OpenCloudOS-Kernel/tools/memory-model/litmus-tests
Alan Stern 6e89e831a9 tools/memory-model: Add extra ordering for locks and remove it for ordinary release/acquire
More than one kernel developer has expressed the opinion that the LKMM
should enforce ordering of writes by locking.  In other words, given
the following code:

	WRITE_ONCE(x, 1);
	spin_unlock(&s):
	spin_lock(&s);
	WRITE_ONCE(y, 1);

the stores to x and y should be propagated in order to all other CPUs,
even though those other CPUs might not access the lock s.  In terms of
the memory model, this means expanding the cumul-fence relation.

Locks should also provide read-read (and read-write) ordering in a
similar way.  Given:

	READ_ONCE(x);
	spin_unlock(&s);
	spin_lock(&s);
	READ_ONCE(y);		// or WRITE_ONCE(y, 1);

the load of x should be executed before the load of (or store to) y.
The LKMM already provides this ordering, but it provides it even in
the case where the two accesses are separated by a release/acquire
pair of fences rather than unlock/lock.  This would prevent
architectures from using weakly ordered implementations of release and
acquire, which seems like an unnecessary restriction.  The patch
therefore removes the ordering requirement from the LKMM for that
case.

There are several arguments both for and against this change.  Let us
refer to these enhanced ordering properties by saying that the LKMM
would require locks to be RCtso (a bit of a misnomer, but analogous to
RCpc and RCsc) and it would require ordinary acquire/release only to
be RCpc.  (Note: In the following, the phrase "all supported
architectures" is meant not to include RISC-V.  Although RISC-V is
indeed supported by the kernel, the implementation is still somewhat
in a state of flux and therefore statements about it would be
premature.)

Pros:

	The kernel already provides RCtso ordering for locks on all
	supported architectures, even though this is not stated
	explicitly anywhere.  Therefore the LKMM should formalize it.

	In theory, guaranteeing RCtso ordering would reduce the need
	for additional barrier-like constructs meant to increase the
	ordering strength of locks.

	Will Deacon and Peter Zijlstra are strongly in favor of
	formalizing the RCtso requirement.  Linus Torvalds and Will
	would like to go even further, requiring locks to have RCsc
	behavior (ordering preceding writes against later reads), but
	they recognize that this would incur a noticeable performance
	degradation on the POWER architecture.  Linus also points out
	that people have made the mistake, in the past, of assuming
	that locking has stronger ordering properties than is
	currently guaranteed, and this change would reduce the
	likelihood of such mistakes.

	Not requiring ordinary acquire/release to be any stronger than
	RCpc may prove advantageous for future architectures, allowing
	them to implement smp_load_acquire() and smp_store_release()
	with more efficient machine instructions than would be
	possible if the operations had to be RCtso.  Will and Linus
	approve this rationale, hypothetical though it is at the
	moment (it may end up affecting the RISC-V implementation).
	The same argument may or may not apply to RMW-acquire/release;
	see also the second Con entry below.

	Linus feels that locks should be easy for people to use
	without worrying about memory consistency issues, since they
	are so pervasive in the kernel, whereas acquire/release is
	much more of an "experts only" tool.  Requiring locks to be
	RCtso is a step in this direction.

Cons:

	Andrea Parri and Luc Maranget think that locks should have the
	same ordering properties as ordinary acquire/release (indeed,
	Luc points out that the names "acquire" and "release" derive
	from the usage of locks).  Andrea points out that having
	different ordering properties for different forms of acquires
	and releases is not only unnecessary, it would also be
	confusing and unmaintainable.

	Locks are constructed from lower-level primitives, typically
	RMW-acquire (for locking) and ordinary release (for unlock).
	It is illogical to require stronger ordering properties from
	the high-level operations than from the low-level operations
	they comprise.  Thus, this change would make

		while (cmpxchg_acquire(&s, 0, 1) != 0)
			cpu_relax();

	an incorrect implementation of spin_lock(&s) as far as the
	LKMM is concerned.  In theory this weakness can be ameliorated
	by changing the LKMM even further, requiring
	RMW-acquire/release also to be RCtso (which it already is on
	all supported architectures).

	As far as I know, nobody has singled out any examples of code
	in the kernel that actually relies on locks being RCtso.
	(People mumble about RCU and the scheduler, but nobody has
	pointed to any actual code.  If there are any real cases,
	their number is likely quite small.)  If RCtso ordering is not
	needed, why require it?

	A handful of locking constructs (qspinlocks, qrwlocks, and
	mcs_spinlocks) are built on top of smp_cond_load_acquire()
	instead of an RMW-acquire instruction.  It currently provides
	only the ordinary acquire semantics, not the stronger ordering
	this patch would require of locks.  In theory this could be
	ameliorated by requiring smp_cond_load_acquire() in
	combination with ordinary release also to be RCtso (which is
	currently true on all supported architectures).

	On future weakly ordered architectures, people may be able to
	implement locks in a non-RCtso fashion with significant
	performance improvement.  Meeting the RCtso requirement would
	necessarily add run-time overhead.

Overall, the technical aspects of these arguments seem relatively
minor, and it appears mostly to boil down to a matter of opinion.
Since the opinions of senior kernel maintainers such as Linus,
Peter, and Will carry more weight than those of Luc and Andrea, this
patch changes the model in accordance with the maintainers' wishes.

Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: akiyks@gmail.com
Cc: boqun.feng@gmail.com
Cc: dhowells@redhat.com
Cc: j.alglave@ucl.ac.uk
Cc: linux-arch@vger.kernel.org
Cc: luc.maranget@inria.fr
Cc: npiggin@gmail.com
Cc: parri.andrea@gmail.com
Link: http://lkml.kernel.org/r/20180926182920.27644-2-paulmck@linux.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-02 10:28:01 +02:00
..
.gitignore tools/memory-model: Add scripts to test memory model 2018-05-15 08:11:17 +02:00
CoRR+poonceonce+Once.litmus
CoRW+poonceonce+Once.litmus
CoWR+poonceonce+Once.litmus
CoWW+poonceonce.litmus
IRIW+fencembonceonces+OnceOnce.litmus tools/memory-model: Rename litmus tests to comply to norm7 2018-07-17 09:30:36 +02:00
IRIW+poonceonces+OnceOnce.litmus
ISA2+pooncelock+pooncelock+pombonce.litmus tools/memory-model: Add extra ordering for locks and remove it for ordinary release/acquire 2018-10-02 10:28:01 +02:00
ISA2+poonceonces.litmus
ISA2+pooncerelease+poacquirerelease+poacquireonce.litmus
LB+fencembonceonce+ctrlonceonce.litmus tools/memory-model: Rename litmus tests to comply to norm7 2018-07-17 09:30:36 +02:00
LB+poacquireonce+pooncerelease.litmus
LB+poonceonces.litmus
MP+fencewmbonceonce+fencermbonceonce.litmus tools/memory-model: Rename litmus tests to comply to norm7 2018-07-17 09:30:36 +02:00
MP+onceassign+derefonce.litmus
MP+polockmbonce+poacquiresilsil.litmus tools/memory-model: Add model support for spin_is_locked() 2018-05-15 08:11:17 +02:00
MP+polockonce+poacquiresilsil.litmus tools/memory-model: Add model support for spin_is_locked() 2018-05-15 08:11:17 +02:00
MP+polocks.litmus
MP+poonceonces.litmus
MP+pooncerelease+poacquireonce.litmus
MP+porevlocks.litmus
R+fencembonceonces.litmus tools/memory-model: Rename litmus tests to comply to norm7 2018-07-17 09:30:36 +02:00
R+poonceonces.litmus
README tools/memory-model: Add litmus-test naming scheme 2018-10-02 10:28:00 +02:00
S+fencewmbonceonce+poacquireonce.litmus tools/memory-model: Rename litmus tests to comply to norm7 2018-07-17 09:30:36 +02:00
S+poonceonces.litmus
SB+fencembonceonces.litmus tools/memory-model: Rename litmus tests to comply to norm7 2018-07-17 09:30:36 +02:00
SB+poonceonces.litmus
SB+rfionceonce-poonceonces.litmus tools/memory-model: Add litmus test for full multicopy atomicity 2018-07-17 09:29:29 +02:00
WRC+poonceonces+Once.litmus
WRC+pooncerelease+fencermbonceonce+Once.litmus tools/memory-model: Rename litmus tests to comply to norm7 2018-07-17 09:30:36 +02:00
Z6.0+pooncelock+poonceLock+pombonce.litmus
Z6.0+pooncelock+pooncelock+pombonce.litmus
Z6.0+pooncerelease+poacquirerelease+fencembonceonce.litmus tools/memory-model: Rename litmus tests to comply to norm7 2018-07-17 09:30:36 +02:00

README

============
LITMUS TESTS
============

CoRR+poonceonce+Once.litmus
	Test of read-read coherence, that is, whether or not two
	successive reads from the same variable are ordered.

CoRW+poonceonce+Once.litmus
	Test of read-write coherence, that is, whether or not a read
	from a given variable followed by a write to that same variable
	are ordered.

CoWR+poonceonce+Once.litmus
	Test of write-read coherence, that is, whether or not a write
	to a given variable followed by a read from that same variable
	are ordered.

CoWW+poonceonce.litmus
	Test of write-write coherence, that is, whether or not two
	successive writes to the same variable are ordered.

IRIW+fencembonceonces+OnceOnce.litmus
	Test of independent reads from independent writes with smp_mb()
	between each pairs of reads.  In other words, is smp_mb()
	sufficient to cause two different reading processes to agree on
	the order of a pair of writes, where each write is to a different
	variable by a different process?  This litmus test is forbidden
	by LKMM's propagation rule.

IRIW+poonceonces+OnceOnce.litmus
	Test of independent reads from independent writes with nothing
	between each pairs of reads.  In other words, is anything at all
	needed to cause two different reading processes to agree on the
	order of a pair of writes, where each write is to a different
	variable by a different process?

ISA2+pooncelock+pooncelock+pombonce.litmus
	Tests whether the ordering provided by a lock-protected S
	litmus test is visible to an external process whose accesses are
	separated by smp_mb().  This addition of an external process to
	S is otherwise known as ISA2.

ISA2+poonceonces.litmus
	As below, but with store-release replaced with WRITE_ONCE()
	and load-acquire replaced with READ_ONCE().

ISA2+pooncerelease+poacquirerelease+poacquireonce.litmus
	Can a release-acquire chain order a prior store against
	a later load?

LB+fencembonceonce+ctrlonceonce.litmus
	Does a control dependency and an smp_mb() suffice for the
	load-buffering litmus test, where each process reads from one
	of two variables then writes to the other?

LB+poacquireonce+pooncerelease.litmus
	Does a release-acquire pair suffice for the load-buffering
	litmus test, where each process reads from one of two variables then
	writes to the other?

LB+poonceonces.litmus
	As above, but with store-release replaced with WRITE_ONCE()
	and load-acquire replaced with READ_ONCE().

MP+onceassign+derefonce.litmus
	As below, but with rcu_assign_pointer() and an rcu_dereference().

MP+polockmbonce+poacquiresilsil.litmus
	Protect the access with a lock and an smp_mb__after_spinlock()
	in one process, and use an acquire load followed by a pair of
	spin_is_locked() calls in the other process.

MP+polockonce+poacquiresilsil.litmus
	Protect the access with a lock in one process, and use an
	acquire load followed by a pair of spin_is_locked() calls
	in the other process.

MP+polocks.litmus
	As below, but with the second access of the writer process
	and the first access of reader process protected by a lock.

MP+poonceonces.litmus
	As below, but without the smp_rmb() and smp_wmb().

MP+pooncerelease+poacquireonce.litmus
	As below, but with a release-acquire chain.

MP+porevlocks.litmus
	As below, but with the first access of the writer process
	and the second access of reader process protected by a lock.

MP+fencewmbonceonce+fencermbonceonce.litmus
	Does a smp_wmb() (between the stores) and an smp_rmb() (between
	the loads) suffice for the message-passing litmus test, where one
	process writes data and then a flag, and the other process reads
	the flag and then the data.  (This is similar to the ISA2 tests,
	but with two processes instead of three.)

R+fencembonceonces.litmus
	This is the fully ordered (via smp_mb()) version of one of
	the classic counterintuitive litmus tests that illustrates the
	effects of store propagation delays.

R+poonceonces.litmus
	As above, but without the smp_mb() invocations.

SB+fencembonceonces.litmus
	This is the fully ordered (again, via smp_mb() version of store
	buffering, which forms the core of Dekker's mutual-exclusion
	algorithm.

SB+poonceonces.litmus
	As above, but without the smp_mb() invocations.

SB+rfionceonce-poonceonces.litmus
	This litmus test demonstrates that LKMM is not fully multicopy
	atomic.  (Neither is it other multicopy atomic.)  This litmus test
	also demonstrates the "locations" debugging aid, which designates
	additional registers and locations to be printed out in the dump
	of final states in the herd7 output.  Without the "locations"
	statement, only those registers and locations mentioned in the
	"exists" clause will be printed.

S+poonceonces.litmus
	As below, but without the smp_wmb() and acquire load.

S+fencewmbonceonce+poacquireonce.litmus
	Can a smp_wmb(), instead of a release, and an acquire order
	a prior store against a subsequent store?

WRC+poonceonces+Once.litmus
WRC+pooncerelease+fencermbonceonce+Once.litmus
	These two are members of an extension of the MP litmus-test
	class in which the first write is moved to a separate process.
	The second is forbidden because smp_store_release() is
	A-cumulative in LKMM.

Z6.0+pooncelock+pooncelock+pombonce.litmus
	Is the ordering provided by a spin_unlock() and a subsequent
	spin_lock() sufficient to make ordering apparent to accesses
	by a process not holding the lock?

Z6.0+pooncelock+poonceLock+pombonce.litmus
	As above, but with smp_mb__after_spinlock() immediately
	following the spin_lock().

Z6.0+pooncerelease+poacquirerelease+fencembonceonce.litmus
	Is the ordering provided by a release-acquire chain sufficient
	to make ordering apparent to accesses by a process that does
	not participate in that release-acquire chain?

A great many more litmus tests are available here:

	https://github.com/paulmckrcu/litmus

==================
LITMUS TEST NAMING
==================

Litmus tests are usually named based on their contents, which means that
looking at the name tells you what the litmus test does.  The naming
scheme covers litmus tests having a single cycle that passes through
each process exactly once, so litmus tests not fitting this description
are named on an ad-hoc basis.

The structure of a litmus-test name is the litmus-test class, a plus
sign ("+"), and one string for each process, separated by plus signs.
The end of the name is ".litmus".

The litmus-test classes may be found in the infamous test6.pdf:
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test6.pdf
Each class defines the pattern of accesses and of the variables accessed.
For example, if the one process writes to a pair of variables, and
the other process reads from these same variables, the corresponding
litmus-test class is "MP" (message passing), which may be found on the
left-hand end of the second row of tests on page one of test6.pdf.

The strings used to identify the actions carried out by each process are
complex due to a desire to have short(er) names.  Thus, there is a tool to
generate these strings from a given litmus test's actions.  For example,
consider the processes from SB+rfionceonce-poonceonces.litmus:

	P0(int *x, int *y)
	{
		int r1;
		int r2;

		WRITE_ONCE(*x, 1);
		r1 = READ_ONCE(*x);
		r2 = READ_ONCE(*y);
	}

	P1(int *x, int *y)
	{
		int r3;
		int r4;

		WRITE_ONCE(*y, 1);
		r3 = READ_ONCE(*y);
		r4 = READ_ONCE(*x);
	}

The next step is to construct a space-separated list of descriptors,
interleaving descriptions of the relation between a pair of consecutive
accesses with descriptions of the second access in the pair.

P0()'s WRITE_ONCE() is read by its first READ_ONCE(), which is a
reads-from link (rf) and internal to the P0() process.  This is
"rfi", which is an abbreviation for "reads-from internal".  Because
some of the tools string these abbreviations together with space
characters separating processes, the first character is capitalized,
resulting in "Rfi".

P0()'s second access is a READ_ONCE(), as opposed to (for example)
smp_load_acquire(), so next is "Once".  Thus far, we have "Rfi Once".

P0()'s third access is also a READ_ONCE(), but to y rather than x.
This is related to P0()'s second access by program order ("po"),
to a different variable ("d"), and both accesses are reads ("RR").
The resulting descriptor is "PodRR".  Because P0()'s third access is
READ_ONCE(), we add another "Once" descriptor.

A from-read ("fre") relation links P0()'s third to P1()'s first
access, and the resulting descriptor is "Fre".  P1()'s first access is
WRITE_ONCE(), which as before gives the descriptor "Once".  The string
thus far is thus "Rfi Once PodRR Once Fre Once".

The remainder of P1() is similar to P0(), which means we add
"Rfi Once PodRR Once".  Another fre links P1()'s last access to
P0()'s first access, which is WRITE_ONCE(), so we add "Fre Once".
The full string is thus:

	Rfi Once PodRR Once Fre Once Rfi Once PodRR Once Fre Once

This string can be given to the "norm7" and "classify7" tools to
produce the name:

	$ norm7 -bell linux-kernel.bell \
		Rfi Once PodRR Once Fre Once Rfi Once PodRR Once Fre Once | \
	  sed -e 's/:.*//g'
	SB+rfionceonce-poonceonces

Adding the ".litmus" suffix: SB+rfionceonce-poonceonces.litmus

The descriptors that describe connections between consecutive accesses
within the cycle through a given litmus test can be provided by the herd
tool (Rfi, Po, Fre, and so on) or by the linux-kernel.bell file (Once,
Release, Acquire, and so on).

To see the full list of descriptors, execute the following command:

	$ diyone7 -bell linux-kernel.bell -show edges