);
|
|
extern unsigned long highend_pfn, highstart_pfn;
|
|
|
|
#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
|
|
|
|
static unsigned long node_remap_start_pfn[MAX_NUMNODES];
|
|
unsigned long node_remap_size[MAX_NUMNODES];
|
|
static unsigned long node_remap_offset[MAX_NUMNODES];
|
|
static void *node_remap_start_vaddr[MAX_NUMNODES];
|
|
void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
|
|
|
|
static void *node_remap_end_vaddr[MAX_NUMNODES];
|
|
static void *node_remap_alloc_vaddr[MAX_NUMNODES];
|
|
static unsigned long kva_start_pfn;
|
|
static unsigned long kva_pages;
|
|
/*
|
|
* FLAT - support for basic PC memory model with discontig enabled, essentially
|
|
* a single node with all available processors in it with a flat
|
|
* memory map.
|
|
*/
|
|
int __init get_memcfg_numa_flat(void)
|
|
{
|
|
printk("NUMA - single node, flat memory mode\n");
|
|
|
|
/* Run the memory configuration and find the top of memory. */
|
|
find_max_pfn();
|
|
node_start_pfn[0] = 0;
|
|
node_end_pfn[0] = max_pfn;
|
|
memory_present(0, 0, max_pfn);
|
|
|
|
/* Indicate there is one node available. */
|
|
nodes_clear(node_online_map);
|
|
node_set_online(0);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Find the highest page frame number we have available for the node
|
|
*/
|
|
static void __init find_max_pfn_node(int nid)
|
|
{
|
|
if (node_end_pfn[nid] > max_pfn)
|
|
node_end_pfn[nid] = max_pfn;
|
|
/*
|
|
* if a user has given mem=XXXX, then we need to make sure
|
|
* that the node _starts_ before that, too, not just ends
|
|
*/
|
|
if (node_start_pfn[nid] > max_pfn)
|
|
node_start_pfn[nid] = max_pfn;
|
|
BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
|
|
}
|
|
|
|
/*
|
|
* Allocate memory for the pg_data_t for this node via a crude pre-bootmem
|
|
* method. For node zero take this from the bottom of memory, for
|
|
* subsequent nodes place them at node_remap_start_vaddr which contains
|
|
* node local data in physically node local memory. See setup_memory()
|
|
* for details.
|
|
*/
|
|
static void __init allocate_pgdat(int nid)
|
|
{
|
|
if (nid && node_has_online_mem(nid))
|
|
NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
|
|
else {
|
|
NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(min_low_pfn));
|
|
min_low_pfn += PFN_UP(sizeof(pg_data_t));
|
|
}
|
|
}
|
|
|
|
void *alloc_remap(int nid, unsigned long size)
|
|
{
|
|
void *allocation = node_remap_alloc_vaddr[nid];
|
|
|
|
size = ALIGN(size, L1_CACHE_BYTES);
|
|
|
|
if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
|
|
return 0;
|
|
|
|
node_remap_alloc_vaddr[nid] += size;
|
|
memset(allocation, 0, size);
|
|
|
|
return allocation;
|
|
}
|
|
|
|
void __init remap_numa_kva(void)
|
|
{
|
|
void *vaddr;
|
|
unsigned long pfn;
|
|
int node;
|
|
|
|
for_each_online_node(node) {
|
|
for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
|
|
vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
|
|
set_pmd_pfn((ulong) vaddr,
|
|
node_remap_start_pfn[node] + pfn,
|
|
PAGE_KERNEL_LARGE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned long calculate_numa_remap_pages(void)
|
|
{
|
|
int nid;
|
|
unsigned long size, reserve_pages = 0;
|
|
unsigned long pfn;
|
|
|
|
for_each_online_node(nid) {
|
|
unsigned old_end_pfn = node_end_pfn[nid];
|
|
|
|
/*
|
|
* The acpi/srat node info can show hot-add memroy zones
|
|
* where memory could be added but not currently present.
|
|
*/
|
|
if (node_start_pfn[nid] > max_pfn)
|
|
continue;
|
|
if (node_end_pfn[nid] > max_pfn)
|
|
node_end_pfn[nid] = max_pfn;
|
|
|
|
/* ensure the remap includes space for the pgdat. */
|
|
size = node_remap_size[nid] + sizeof(pg_data_t);
|
|
|
|
/* convert size to large (pmd size) pages, rounding up */
|
|
size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
|
|
/* now the roundup is correct, convert to PAGE_SIZE pages */
|
|
size = size * PTRS_PER_PTE;
|
|
|
|
/*
|
|
* Validate the region we are allocating only contains valid
|
|
* pages.
|
|
*/
|
|
for (pfn = node_end_pfn[nid] - size;
|
|
pfn < node_end_pfn[nid]; pfn++)
|
|
if (!page_is_ram(pfn))
|
|
break;
|
|
|
|
if (pfn != node_end_pfn[nid])
|
|
size = 0;
|
|
|
|
printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
|
|
size, nid);
|
|
node_remap_size[nid] = size;
|
|
node_remap_offset[nid] = reserve_pages;
|
|
reserve_pages += size;
|
|
printk("Shrinking node %d from %ld pages to %ld pages\n",
|
|
nid, node_end_pfn[nid], node_end_pfn[nid] - size);
|
|
|
|
if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) {
|
|
/*
|
|
* Align node_end_pfn[] and node_remap_start_pfn[] to
|
|
* pmd boundary. remap_numa_kva will barf otherwise.
|
|
*/
|
|
printk("Shrinking node %d further by %ld pages for proper alignment\n",
|
|
nid, node_end_pfn[nid] & (PTRS_PER_PTE-1));
|
|
size += node_end_pfn[nid] & (PTRS_PER_PTE-1);
|
|
}
|
|
|
|
node_end_pfn[nid] -= size;
|
|
node_remap_start_pfn[nid] = node_end_pfn[nid];
|
|
shrink_active_range(nid, old_end_pfn, node_end_pfn[nid]);
|
|
}
|
|
printk("Reserving total of %ld pages for numa KVA remap\n",
|
|
reserve_pages);
|
|
return reserve_pages;
|
|
}
|
|
|
|
extern void setup_bootmem_allocator(void);
|
|
unsigned long __init setup_memory(void)
|
|
{
|
|
int nid;
|
|
unsigned long system_start_pfn, system_max_low_pfn;
|
|
|
|
/*
|
|
* When mapping a NUMA machine we allocate the node_mem_map arrays
|
|
* from node local memory. They are then mapped directly into KVA
|
|
* between zone normal and vmalloc space. Calculate the size of
|
|
* this space and use it to adjust the boundary between ZONE_NORMAL
|
|
* and ZONE_HIGHMEM.
|
|
*/
|
|
find_max_pfn();
|
|
get_memcfg_numa();
|
|
|
|
kva_pages = calculate_numa_remap_pages();
|
|
|
|
/* partially used pages are not usable - thus round upwards */
|
|
system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);
|
|
|
|
kva_start_pfn = find_max_low_pfn() - kva_pages;
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
/* Numa kva area is below the initrd */
|
|
if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image)
|
|
kva_start_pfn = PFN_DOWN(boot_params.hdr.ramdisk_image)
|
|
- kva_pages;
|
|
#endif
|
|
kva_start_pfn -= kva_start_pfn & (PTRS_PER_PTE-1);
|
|
|
|
system_max_low_pfn = max_low_pfn = find_max_low_pfn();
|
|
printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n",
|
|
kva_start_pfn, max_low_pfn);
|
|
printk("max_pfn = %ld\n", max_pfn);
|
|
#ifdef CONFIG_HIGHMEM
|
|
highstart_pfn = highend_pfn = max_pfn;
|
|
if (max_pfn > system_max_low_pfn)
|
|
highstart_pfn = system_max_low_pfn;
|
|
printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
|
|
pages_to_mb(highend_pfn - highstart_pfn));
|
|
num_physpages = highend_pfn;
|
|
high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
|
|
#else
|
|
num_physpages = system_max_low_pfn;
|
|
high_memory = (void *) __va(system_max_low_pfn * PAGE_SIZE - 1) + 1;
|
|
#endif
|
|
printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
|
|
pages_to_mb(system_max_low_pfn));
|
|
printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
|
|
min_low_pfn, max_low_pfn, highstart_pfn);
|
|
|
|
printk("Low memory ends at vaddr %08lx\n",
|
|
(ulong) pfn_to_kaddr(max_low_pfn));
|
|
for_each_online_node(nid) {
|
|
node_remap_start_vaddr[nid] = pfn_to_kaddr(
|
|
kva_start_pfn + node_remap_offset[nid]);
|
|
/* Init the node remap allocator */
|
|
node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
|
|
(node_remap_size[nid] * PAGE_SIZE);
|
|
node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
|
|
ALIGN(sizeof(pg_data_t), PAGE_SIZE);
|
|
|
|
allocate_pgdat(nid);
|
|
printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
|
|
(ulong) node_remap_start_vaddr[nid],
|
|
(ulong) pfn_to_kaddr(highstart_pfn
|
|
+ node_remap_offset[nid] + node_remap_size[nid]));
|
|
}
|
|
printk("High memory starts at vaddr %08lx\n",
|
|
(ulong) pfn_to_kaddr(highstart_pfn));
|
|
for_each_online_node(nid)
|
|
find_max_pfn_node(nid);
|
|
|
|
memset(NODE_DATA(0), 0, sizeof(struct pglist_data));
|
|
NODE_DATA(0)->bdata = &node0_bdata;
|
|
setup_bootmem_allocator();
|
|
return max_low_pfn;
|
|
}
|
|
|
|
void __init numa_kva_reserve(void)
|
|
{
|
|
reserve_bootmem(PFN_PHYS(kva_start_pfn),PFN_PHYS(kva_pages));
|
|
}
|
|
|
|
void __init zone_sizes_init(void)
|
|
{
|
|
int nid;
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES];
|
|
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
|
|
max_zone_pfns[ZONE_DMA] =
|
|
virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
|
|
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
|
|
#ifdef CONFIG_HIGHMEM
|
|
max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
|
|
#endif
|
|
|
|
/* If SRAT has not registered memory, register it now */
|
|
if (find_max_pfn_with_active_regions() == 0) {
|
|
for_each_online_node(nid) {
|
|
if (node_has_online_mem(nid))
|
|
add_active_range(nid, node_start_pfn[nid],
|
|
node_end_pfn[nid]);
|
|
}
|
|
}
|
|
|
|
free_area_init_nodes(max_zone_pfns);
|
|
return;
|
|
}
|
|
|
|
void __init set_highmem_pages_init(int bad_ppro)
|
|
{
|
|
#ifdef CONFIG_HIGHMEM
|
|
struct zone *zone;
|
|
struct page *page;
|
|
|
|
for_each_zone(zone) {
|
|
unsigned long node_pfn, zone_start_pfn, zone_end_pfn;
|
|
|
|
if (!is_highmem(zone))
|
|
continue;
|
|
|
|
zone_start_pfn = zone->zone_start_pfn;
|
|
zone_end_pfn = zone_start_pfn + zone->spanned_pages;
|
|
|
|
printk("Initializing %s for node %d (%08lx:%08lx)\n",
|
|
zone->name, zone_to_nid(zone),
|
|
zone_start_pfn, zone_end_pfn);
|
|
|
|
for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) {
|
|
if (!pfn_valid(node_pfn))
|
|
continue;
|
|
page = pfn_to_page(node_pfn);
|
|
add_one_highpage_init(page, node_pfn, bad_ppro);
|
|
}
|
|
}
|
|
totalram_pages += totalhigh_pages;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
int paddr_to_nid(u64 addr)
|
|
{
|
|
int nid;
|
|
unsigned long pfn = PFN_DOWN(addr);
|
|
|
|
for_each_node(nid)
|
|
if (node_start_pfn[nid] <= pfn &&
|
|
pfn < node_end_pfn[nid])
|
|
return nid;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* This function is used to ask node id BEFORE memmap and mem_section's
|
|
* initialization (pfn_to_nid() can't be used yet).
|
|
* If _PXM is not defined on ACPI's DSDT, node id must be found by this.
|
|
*/
|
|
int memory_add_physaddr_to_nid(u64 addr)
|
|
{
|
|
int nid = paddr_to_nid(addr);
|
|
return (nid >= 0) ? nid : 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
|
|
#endif
|