OpenCloudOS-Kernel/arch/x86/kvm/x86.c

5293 lines
128 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* derived from drivers/kvm/kvm_main.c
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright (C) 2008 Qumranet, Inc.
* Copyright IBM Corporation, 2008
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
* Amit Shah <amit.shah@qumranet.com>
* Ben-Ami Yassour <benami@il.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include <linux/kvm_host.h>
#include "irq.h"
#include "mmu.h"
#include "i8254.h"
#include "tss.h"
#include "kvm_cache_regs.h"
#include "x86.h"
#include <linux/clocksource.h>
#include <linux/interrupt.h>
#include <linux/kvm.h>
#include <linux/fs.h>
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/mman.h>
#include <linux/highmem.h>
#include <linux/iommu.h>
#include <linux/intel-iommu.h>
#include <linux/cpufreq.h>
#include <linux/user-return-notifier.h>
#include <trace/events/kvm.h>
#undef TRACE_INCLUDE_FILE
#define CREATE_TRACE_POINTS
#include "trace.h"
#include <asm/debugreg.h>
#include <asm/uaccess.h>
#include <asm/msr.h>
#include <asm/desc.h>
#include <asm/mtrr.h>
#include <asm/mce.h>
#define MAX_IO_MSRS 256
#define CR0_RESERVED_BITS \
(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
| X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
| X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
#define CR4_RESERVED_BITS \
(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
| X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
| X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
| X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
#define KVM_MAX_MCE_BANKS 32
#define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
/* EFER defaults:
* - enable syscall per default because its emulated by KVM
* - enable LME and LMA per default on 64 bit KVM
*/
#ifdef CONFIG_X86_64
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
#else
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
#endif
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
static void update_cr8_intercept(struct kvm_vcpu *vcpu);
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries);
struct kvm_x86_ops *kvm_x86_ops;
EXPORT_SYMBOL_GPL(kvm_x86_ops);
int ignore_msrs = 0;
module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
#define KVM_NR_SHARED_MSRS 16
struct kvm_shared_msrs_global {
int nr;
struct kvm_shared_msr {
u32 msr;
u64 value;
} msrs[KVM_NR_SHARED_MSRS];
};
struct kvm_shared_msrs {
struct user_return_notifier urn;
bool registered;
u64 current_value[KVM_NR_SHARED_MSRS];
};
static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "pf_fixed", VCPU_STAT(pf_fixed) },
{ "pf_guest", VCPU_STAT(pf_guest) },
{ "tlb_flush", VCPU_STAT(tlb_flush) },
{ "invlpg", VCPU_STAT(invlpg) },
{ "exits", VCPU_STAT(exits) },
{ "io_exits", VCPU_STAT(io_exits) },
{ "mmio_exits", VCPU_STAT(mmio_exits) },
{ "signal_exits", VCPU_STAT(signal_exits) },
{ "irq_window", VCPU_STAT(irq_window_exits) },
{ "nmi_window", VCPU_STAT(nmi_window_exits) },
{ "halt_exits", VCPU_STAT(halt_exits) },
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{ "hypercalls", VCPU_STAT(hypercalls) },
{ "request_irq", VCPU_STAT(request_irq_exits) },
{ "irq_exits", VCPU_STAT(irq_exits) },
{ "host_state_reload", VCPU_STAT(host_state_reload) },
{ "efer_reload", VCPU_STAT(efer_reload) },
{ "fpu_reload", VCPU_STAT(fpu_reload) },
{ "insn_emulation", VCPU_STAT(insn_emulation) },
{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
{ "irq_injections", VCPU_STAT(irq_injections) },
{ "nmi_injections", VCPU_STAT(nmi_injections) },
{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
{ "mmu_flooded", VM_STAT(mmu_flooded) },
{ "mmu_recycled", VM_STAT(mmu_recycled) },
{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
{ "mmu_unsync", VM_STAT(mmu_unsync) },
{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
{ "largepages", VM_STAT(lpages) },
{ NULL }
};
static void kvm_on_user_return(struct user_return_notifier *urn)
{
unsigned slot;
struct kvm_shared_msr *global;
struct kvm_shared_msrs *locals
= container_of(urn, struct kvm_shared_msrs, urn);
for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
global = &shared_msrs_global.msrs[slot];
if (global->value != locals->current_value[slot]) {
wrmsrl(global->msr, global->value);
locals->current_value[slot] = global->value;
}
}
locals->registered = false;
user_return_notifier_unregister(urn);
}
void kvm_define_shared_msr(unsigned slot, u32 msr)
{
int cpu;
u64 value;
if (slot >= shared_msrs_global.nr)
shared_msrs_global.nr = slot + 1;
shared_msrs_global.msrs[slot].msr = msr;
rdmsrl_safe(msr, &value);
shared_msrs_global.msrs[slot].value = value;
for_each_online_cpu(cpu)
per_cpu(shared_msrs, cpu).current_value[slot] = value;
}
EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
static void kvm_shared_msr_cpu_online(void)
{
unsigned i;
struct kvm_shared_msrs *locals = &__get_cpu_var(shared_msrs);
for (i = 0; i < shared_msrs_global.nr; ++i)
locals->current_value[i] = shared_msrs_global.msrs[i].value;
}
void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
{
struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
if (((value ^ smsr->current_value[slot]) & mask) == 0)
return;
smsr->current_value[slot] = value;
wrmsrl(shared_msrs_global.msrs[slot].msr, value);
if (!smsr->registered) {
smsr->urn.on_user_return = kvm_on_user_return;
user_return_notifier_register(&smsr->urn);
smsr->registered = true;
}
}
EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
static void drop_user_return_notifiers(void *ignore)
{
struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
if (smsr->registered)
kvm_on_user_return(&smsr->urn);
}
unsigned long segment_base(u16 selector)
{
struct descriptor_table gdt;
struct desc_struct *d;
unsigned long table_base;
unsigned long v;
if (selector == 0)
return 0;
kvm_get_gdt(&gdt);
table_base = gdt.base;
if (selector & 4) { /* from ldt */
u16 ldt_selector = kvm_read_ldt();
table_base = segment_base(ldt_selector);
}
d = (struct desc_struct *)(table_base + (selector & ~7));
v = get_desc_base(d);
#ifdef CONFIG_X86_64
if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
#endif
return v;
}
EXPORT_SYMBOL_GPL(segment_base);
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
{
if (irqchip_in_kernel(vcpu->kvm))
return vcpu->arch.apic_base;
else
return vcpu->arch.apic_base;
}
EXPORT_SYMBOL_GPL(kvm_get_apic_base);
void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
{
/* TODO: reserve bits check */
if (irqchip_in_kernel(vcpu->kvm))
kvm_lapic_set_base(vcpu, data);
else
vcpu->arch.apic_base = data;
}
EXPORT_SYMBOL_GPL(kvm_set_apic_base);
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
WARN_ON(vcpu->arch.exception.pending);
vcpu->arch.exception.pending = true;
vcpu->arch.exception.has_error_code = false;
vcpu->arch.exception.nr = nr;
}
EXPORT_SYMBOL_GPL(kvm_queue_exception);
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
u32 error_code)
{
++vcpu->stat.pf_guest;
if (vcpu->arch.exception.pending) {
switch(vcpu->arch.exception.nr) {
case DF_VECTOR:
/* triple fault -> shutdown */
set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
return;
case PF_VECTOR:
vcpu->arch.exception.nr = DF_VECTOR;
vcpu->arch.exception.error_code = 0;
return;
default:
/* replace previous exception with a new one in a hope
that instruction re-execution will regenerate lost
exception */
vcpu->arch.exception.pending = false;
break;
}
}
vcpu->arch.cr2 = addr;
kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
}
void kvm_inject_nmi(struct kvm_vcpu *vcpu)
{
vcpu->arch.nmi_pending = 1;
}
EXPORT_SYMBOL_GPL(kvm_inject_nmi);
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
WARN_ON(vcpu->arch.exception.pending);
vcpu->arch.exception.pending = true;
vcpu->arch.exception.has_error_code = true;
vcpu->arch.exception.nr = nr;
vcpu->arch.exception.error_code = error_code;
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
/*
* Checks if cpl <= required_cpl; if true, return true. Otherwise queue
* a #GP and return false.
*/
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
{
if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
return true;
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
return false;
}
EXPORT_SYMBOL_GPL(kvm_require_cpl);
/*
* Load the pae pdptrs. Return true is they are all valid.
*/
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
{
gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
int i;
int ret;
u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
offset * sizeof(u64), sizeof(pdpte));
if (ret < 0) {
ret = 0;
goto out;
}
for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
if (is_present_gpte(pdpte[i]) &&
(pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
ret = 0;
goto out;
}
}
ret = 1;
memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
__set_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_avail);
__set_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_dirty);
out:
return ret;
}
EXPORT_SYMBOL_GPL(load_pdptrs);
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
{
u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
bool changed = true;
int r;
if (is_long_mode(vcpu) || !is_pae(vcpu))
return false;
if (!test_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_avail))
return true;
r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
if (r < 0)
goto out;
changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
out:
return changed;
}
void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
if (cr0 & CR0_RESERVED_BITS) {
printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
cr0, vcpu->arch.cr0);
kvm_inject_gp(vcpu, 0);
return;
}
if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
kvm_inject_gp(vcpu, 0);
return;
}
if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
"and a clear PE flag\n");
kvm_inject_gp(vcpu, 0);
return;
}
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
#ifdef CONFIG_X86_64
if ((vcpu->arch.shadow_efer & EFER_LME)) {
int cs_db, cs_l;
if (!is_pae(vcpu)) {
printk(KERN_DEBUG "set_cr0: #GP, start paging "
"in long mode while PAE is disabled\n");
kvm_inject_gp(vcpu, 0);
return;
}
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
if (cs_l) {
printk(KERN_DEBUG "set_cr0: #GP, start paging "
"in long mode while CS.L == 1\n");
kvm_inject_gp(vcpu, 0);
return;
}
} else
#endif
if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
"reserved bits\n");
kvm_inject_gp(vcpu, 0);
return;
}
}
kvm_x86_ops->set_cr0(vcpu, cr0);
vcpu->arch.cr0 = cr0;
kvm_mmu_reset_context(vcpu);
return;
}
EXPORT_SYMBOL_GPL(kvm_set_cr0);
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
{
kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
}
EXPORT_SYMBOL_GPL(kvm_lmsw);
void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
unsigned long old_cr4 = vcpu->arch.cr4;
unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
if (cr4 & CR4_RESERVED_BITS) {
printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
kvm_inject_gp(vcpu, 0);
return;
}
if (is_long_mode(vcpu)) {
if (!(cr4 & X86_CR4_PAE)) {
printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
"in long mode\n");
kvm_inject_gp(vcpu, 0);
return;
}
} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
&& ((cr4 ^ old_cr4) & pdptr_bits)
&& !load_pdptrs(vcpu, vcpu->arch.cr3)) {
printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
kvm_inject_gp(vcpu, 0);
return;
}
if (cr4 & X86_CR4_VMXE) {
printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
kvm_inject_gp(vcpu, 0);
return;
}
kvm_x86_ops->set_cr4(vcpu, cr4);
vcpu->arch.cr4 = cr4;
vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
kvm_mmu_reset_context(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_set_cr4);
void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
kvm_mmu_sync_roots(vcpu);
kvm_mmu_flush_tlb(vcpu);
return;
}
if (is_long_mode(vcpu)) {
if (cr3 & CR3_L_MODE_RESERVED_BITS) {
printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
kvm_inject_gp(vcpu, 0);
return;
}
} else {
if (is_pae(vcpu)) {
if (cr3 & CR3_PAE_RESERVED_BITS) {
printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
kvm_inject_gp(vcpu, 0);
return;
}
if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
"reserved bits\n");
kvm_inject_gp(vcpu, 0);
return;
}
}
/*
* We don't check reserved bits in nonpae mode, because
* this isn't enforced, and VMware depends on this.
*/
}
/*
* Does the new cr3 value map to physical memory? (Note, we
* catch an invalid cr3 even in real-mode, because it would
* cause trouble later on when we turn on paging anyway.)
*
* A real CPU would silently accept an invalid cr3 and would
* attempt to use it - with largely undefined (and often hard
* to debug) behavior on the guest side.
*/
if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
kvm_inject_gp(vcpu, 0);
else {
vcpu->arch.cr3 = cr3;
vcpu->arch.mmu.new_cr3(vcpu);
}
}
EXPORT_SYMBOL_GPL(kvm_set_cr3);
void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
{
if (cr8 & CR8_RESERVED_BITS) {
printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
kvm_inject_gp(vcpu, 0);
return;
}
if (irqchip_in_kernel(vcpu->kvm))
kvm_lapic_set_tpr(vcpu, cr8);
else
vcpu->arch.cr8 = cr8;
}
EXPORT_SYMBOL_GPL(kvm_set_cr8);
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
{
if (irqchip_in_kernel(vcpu->kvm))
return kvm_lapic_get_cr8(vcpu);
else
return vcpu->arch.cr8;
}
EXPORT_SYMBOL_GPL(kvm_get_cr8);
static inline u32 bit(int bitno)
{
return 1 << (bitno & 31);
}
/*
* List of msr numbers which we expose to userspace through KVM_GET_MSRS
* and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
*
* This list is modified at module load time to reflect the
* capabilities of the host cpu. This capabilities test skips MSRs that are
* kvm-specific. Those are put in the beginning of the list.
*/
#define KVM_SAVE_MSRS_BEGIN 2
static u32 msrs_to_save[] = {
MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
MSR_K6_STAR,
#ifdef CONFIG_X86_64
MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
};
static unsigned num_msrs_to_save;
static u32 emulated_msrs[] = {
MSR_IA32_MISC_ENABLE,
};
static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
if (efer & efer_reserved_bits) {
printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
efer);
kvm_inject_gp(vcpu, 0);
return;
}
if (is_paging(vcpu)
&& (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
kvm_inject_gp(vcpu, 0);
return;
}
if (efer & EFER_FFXSR) {
struct kvm_cpuid_entry2 *feat;
feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
kvm_inject_gp(vcpu, 0);
return;
}
}
if (efer & EFER_SVME) {
struct kvm_cpuid_entry2 *feat;
feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
kvm_inject_gp(vcpu, 0);
return;
}
}
kvm_x86_ops->set_efer(vcpu, efer);
efer &= ~EFER_LMA;
efer |= vcpu->arch.shadow_efer & EFER_LMA;
vcpu->arch.shadow_efer = efer;
vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
kvm_mmu_reset_context(vcpu);
}
void kvm_enable_efer_bits(u64 mask)
{
efer_reserved_bits &= ~mask;
}
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
/*
* Writes msr value into into the appropriate "register".
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
return kvm_x86_ops->set_msr(vcpu, msr_index, data);
}
/*
* Adapt set_msr() to msr_io()'s calling convention
*/
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
return kvm_set_msr(vcpu, index, *data);
}
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
{
static int version;
struct pvclock_wall_clock wc;
struct timespec boot;
if (!wall_clock)
return;
version++;
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
/*
* The guest calculates current wall clock time by adding
* system time (updated by kvm_write_guest_time below) to the
* wall clock specified here. guest system time equals host
* system time for us, thus we must fill in host boot time here.
*/
getboottime(&boot);
wc.sec = boot.tv_sec;
wc.nsec = boot.tv_nsec;
wc.version = version;
kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
version++;
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
}
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
{
uint32_t quotient, remainder;
/* Don't try to replace with do_div(), this one calculates
* "(dividend << 32) / divisor" */
__asm__ ( "divl %4"
: "=a" (quotient), "=d" (remainder)
: "0" (0), "1" (dividend), "r" (divisor) );
return quotient;
}
static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
{
uint64_t nsecs = 1000000000LL;
int32_t shift = 0;
uint64_t tps64;
uint32_t tps32;
tps64 = tsc_khz * 1000LL;
while (tps64 > nsecs*2) {
tps64 >>= 1;
shift--;
}
tps32 = (uint32_t)tps64;
while (tps32 <= (uint32_t)nsecs) {
tps32 <<= 1;
shift++;
}
hv_clock->tsc_shift = shift;
hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
__func__, tsc_khz, hv_clock->tsc_shift,
hv_clock->tsc_to_system_mul);
}
static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
static void kvm_write_guest_time(struct kvm_vcpu *v)
{
struct timespec ts;
unsigned long flags;
struct kvm_vcpu_arch *vcpu = &v->arch;
void *shared_kaddr;
unsigned long this_tsc_khz;
if ((!vcpu->time_page))
return;
this_tsc_khz = get_cpu_var(cpu_tsc_khz);
if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
vcpu->hv_clock_tsc_khz = this_tsc_khz;
}
put_cpu_var(cpu_tsc_khz);
/* Keep irq disabled to prevent changes to the clock */
local_irq_save(flags);
kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
ktime_get_ts(&ts);
monotonic_to_bootbased(&ts);
local_irq_restore(flags);
/* With all the info we got, fill in the values */
vcpu->hv_clock.system_time = ts.tv_nsec +
(NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
/*
* The interface expects us to write an even number signaling that the
* update is finished. Since the guest won't see the intermediate
* state, we just increase by 2 at the end.
*/
vcpu->hv_clock.version += 2;
shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
sizeof(vcpu->hv_clock));
kunmap_atomic(shared_kaddr, KM_USER0);
mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
}
static int kvm_request_guest_time_update(struct kvm_vcpu *v)
{
struct kvm_vcpu_arch *vcpu = &v->arch;
if (!vcpu->time_page)
return 0;
set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
return 1;
}
static bool msr_mtrr_valid(unsigned msr)
{
switch (msr) {
case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
case MSR_MTRRfix64K_00000:
case MSR_MTRRfix16K_80000:
case MSR_MTRRfix16K_A0000:
case MSR_MTRRfix4K_C0000:
case MSR_MTRRfix4K_C8000:
case MSR_MTRRfix4K_D0000:
case MSR_MTRRfix4K_D8000:
case MSR_MTRRfix4K_E0000:
case MSR_MTRRfix4K_E8000:
case MSR_MTRRfix4K_F0000:
case MSR_MTRRfix4K_F8000:
case MSR_MTRRdefType:
case MSR_IA32_CR_PAT:
return true;
case 0x2f8:
return true;
}
return false;
}
static bool valid_pat_type(unsigned t)
{
return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
}
static bool valid_mtrr_type(unsigned t)
{
return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
}
static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
int i;
if (!msr_mtrr_valid(msr))
return false;
if (msr == MSR_IA32_CR_PAT) {
for (i = 0; i < 8; i++)
if (!valid_pat_type((data >> (i * 8)) & 0xff))
return false;
return true;
} else if (msr == MSR_MTRRdefType) {
if (data & ~0xcff)
return false;
return valid_mtrr_type(data & 0xff);
} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
for (i = 0; i < 8 ; i++)
if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
return false;
return true;
}
/* variable MTRRs */
return valid_mtrr_type(data & 0xff);
}
static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
if (!mtrr_valid(vcpu, msr, data))
return 1;
if (msr == MSR_MTRRdefType) {
vcpu->arch.mtrr_state.def_type = data;
vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
} else if (msr == MSR_MTRRfix64K_00000)
p[0] = data;
else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
p[1 + msr - MSR_MTRRfix16K_80000] = data;
else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
p[3 + msr - MSR_MTRRfix4K_C0000] = data;
else if (msr == MSR_IA32_CR_PAT)
vcpu->arch.pat = data;
else { /* Variable MTRRs */
int idx, is_mtrr_mask;
u64 *pt;
idx = (msr - 0x200) / 2;
is_mtrr_mask = msr - 0x200 - 2 * idx;
if (!is_mtrr_mask)
pt =
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
else
pt =
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
*pt = data;
}
kvm_mmu_reset_context(vcpu);
return 0;
}
static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
u64 mcg_cap = vcpu->arch.mcg_cap;
unsigned bank_num = mcg_cap & 0xff;
switch (msr) {
case MSR_IA32_MCG_STATUS:
vcpu->arch.mcg_status = data;
break;
case MSR_IA32_MCG_CTL:
if (!(mcg_cap & MCG_CTL_P))
return 1;
if (data != 0 && data != ~(u64)0)
return -1;
vcpu->arch.mcg_ctl = data;
break;
default:
if (msr >= MSR_IA32_MC0_CTL &&
msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
u32 offset = msr - MSR_IA32_MC0_CTL;
/* only 0 or all 1s can be written to IA32_MCi_CTL */
if ((offset & 0x3) == 0 &&
data != 0 && data != ~(u64)0)
return -1;
vcpu->arch.mce_banks[offset] = data;
break;
}
return 1;
}
return 0;
}
static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
{
struct kvm *kvm = vcpu->kvm;
int lm = is_long_mode(vcpu);
u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
: kvm->arch.xen_hvm_config.blob_size_32;
u32 page_num = data & ~PAGE_MASK;
u64 page_addr = data & PAGE_MASK;
u8 *page;
int r;
r = -E2BIG;
if (page_num >= blob_size)
goto out;
r = -ENOMEM;
page = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!page)
goto out;
r = -EFAULT;
if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
goto out_free;
if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
goto out_free;
r = 0;
out_free:
kfree(page);
out:
return r;
}
int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
switch (msr) {
case MSR_EFER:
set_efer(vcpu, data);
break;
case MSR_K7_HWCR:
data &= ~(u64)0x40; /* ignore flush filter disable */
if (data != 0) {
pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
data);
return 1;
}
break;
case MSR_FAM10H_MMIO_CONF_BASE:
if (data != 0) {
pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
"0x%llx\n", data);
return 1;
}
break;
case MSR_AMD64_NB_CFG:
break;
case MSR_IA32_DEBUGCTLMSR:
if (!data) {
/* We support the non-activated case already */
break;
} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
/* Values other than LBR and BTF are vendor-specific,
thus reserved and should throw a #GP */
return 1;
}
pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
__func__, data);
break;
case MSR_IA32_UCODE_REV:
case MSR_IA32_UCODE_WRITE:
case MSR_VM_HSAVE_PA:
case MSR_AMD64_PATCH_LOADER:
break;
case 0x200 ... 0x2ff:
return set_msr_mtrr(vcpu, msr, data);
case MSR_IA32_APICBASE:
kvm_set_apic_base(vcpu, data);
break;
case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
return kvm_x2apic_msr_write(vcpu, msr, data);
case MSR_IA32_MISC_ENABLE:
vcpu->arch.ia32_misc_enable_msr = data;
break;
case MSR_KVM_WALL_CLOCK:
vcpu->kvm->arch.wall_clock = data;
kvm_write_wall_clock(vcpu->kvm, data);
break;
case MSR_KVM_SYSTEM_TIME: {
if (vcpu->arch.time_page) {
kvm_release_page_dirty(vcpu->arch.time_page);
vcpu->arch.time_page = NULL;
}
vcpu->arch.time = data;
/* we verify if the enable bit is set... */
if (!(data & 1))
break;
/* ...but clean it before doing the actual write */
vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
vcpu->arch.time_page =
gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
if (is_error_page(vcpu->arch.time_page)) {
kvm_release_page_clean(vcpu->arch.time_page);
vcpu->arch.time_page = NULL;
}
kvm_request_guest_time_update(vcpu);
break;
}
case MSR_IA32_MCG_CTL:
case MSR_IA32_MCG_STATUS:
case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
return set_msr_mce(vcpu, msr, data);
/* Performance counters are not protected by a CPUID bit,
* so we should check all of them in the generic path for the sake of
* cross vendor migration.
* Writing a zero into the event select MSRs disables them,
* which we perfectly emulate ;-). Any other value should be at least
* reported, some guests depend on them.
*/
case MSR_P6_EVNTSEL0:
case MSR_P6_EVNTSEL1:
case MSR_K7_EVNTSEL0:
case MSR_K7_EVNTSEL1:
case MSR_K7_EVNTSEL2:
case MSR_K7_EVNTSEL3:
if (data != 0)
pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
"0x%x data 0x%llx\n", msr, data);
break;
/* at least RHEL 4 unconditionally writes to the perfctr registers,
* so we ignore writes to make it happy.
*/
case MSR_P6_PERFCTR0:
case MSR_P6_PERFCTR1:
case MSR_K7_PERFCTR0:
case MSR_K7_PERFCTR1:
case MSR_K7_PERFCTR2:
case MSR_K7_PERFCTR3:
pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
"0x%x data 0x%llx\n", msr, data);
break;
default:
if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
return xen_hvm_config(vcpu, data);
if (!ignore_msrs) {
pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
msr, data);
return 1;
} else {
pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
msr, data);
break;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);
/*
* Reads an msr value (of 'msr_index') into 'pdata'.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
}
static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
if (!msr_mtrr_valid(msr))
return 1;
if (msr == MSR_MTRRdefType)
*pdata = vcpu->arch.mtrr_state.def_type +
(vcpu->arch.mtrr_state.enabled << 10);
else if (msr == MSR_MTRRfix64K_00000)
*pdata = p[0];
else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
else if (msr == MSR_IA32_CR_PAT)
*pdata = vcpu->arch.pat;
else { /* Variable MTRRs */
int idx, is_mtrr_mask;
u64 *pt;
idx = (msr - 0x200) / 2;
is_mtrr_mask = msr - 0x200 - 2 * idx;
if (!is_mtrr_mask)
pt =
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
else
pt =
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
*pdata = *pt;
}
return 0;
}
static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 data;
u64 mcg_cap = vcpu->arch.mcg_cap;
unsigned bank_num = mcg_cap & 0xff;
switch (msr) {
case MSR_IA32_P5_MC_ADDR:
case MSR_IA32_P5_MC_TYPE:
data = 0;
break;
case MSR_IA32_MCG_CAP:
data = vcpu->arch.mcg_cap;
break;
case MSR_IA32_MCG_CTL:
if (!(mcg_cap & MCG_CTL_P))
return 1;
data = vcpu->arch.mcg_ctl;
break;
case MSR_IA32_MCG_STATUS:
data = vcpu->arch.mcg_status;
break;
default:
if (msr >= MSR_IA32_MC0_CTL &&
msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
u32 offset = msr - MSR_IA32_MC0_CTL;
data = vcpu->arch.mce_banks[offset];
break;
}
return 1;
}
*pdata = data;
return 0;
}
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 data;
switch (msr) {
case MSR_IA32_PLATFORM_ID:
case MSR_IA32_UCODE_REV:
case MSR_IA32_EBL_CR_POWERON:
case MSR_IA32_DEBUGCTLMSR:
case MSR_IA32_LASTBRANCHFROMIP:
case MSR_IA32_LASTBRANCHTOIP:
case MSR_IA32_LASTINTFROMIP:
case MSR_IA32_LASTINTTOIP:
case MSR_K8_SYSCFG:
case MSR_K7_HWCR:
case MSR_VM_HSAVE_PA:
case MSR_P6_PERFCTR0:
case MSR_P6_PERFCTR1:
case MSR_P6_EVNTSEL0:
case MSR_P6_EVNTSEL1:
case MSR_K7_EVNTSEL0:
case MSR_K7_PERFCTR0:
case MSR_K8_INT_PENDING_MSG:
case MSR_AMD64_NB_CFG:
case MSR_FAM10H_MMIO_CONF_BASE:
data = 0;
break;
case MSR_MTRRcap:
data = 0x500 | KVM_NR_VAR_MTRR;
break;
case 0x200 ... 0x2ff:
return get_msr_mtrr(vcpu, msr, pdata);
case 0xcd: /* fsb frequency */
data = 3;
break;
case MSR_IA32_APICBASE:
data = kvm_get_apic_base(vcpu);
break;
case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
return kvm_x2apic_msr_read(vcpu, msr, pdata);
break;
case MSR_IA32_MISC_ENABLE:
data = vcpu->arch.ia32_misc_enable_msr;
break;
case MSR_IA32_PERF_STATUS:
/* TSC increment by tick */
data = 1000ULL;
/* CPU multiplier */
data |= (((uint64_t)4ULL) << 40);
break;
case MSR_EFER:
data = vcpu->arch.shadow_efer;
break;
case MSR_KVM_WALL_CLOCK:
data = vcpu->kvm->arch.wall_clock;
break;
case MSR_KVM_SYSTEM_TIME:
data = vcpu->arch.time;
break;
case MSR_IA32_P5_MC_ADDR:
case MSR_IA32_P5_MC_TYPE:
case MSR_IA32_MCG_CAP:
case MSR_IA32_MCG_CTL:
case MSR_IA32_MCG_STATUS:
case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
return get_msr_mce(vcpu, msr, pdata);
default:
if (!ignore_msrs) {
pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
return 1;
} else {
pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
data = 0;
}
break;
}
*pdata = data;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);
/*
* Read or write a bunch of msrs. All parameters are kernel addresses.
*
* @return number of msrs set successfully.
*/
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
struct kvm_msr_entry *entries,
int (*do_msr)(struct kvm_vcpu *vcpu,
unsigned index, u64 *data))
{
int i;
vcpu_load(vcpu);
down_read(&vcpu->kvm->slots_lock);
for (i = 0; i < msrs->nmsrs; ++i)
if (do_msr(vcpu, entries[i].index, &entries[i].data))
break;
up_read(&vcpu->kvm->slots_lock);
vcpu_put(vcpu);
return i;
}
/*
* Read or write a bunch of msrs. Parameters are user addresses.
*
* @return number of msrs set successfully.
*/
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
int (*do_msr)(struct kvm_vcpu *vcpu,
unsigned index, u64 *data),
int writeback)
{
struct kvm_msrs msrs;
struct kvm_msr_entry *entries;
int r, n;
unsigned size;
r = -EFAULT;
if (copy_from_user(&msrs, user_msrs, sizeof msrs))
goto out;
r = -E2BIG;
if (msrs.nmsrs >= MAX_IO_MSRS)
goto out;
r = -ENOMEM;
size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
entries = vmalloc(size);
if (!entries)
goto out;
r = -EFAULT;
if (copy_from_user(entries, user_msrs->entries, size))
goto out_free;
r = n = __msr_io(vcpu, &msrs, entries, do_msr);
if (r < 0)
goto out_free;
r = -EFAULT;
if (writeback && copy_to_user(user_msrs->entries, entries, size))
goto out_free;
r = n;
out_free:
vfree(entries);
out:
return r;
}
int kvm_dev_ioctl_check_extension(long ext)
{
int r;
switch (ext) {
case KVM_CAP_IRQCHIP:
case KVM_CAP_HLT:
case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
case KVM_CAP_SET_TSS_ADDR:
case KVM_CAP_EXT_CPUID:
case KVM_CAP_CLOCKSOURCE:
case KVM_CAP_PIT:
case KVM_CAP_NOP_IO_DELAY:
case KVM_CAP_MP_STATE:
case KVM_CAP_SYNC_MMU:
case KVM_CAP_REINJECT_CONTROL:
case KVM_CAP_IRQ_INJECT_STATUS:
case KVM_CAP_ASSIGN_DEV_IRQ:
case KVM_CAP_IRQFD:
case KVM_CAP_IOEVENTFD:
case KVM_CAP_PIT2:
case KVM_CAP_PIT_STATE2:
case KVM_CAP_SET_IDENTITY_MAP_ADDR:
case KVM_CAP_XEN_HVM:
case KVM_CAP_ADJUST_CLOCK:
case KVM_CAP_VCPU_EVENTS:
r = 1;
break;
case KVM_CAP_COALESCED_MMIO:
r = KVM_COALESCED_MMIO_PAGE_OFFSET;
break;
case KVM_CAP_VAPIC:
r = !kvm_x86_ops->cpu_has_accelerated_tpr();
break;
case KVM_CAP_NR_VCPUS:
r = KVM_MAX_VCPUS;
break;
case KVM_CAP_NR_MEMSLOTS:
r = KVM_MEMORY_SLOTS;
break;
case KVM_CAP_PV_MMU: /* obsolete */
r = 0;
break;
case KVM_CAP_IOMMU:
r = iommu_found();
break;
case KVM_CAP_MCE:
r = KVM_MAX_MCE_BANKS;
break;
default:
r = 0;
break;
}
return r;
}
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
void __user *argp = (void __user *)arg;
long r;
switch (ioctl) {
case KVM_GET_MSR_INDEX_LIST: {
struct kvm_msr_list __user *user_msr_list = argp;
struct kvm_msr_list msr_list;
unsigned n;
r = -EFAULT;
if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
goto out;
n = msr_list.nmsrs;
msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
goto out;
r = -E2BIG;
if (n < msr_list.nmsrs)
goto out;
r = -EFAULT;
if (copy_to_user(user_msr_list->indices, &msrs_to_save,
num_msrs_to_save * sizeof(u32)))
goto out;
if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
&emulated_msrs,
ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
goto out;
r = 0;
break;
}
case KVM_GET_SUPPORTED_CPUID: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
cpuid_arg->entries);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
goto out;
r = 0;
break;
}
case KVM_X86_GET_MCE_CAP_SUPPORTED: {
u64 mce_cap;
mce_cap = KVM_MCE_CAP_SUPPORTED;
r = -EFAULT;
if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
goto out;
r = 0;
break;
}
default:
r = -EINVAL;
}
out:
return r;
}
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
kvm_x86_ops->vcpu_load(vcpu, cpu);
if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
unsigned long khz = cpufreq_quick_get(cpu);
if (!khz)
khz = tsc_khz;
per_cpu(cpu_tsc_khz, cpu) = khz;
}
kvm_request_guest_time_update(vcpu);
}
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
kvm_x86_ops->vcpu_put(vcpu);
kvm_put_guest_fpu(vcpu);
}
static int is_efer_nx(void)
{
unsigned long long efer = 0;
rdmsrl_safe(MSR_EFER, &efer);
return efer & EFER_NX;
}
static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
{
int i;
struct kvm_cpuid_entry2 *e, *entry;
entry = NULL;
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
e = &vcpu->arch.cpuid_entries[i];
if (e->function == 0x80000001) {
entry = e;
break;
}
}
if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
entry->edx &= ~(1 << 20);
printk(KERN_INFO "kvm: guest NX capability removed\n");
}
}
/* when an old userspace process fills a new kernel module */
static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
struct kvm_cpuid *cpuid,
struct kvm_cpuid_entry __user *entries)
{
int r, i;
struct kvm_cpuid_entry *cpuid_entries;
r = -E2BIG;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
goto out;
r = -ENOMEM;
cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
if (!cpuid_entries)
goto out;
r = -EFAULT;
if (copy_from_user(cpuid_entries, entries,
cpuid->nent * sizeof(struct kvm_cpuid_entry)))
goto out_free;
for (i = 0; i < cpuid->nent; i++) {
vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
vcpu->arch.cpuid_entries[i].index = 0;
vcpu->arch.cpuid_entries[i].flags = 0;
vcpu->arch.cpuid_entries[i].padding[0] = 0;
vcpu->arch.cpuid_entries[i].padding[1] = 0;
vcpu->arch.cpuid_entries[i].padding[2] = 0;
}
vcpu->arch.cpuid_nent = cpuid->nent;
cpuid_fix_nx_cap(vcpu);
r = 0;
kvm_apic_set_version(vcpu);
out_free:
vfree(cpuid_entries);
out:
return r;
}
static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
int r;
r = -E2BIG;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
goto out;
r = -EFAULT;
if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
goto out;
vcpu->arch.cpuid_nent = cpuid->nent;
kvm_apic_set_version(vcpu);
return 0;
out:
return r;
}
static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
int r;
r = -E2BIG;
if (cpuid->nent < vcpu->arch.cpuid_nent)
goto out;
r = -EFAULT;
if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
goto out;
return 0;
out:
cpuid->nent = vcpu->arch.cpuid_nent;
return r;
}
static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
u32 index)
{
entry->function = function;
entry->index = index;
cpuid_count(entry->function, entry->index,
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
entry->flags = 0;
}
#define F(x) bit(X86_FEATURE_##x)
static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
u32 index, int *nent, int maxnent)
{
unsigned f_nx = is_efer_nx() ? F(NX) : 0;
unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
#ifdef CONFIG_X86_64
unsigned f_lm = F(LM);
#else
unsigned f_lm = 0;
#endif
/* cpuid 1.edx */
const u32 kvm_supported_word0_x86_features =
F(FPU) | F(VME) | F(DE) | F(PSE) |
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
0 /* Reserved, DS, ACPI */ | F(MMX) |
F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
0 /* HTT, TM, Reserved, PBE */;
/* cpuid 0x80000001.edx */
const u32 kvm_supported_word1_x86_features =
F(FPU) | F(VME) | F(DE) | F(PSE) |
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
F(PAT) | F(PSE36) | 0 /* Reserved */ |
f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
/* cpuid 1.ecx */
const u32 kvm_supported_word4_x86_features =
F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
0 /* DS-CPL, VMX, SMX, EST */ |
0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
0 /* Reserved, DCA */ | F(XMM4_1) |
F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
0 /* Reserved, XSAVE, OSXSAVE */;
/* cpuid 0x80000001.ecx */
const u32 kvm_supported_word6_x86_features =
F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
0 /* SKINIT */ | 0 /* WDT */;
/* all calls to cpuid_count() should be made on the same cpu */
get_cpu();
do_cpuid_1_ent(entry, function, index);
++*nent;
switch (function) {
case 0:
entry->eax = min(entry->eax, (u32)0xb);
break;
case 1:
entry->edx &= kvm_supported_word0_x86_features;
entry->ecx &= kvm_supported_word4_x86_features;
/* we support x2apic emulation even if host does not support
* it since we emulate x2apic in software */
entry->ecx |= F(X2APIC);
break;
/* function 2 entries are STATEFUL. That is, repeated cpuid commands
* may return different values. This forces us to get_cpu() before
* issuing the first command, and also to emulate this annoying behavior
* in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
case 2: {
int t, times = entry->eax & 0xff;
entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
for (t = 1; t < times && *nent < maxnent; ++t) {
do_cpuid_1_ent(&entry[t], function, 0);
entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
++*nent;
}
break;
}
/* function 4 and 0xb have additional index. */
case 4: {
int i, cache_type;
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
/* read more entries until cache_type is zero */
for (i = 1; *nent < maxnent; ++i) {
cache_type = entry[i - 1].eax & 0x1f;
if (!cache_type)
break;
do_cpuid_1_ent(&entry[i], function, i);
entry[i].flags |=
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
++*nent;
}
break;
}
case 0xb: {
int i, level_type;
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
/* read more entries until level_type is zero */
for (i = 1; *nent < maxnent; ++i) {
level_type = entry[i - 1].ecx & 0xff00;
if (!level_type)
break;
do_cpuid_1_ent(&entry[i], function, i);
entry[i].flags |=
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
++*nent;
}
break;
}
case 0x80000000:
entry->eax = min(entry->eax, 0x8000001a);
break;
case 0x80000001:
entry->edx &= kvm_supported_word1_x86_features;
entry->ecx &= kvm_supported_word6_x86_features;
break;
}
put_cpu();
}
#undef F
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
struct kvm_cpuid_entry2 *cpuid_entries;
int limit, nent = 0, r = -E2BIG;
u32 func;
if (cpuid->nent < 1)
goto out;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
r = -ENOMEM;
cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
if (!cpuid_entries)
goto out;
do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
limit = cpuid_entries[0].eax;
for (func = 1; func <= limit && nent < cpuid->nent; ++func)
do_cpuid_ent(&cpuid_entries[nent], func, 0,
&nent, cpuid->nent);
r = -E2BIG;
if (nent >= cpuid->nent)
goto out_free;
do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
limit = cpuid_entries[nent - 1].eax;
for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
do_cpuid_ent(&cpuid_entries[nent], func, 0,
&nent, cpuid->nent);
r = -E2BIG;
if (nent >= cpuid->nent)
goto out_free;
r = -EFAULT;
if (copy_to_user(entries, cpuid_entries,
nent * sizeof(struct kvm_cpuid_entry2)))
goto out_free;
cpuid->nent = nent;
r = 0;
out_free:
vfree(cpuid_entries);
out:
return r;
}
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
struct kvm_lapic_state *s)
{
vcpu_load(vcpu);
memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
vcpu_put(vcpu);
return 0;
}
static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
struct kvm_lapic_state *s)
{
vcpu_load(vcpu);
memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
kvm_apic_post_state_restore(vcpu);
update_cr8_intercept(vcpu);
vcpu_put(vcpu);
return 0;
}
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
if (irq->irq < 0 || irq->irq >= 256)
return -EINVAL;
if (irqchip_in_kernel(vcpu->kvm))
return -ENXIO;
vcpu_load(vcpu);
kvm_queue_interrupt(vcpu, irq->irq, false);
vcpu_put(vcpu);
return 0;
}
static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
{
vcpu_load(vcpu);
kvm_inject_nmi(vcpu);
vcpu_put(vcpu);
return 0;
}
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
struct kvm_tpr_access_ctl *tac)
{
if (tac->flags)
return -EINVAL;
vcpu->arch.tpr_access_reporting = !!tac->enabled;
return 0;
}
static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
u64 mcg_cap)
{
int r;
unsigned bank_num = mcg_cap & 0xff, bank;
r = -EINVAL;
if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
goto out;
if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
goto out;
r = 0;
vcpu->arch.mcg_cap = mcg_cap;
/* Init IA32_MCG_CTL to all 1s */
if (mcg_cap & MCG_CTL_P)
vcpu->arch.mcg_ctl = ~(u64)0;
/* Init IA32_MCi_CTL to all 1s */
for (bank = 0; bank < bank_num; bank++)
vcpu->arch.mce_banks[bank*4] = ~(u64)0;
out:
return r;
}
static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
struct kvm_x86_mce *mce)
{
u64 mcg_cap = vcpu->arch.mcg_cap;
unsigned bank_num = mcg_cap & 0xff;
u64 *banks = vcpu->arch.mce_banks;
if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
return -EINVAL;
/*
* if IA32_MCG_CTL is not all 1s, the uncorrected error
* reporting is disabled
*/
if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
vcpu->arch.mcg_ctl != ~(u64)0)
return 0;
banks += 4 * mce->bank;
/*
* if IA32_MCi_CTL is not all 1s, the uncorrected error
* reporting is disabled for the bank
*/
if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
return 0;
if (mce->status & MCI_STATUS_UC) {
if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
!(vcpu->arch.cr4 & X86_CR4_MCE)) {
printk(KERN_DEBUG "kvm: set_mce: "
"injects mce exception while "
"previous one is in progress!\n");
set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
return 0;
}
if (banks[1] & MCI_STATUS_VAL)
mce->status |= MCI_STATUS_OVER;
banks[2] = mce->addr;
banks[3] = mce->misc;
vcpu->arch.mcg_status = mce->mcg_status;
banks[1] = mce->status;
kvm_queue_exception(vcpu, MC_VECTOR);
} else if (!(banks[1] & MCI_STATUS_VAL)
|| !(banks[1] & MCI_STATUS_UC)) {
if (banks[1] & MCI_STATUS_VAL)
mce->status |= MCI_STATUS_OVER;
banks[2] = mce->addr;
banks[3] = mce->misc;
banks[1] = mce->status;
} else
banks[1] |= MCI_STATUS_OVER;
return 0;
}
static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
vcpu_load(vcpu);
events->exception.injected = vcpu->arch.exception.pending;
events->exception.nr = vcpu->arch.exception.nr;
events->exception.has_error_code = vcpu->arch.exception.has_error_code;
events->exception.error_code = vcpu->arch.exception.error_code;
events->interrupt.injected = vcpu->arch.interrupt.pending;
events->interrupt.nr = vcpu->arch.interrupt.nr;
events->interrupt.soft = vcpu->arch.interrupt.soft;
events->nmi.injected = vcpu->arch.nmi_injected;
events->nmi.pending = vcpu->arch.nmi_pending;
events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
events->sipi_vector = vcpu->arch.sipi_vector;
events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR);
vcpu_put(vcpu);
}
static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR))
return -EINVAL;
vcpu_load(vcpu);
vcpu->arch.exception.pending = events->exception.injected;
vcpu->arch.exception.nr = events->exception.nr;
vcpu->arch.exception.has_error_code = events->exception.has_error_code;
vcpu->arch.exception.error_code = events->exception.error_code;
vcpu->arch.interrupt.pending = events->interrupt.injected;
vcpu->arch.interrupt.nr = events->interrupt.nr;
vcpu->arch.interrupt.soft = events->interrupt.soft;
if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
kvm_pic_clear_isr_ack(vcpu->kvm);
vcpu->arch.nmi_injected = events->nmi.injected;
if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
vcpu->arch.nmi_pending = events->nmi.pending;
kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
vcpu->arch.sipi_vector = events->sipi_vector;
vcpu_put(vcpu);
return 0;
}
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
int r;
struct kvm_lapic_state *lapic = NULL;
switch (ioctl) {
case KVM_GET_LAPIC: {
r = -EINVAL;
if (!vcpu->arch.apic)
goto out;
lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
r = -ENOMEM;
if (!lapic)
goto out;
r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
goto out;
r = 0;
break;
}
case KVM_SET_LAPIC: {
r = -EINVAL;
if (!vcpu->arch.apic)
goto out;
lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
r = -ENOMEM;
if (!lapic)
goto out;
r = -EFAULT;
if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
goto out;
r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
if (r)
goto out;
r = 0;
break;
}
case KVM_INTERRUPT: {
struct kvm_interrupt irq;
r = -EFAULT;
if (copy_from_user(&irq, argp, sizeof irq))
goto out;
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
if (r)
goto out;
r = 0;
break;
}
case KVM_NMI: {
r = kvm_vcpu_ioctl_nmi(vcpu);
if (r)
goto out;
r = 0;
break;
}
case KVM_SET_CPUID: {
struct kvm_cpuid __user *cpuid_arg = argp;
struct kvm_cpuid cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
if (r)
goto out;
break;
}
case KVM_SET_CPUID2: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
cpuid_arg->entries);
if (r)
goto out;
break;
}
case KVM_GET_CPUID2: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
cpuid_arg->entries);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
goto out;
r = 0;
break;
}
case KVM_GET_MSRS:
r = msr_io(vcpu, argp, kvm_get_msr, 1);
break;
case KVM_SET_MSRS:
r = msr_io(vcpu, argp, do_set_msr, 0);
break;
case KVM_TPR_ACCESS_REPORTING: {
struct kvm_tpr_access_ctl tac;
r = -EFAULT;
if (copy_from_user(&tac, argp, sizeof tac))
goto out;
r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &tac, sizeof tac))
goto out;
r = 0;
break;
};
case KVM_SET_VAPIC_ADDR: {
struct kvm_vapic_addr va;
r = -EINVAL;
if (!irqchip_in_kernel(vcpu->kvm))
goto out;
r = -EFAULT;
if (copy_from_user(&va, argp, sizeof va))
goto out;
r = 0;
kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
break;
}
case KVM_X86_SETUP_MCE: {
u64 mcg_cap;
r = -EFAULT;
if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
goto out;
r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
break;
}
case KVM_X86_SET_MCE: {
struct kvm_x86_mce mce;
r = -EFAULT;
if (copy_from_user(&mce, argp, sizeof mce))
goto out;
r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
break;
}
case KVM_GET_VCPU_EVENTS: {
struct kvm_vcpu_events events;
kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
r = -EFAULT;
if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
break;
r = 0;
break;
}
case KVM_SET_VCPU_EVENTS: {
struct kvm_vcpu_events events;
r = -EFAULT;
if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
break;
r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
break;
}
default:
r = -EINVAL;
}
out:
kfree(lapic);
return r;
}
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
{
int ret;
if (addr > (unsigned int)(-3 * PAGE_SIZE))
return -1;
ret = kvm_x86_ops->set_tss_addr(kvm, addr);
return ret;
}
static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
u64 ident_addr)
{
kvm->arch.ept_identity_map_addr = ident_addr;
return 0;
}
static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
u32 kvm_nr_mmu_pages)
{
if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
return -EINVAL;
down_write(&kvm->slots_lock);
spin_lock(&kvm->mmu_lock);
kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
spin_unlock(&kvm->mmu_lock);
up_write(&kvm->slots_lock);
return 0;
}
static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
{
return kvm->arch.n_alloc_mmu_pages;
}
gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
{
int i;
struct kvm_mem_alias *alias;
for (i = 0; i < kvm->arch.naliases; ++i) {
alias = &kvm->arch.aliases[i];
if (gfn >= alias->base_gfn
&& gfn < alias->base_gfn + alias->npages)
return alias->target_gfn + gfn - alias->base_gfn;
}
return gfn;
}
/*
* Set a new alias region. Aliases map a portion of physical memory into
* another portion. This is useful for memory windows, for example the PC
* VGA region.
*/
static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
struct kvm_memory_alias *alias)
{
int r, n;
struct kvm_mem_alias *p;
r = -EINVAL;
/* General sanity checks */
if (alias->memory_size & (PAGE_SIZE - 1))
goto out;
if (alias->guest_phys_addr & (PAGE_SIZE - 1))
goto out;
if (alias->slot >= KVM_ALIAS_SLOTS)
goto out;
if (alias->guest_phys_addr + alias->memory_size
< alias->guest_phys_addr)
goto out;
if (alias->target_phys_addr + alias->memory_size
< alias->target_phys_addr)
goto out;
down_write(&kvm->slots_lock);
spin_lock(&kvm->mmu_lock);
p = &kvm->arch.aliases[alias->slot];
p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
p->npages = alias->memory_size >> PAGE_SHIFT;
p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
for (n = KVM_ALIAS_SLOTS; n > 0; --n)
if (kvm->arch.aliases[n - 1].npages)
break;
kvm->arch.naliases = n;
spin_unlock(&kvm->mmu_lock);
kvm_mmu_zap_all(kvm);
up_write(&kvm->slots_lock);
return 0;
out:
return r;
}
static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
int r;
r = 0;
switch (chip->chip_id) {
case KVM_IRQCHIP_PIC_MASTER:
memcpy(&chip->chip.pic,
&pic_irqchip(kvm)->pics[0],
sizeof(struct kvm_pic_state));
break;
case KVM_IRQCHIP_PIC_SLAVE:
memcpy(&chip->chip.pic,
&pic_irqchip(kvm)->pics[1],
sizeof(struct kvm_pic_state));
break;
case KVM_IRQCHIP_IOAPIC:
r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
break;
default:
r = -EINVAL;
break;
}
return r;
}
static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
int r;
r = 0;
switch (chip->chip_id) {
case KVM_IRQCHIP_PIC_MASTER:
spin_lock(&pic_irqchip(kvm)->lock);
memcpy(&pic_irqchip(kvm)->pics[0],
&chip->chip.pic,
sizeof(struct kvm_pic_state));
spin_unlock(&pic_irqchip(kvm)->lock);
break;
case KVM_IRQCHIP_PIC_SLAVE:
spin_lock(&pic_irqchip(kvm)->lock);
memcpy(&pic_irqchip(kvm)->pics[1],
&chip->chip.pic,
sizeof(struct kvm_pic_state));
spin_unlock(&pic_irqchip(kvm)->lock);
break;
case KVM_IRQCHIP_IOAPIC:
r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
break;
default:
r = -EINVAL;
break;
}
kvm_pic_update_irq(pic_irqchip(kvm));
return r;
}
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
int r = 0;
mutex_lock(&kvm->arch.vpit->pit_state.lock);
memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
return r;
}
static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
int r = 0;
mutex_lock(&kvm->arch.vpit->pit_state.lock);
memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
return r;
}
static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
{
int r = 0;
mutex_lock(&kvm->arch.vpit->pit_state.lock);
memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
sizeof(ps->channels));
ps->flags = kvm->arch.vpit->pit_state.flags;
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
return r;
}
static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
{
int r = 0, start = 0;
u32 prev_legacy, cur_legacy;
mutex_lock(&kvm->arch.vpit->pit_state.lock);
prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
if (!prev_legacy && cur_legacy)
start = 1;
memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
sizeof(kvm->arch.vpit->pit_state.channels));
kvm->arch.vpit->pit_state.flags = ps->flags;
kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
return r;
}
static int kvm_vm_ioctl_reinject(struct kvm *kvm,
struct kvm_reinject_control *control)
{
if (!kvm->arch.vpit)
return -ENXIO;
mutex_lock(&kvm->arch.vpit->pit_state.lock);
kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
return 0;
}
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log)
{
int r;
int n;
struct kvm_memory_slot *memslot;
int is_dirty = 0;
down_write(&kvm->slots_lock);
r = kvm_get_dirty_log(kvm, log, &is_dirty);
if (r)
goto out;
/* If nothing is dirty, don't bother messing with page tables. */
if (is_dirty) {
spin_lock(&kvm->mmu_lock);
kvm_mmu_slot_remove_write_access(kvm, log->slot);
spin_unlock(&kvm->mmu_lock);
memslot = &kvm->memslots[log->slot];
n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
memset(memslot->dirty_bitmap, 0, n);
}
r = 0;
out:
up_write(&kvm->slots_lock);
return r;
}
long kvm_arch_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
void __user *argp = (void __user *)arg;
int r = -ENOTTY;
/*
* This union makes it completely explicit to gcc-3.x
* that these two variables' stack usage should be
* combined, not added together.
*/
union {
struct kvm_pit_state ps;
struct kvm_pit_state2 ps2;
struct kvm_memory_alias alias;
struct kvm_pit_config pit_config;
} u;
switch (ioctl) {
case KVM_SET_TSS_ADDR:
r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
if (r < 0)
goto out;
break;
case KVM_SET_IDENTITY_MAP_ADDR: {
u64 ident_addr;
r = -EFAULT;
if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
goto out;
r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
if (r < 0)
goto out;
break;
}
case KVM_SET_MEMORY_REGION: {
struct kvm_memory_region kvm_mem;
struct kvm_userspace_memory_region kvm_userspace_mem;
r = -EFAULT;
if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
goto out;
kvm_userspace_mem.slot = kvm_mem.slot;
kvm_userspace_mem.flags = kvm_mem.flags;
kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
kvm_userspace_mem.memory_size = kvm_mem.memory_size;
r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
if (r)
goto out;
break;
}
case KVM_SET_NR_MMU_PAGES:
r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
if (r)
goto out;
break;
case KVM_GET_NR_MMU_PAGES:
r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
break;
case KVM_SET_MEMORY_ALIAS:
r = -EFAULT;
if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
goto out;
r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
if (r)
goto out;
break;
case KVM_CREATE_IRQCHIP: {
struct kvm_pic *vpic;
mutex_lock(&kvm->lock);
r = -EEXIST;
if (kvm->arch.vpic)
goto create_irqchip_unlock;
r = -ENOMEM;
vpic = kvm_create_pic(kvm);
if (vpic) {
r = kvm_ioapic_init(kvm);
if (r) {
kfree(vpic);
goto create_irqchip_unlock;
}
} else
goto create_irqchip_unlock;
smp_wmb();
kvm->arch.vpic = vpic;
smp_wmb();
r = kvm_setup_default_irq_routing(kvm);
if (r) {
mutex_lock(&kvm->irq_lock);
kfree(kvm->arch.vpic);
kfree(kvm->arch.vioapic);
kvm->arch.vpic = NULL;
kvm->arch.vioapic = NULL;
mutex_unlock(&kvm->irq_lock);
}
create_irqchip_unlock:
mutex_unlock(&kvm->lock);
break;
}
case KVM_CREATE_PIT:
u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
goto create_pit;
case KVM_CREATE_PIT2:
r = -EFAULT;
if (copy_from_user(&u.pit_config, argp,
sizeof(struct kvm_pit_config)))
goto out;
create_pit:
down_write(&kvm->slots_lock);
r = -EEXIST;
if (kvm->arch.vpit)
goto create_pit_unlock;
r = -ENOMEM;
kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
if (kvm->arch.vpit)
r = 0;
create_pit_unlock:
up_write(&kvm->slots_lock);
break;
case KVM_IRQ_LINE_STATUS:
case KVM_IRQ_LINE: {
struct kvm_irq_level irq_event;
r = -EFAULT;
if (copy_from_user(&irq_event, argp, sizeof irq_event))
goto out;
if (irqchip_in_kernel(kvm)) {
__s32 status;
status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
irq_event.irq, irq_event.level);
if (ioctl == KVM_IRQ_LINE_STATUS) {
irq_event.status = status;
if (copy_to_user(argp, &irq_event,
sizeof irq_event))
goto out;
}
r = 0;
}
break;
}
case KVM_GET_IRQCHIP: {
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
r = -ENOMEM;
if (!chip)
goto out;
r = -EFAULT;
if (copy_from_user(chip, argp, sizeof *chip))
goto get_irqchip_out;
r = -ENXIO;
if (!irqchip_in_kernel(kvm))
goto get_irqchip_out;
r = kvm_vm_ioctl_get_irqchip(kvm, chip);
if (r)
goto get_irqchip_out;
r = -EFAULT;
if (copy_to_user(argp, chip, sizeof *chip))
goto get_irqchip_out;
r = 0;
get_irqchip_out:
kfree(chip);
if (r)
goto out;
break;
}
case KVM_SET_IRQCHIP: {
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
r = -ENOMEM;
if (!chip)
goto out;
r = -EFAULT;
if (copy_from_user(chip, argp, sizeof *chip))
goto set_irqchip_out;
r = -ENXIO;
if (!irqchip_in_kernel(kvm))
goto set_irqchip_out;
r = kvm_vm_ioctl_set_irqchip(kvm, chip);
if (r)
goto set_irqchip_out;
r = 0;
set_irqchip_out:
kfree(chip);
if (r)
goto out;
break;
}
case KVM_GET_PIT: {
r = -EFAULT;
if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
goto out;
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
goto out;
r = 0;
break;
}
case KVM_SET_PIT: {
r = -EFAULT;
if (copy_from_user(&u.ps, argp, sizeof u.ps))
goto out;
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
if (r)
goto out;
r = 0;
break;
}
case KVM_GET_PIT2: {
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
goto out;
r = 0;
break;
}
case KVM_SET_PIT2: {
r = -EFAULT;
if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
goto out;
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
if (r)
goto out;
r = 0;
break;
}
case KVM_REINJECT_CONTROL: {
struct kvm_reinject_control control;
r = -EFAULT;
if (copy_from_user(&control, argp, sizeof(control)))
goto out;
r = kvm_vm_ioctl_reinject(kvm, &control);
if (r)
goto out;
r = 0;
break;
}
case KVM_XEN_HVM_CONFIG: {
r = -EFAULT;
if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
sizeof(struct kvm_xen_hvm_config)))
goto out;
r = -EINVAL;
if (kvm->arch.xen_hvm_config.flags)
goto out;
r = 0;
break;
}
case KVM_SET_CLOCK: {
struct timespec now;
struct kvm_clock_data user_ns;
u64 now_ns;
s64 delta;
r = -EFAULT;
if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
goto out;
r = -EINVAL;
if (user_ns.flags)
goto out;
r = 0;
ktime_get_ts(&now);
now_ns = timespec_to_ns(&now);
delta = user_ns.clock - now_ns;
kvm->arch.kvmclock_offset = delta;
break;
}
case KVM_GET_CLOCK: {
struct timespec now;
struct kvm_clock_data user_ns;
u64 now_ns;
ktime_get_ts(&now);
now_ns = timespec_to_ns(&now);
user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
user_ns.flags = 0;
r = -EFAULT;
if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
goto out;
r = 0;
break;
}
default:
;
}
out:
return r;
}
static void kvm_init_msr_list(void)
{
u32 dummy[2];
unsigned i, j;
/* skip the first msrs in the list. KVM-specific */
for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
continue;
if (j < i)
msrs_to_save[j] = msrs_to_save[i];
j++;
}
num_msrs_to_save = j;
}
static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
const void *v)
{
if (vcpu->arch.apic &&
!kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
return 0;
return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
}
static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
{
if (vcpu->arch.apic &&
!kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
return 0;
return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
}
static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
struct kvm_vcpu *vcpu)
{
void *data = val;
int r = X86EMUL_CONTINUE;
while (bytes) {
gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
unsigned offset = addr & (PAGE_SIZE-1);
unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
int ret;
if (gpa == UNMAPPED_GVA) {
r = X86EMUL_PROPAGATE_FAULT;
goto out;
}
ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
if (ret < 0) {
r = X86EMUL_UNHANDLEABLE;
goto out;
}
bytes -= toread;
data += toread;
addr += toread;
}
out:
return r;
}
static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
struct kvm_vcpu *vcpu)
{
void *data = val;
int r = X86EMUL_CONTINUE;
while (bytes) {
gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
unsigned offset = addr & (PAGE_SIZE-1);
unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
int ret;
if (gpa == UNMAPPED_GVA) {
r = X86EMUL_PROPAGATE_FAULT;
goto out;
}
ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
if (ret < 0) {
r = X86EMUL_UNHANDLEABLE;
goto out;
}
bytes -= towrite;
data += towrite;
addr += towrite;
}
out:
return r;
}
static int emulator_read_emulated(unsigned long addr,
void *val,
unsigned int bytes,
struct kvm_vcpu *vcpu)
{
gpa_t gpa;
if (vcpu->mmio_read_completed) {
memcpy(val, vcpu->mmio_data, bytes);
trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
vcpu->mmio_phys_addr, *(u64 *)val);
vcpu->mmio_read_completed = 0;
return X86EMUL_CONTINUE;
}
gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
/* For APIC access vmexit */
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
goto mmio;
if (kvm_read_guest_virt(addr, val, bytes, vcpu)
== X86EMUL_CONTINUE)
return X86EMUL_CONTINUE;
if (gpa == UNMAPPED_GVA)
return X86EMUL_PROPAGATE_FAULT;
mmio:
/*
* Is this MMIO handled locally?
*/
if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
return X86EMUL_CONTINUE;
}
trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
vcpu->mmio_needed = 1;
vcpu->mmio_phys_addr = gpa;
vcpu->mmio_size = bytes;
vcpu->mmio_is_write = 0;
return X86EMUL_UNHANDLEABLE;
}
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
const void *val, int bytes)
{
int ret;
ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
if (ret < 0)
return 0;
kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
return 1;
}
static int emulator_write_emulated_onepage(unsigned long addr,
const void *val,
unsigned int bytes,
struct kvm_vcpu *vcpu)
{
gpa_t gpa;
gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
if (gpa == UNMAPPED_GVA) {
kvm_inject_page_fault(vcpu, addr, 2);
return X86EMUL_PROPAGATE_FAULT;
}
/* For APIC access vmexit */
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
goto mmio;
if (emulator_write_phys(vcpu, gpa, val, bytes))
return X86EMUL_CONTINUE;
mmio:
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
/*
* Is this MMIO handled locally?
*/
if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
return X86EMUL_CONTINUE;
vcpu->mmio_needed = 1;
vcpu->mmio_phys_addr = gpa;
vcpu->mmio_size = bytes;
vcpu->mmio_is_write = 1;
memcpy(vcpu->mmio_data, val, bytes);
return X86EMUL_CONTINUE;
}
int emulator_write_emulated(unsigned long addr,
const void *val,
unsigned int bytes,
struct kvm_vcpu *vcpu)
{
/* Crossing a page boundary? */
if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
int rc, now;
now = -addr & ~PAGE_MASK;
rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
if (rc != X86EMUL_CONTINUE)
return rc;
addr += now;
val += now;
bytes -= now;
}
return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
}
EXPORT_SYMBOL_GPL(emulator_write_emulated);
static int emulator_cmpxchg_emulated(unsigned long addr,
const void *old,
const void *new,
unsigned int bytes,
struct kvm_vcpu *vcpu)
{
printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
#ifndef CONFIG_X86_64
/* guests cmpxchg8b have to be emulated atomically */
if (bytes == 8) {
gpa_t gpa;
struct page *page;
char *kaddr;
u64 val;
gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
if (gpa == UNMAPPED_GVA ||
(gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
goto emul_write;
if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
goto emul_write;
val = *(u64 *)new;
page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
kaddr = kmap_atomic(page, KM_USER0);
set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
kunmap_atomic(kaddr, KM_USER0);
kvm_release_page_dirty(page);
}
emul_write:
#endif
return emulator_write_emulated(addr, new, bytes, vcpu);
}
static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
return kvm_x86_ops->get_segment_base(vcpu, seg);
}
int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
kvm_mmu_invlpg(vcpu, address);
return X86EMUL_CONTINUE;
}
int emulate_clts(struct kvm_vcpu *vcpu)
{
kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
return X86EMUL_CONTINUE;
}
int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
switch (dr) {
case 0 ... 3:
*dest = kvm_x86_ops->get_dr(vcpu, dr);
return X86EMUL_CONTINUE;
default:
pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
return X86EMUL_UNHANDLEABLE;
}
}
int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
{
unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
int exception;
kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
if (exception) {
/* FIXME: better handling */
return X86EMUL_UNHANDLEABLE;
}
return X86EMUL_CONTINUE;
}
void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
{
u8 opcodes[4];
unsigned long rip = kvm_rip_read(vcpu);
unsigned long rip_linear;
if (!printk_ratelimit())
return;
rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
}
EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
static struct x86_emulate_ops emulate_ops = {
.read_std = kvm_read_guest_virt,
.read_emulated = emulator_read_emulated,
.write_emulated = emulator_write_emulated,
.cmpxchg_emulated = emulator_cmpxchg_emulated,
};
static void cache_all_regs(struct kvm_vcpu *vcpu)
{
kvm_register_read(vcpu, VCPU_REGS_RAX);
kvm_register_read(vcpu, VCPU_REGS_RSP);
kvm_register_read(vcpu, VCPU_REGS_RIP);
vcpu->arch.regs_dirty = ~0;
}
int emulate_instruction(struct kvm_vcpu *vcpu,
unsigned long cr2,
u16 error_code,
int emulation_type)
{
int r, shadow_mask;
struct decode_cache *c;
struct kvm_run *run = vcpu->run;
kvm_clear_exception_queue(vcpu);
vcpu->arch.mmio_fault_cr2 = cr2;
/*
* TODO: fix emulate.c to use guest_read/write_register
* instead of direct ->regs accesses, can save hundred cycles
* on Intel for instructions that don't read/change RSP, for
* for example.
*/
cache_all_regs(vcpu);
vcpu->mmio_is_write = 0;
vcpu->arch.pio.string = 0;
if (!(emulation_type & EMULTYPE_NO_DECODE)) {
int cs_db, cs_l;
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
vcpu->arch.emulate_ctxt.vcpu = vcpu;
vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
vcpu->arch.emulate_ctxt.mode =
(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
? X86EMUL_MODE_REAL : cs_l
? X86EMUL_MODE_PROT64 : cs_db
? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
/* Only allow emulation of specific instructions on #UD
* (namely VMMCALL, sysenter, sysexit, syscall)*/
c = &vcpu->arch.emulate_ctxt.decode;
if (emulation_type & EMULTYPE_TRAP_UD) {
if (!c->twobyte)
return EMULATE_FAIL;
switch (c->b) {
case 0x01: /* VMMCALL */
if (c->modrm_mod != 3 || c->modrm_rm != 1)
return EMULATE_FAIL;
break;
case 0x34: /* sysenter */
case 0x35: /* sysexit */
if (c->modrm_mod != 0 || c->modrm_rm != 0)
return EMULATE_FAIL;
break;
case 0x05: /* syscall */
if (c->modrm_mod != 0 || c->modrm_rm != 0)
return EMULATE_FAIL;
break;
default:
return EMULATE_FAIL;
}
if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
return EMULATE_FAIL;
}
++vcpu->stat.insn_emulation;
if (r) {
++vcpu->stat.insn_emulation_fail;
if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
return EMULATE_DONE;
return EMULATE_FAIL;
}
}
if (emulation_type & EMULTYPE_SKIP) {
kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
return EMULATE_DONE;
}
r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
if (r == 0)
kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
if (vcpu->arch.pio.string)
return EMULATE_DO_MMIO;
if ((r || vcpu->mmio_is_write) && run) {
run->exit_reason = KVM_EXIT_MMIO;
run->mmio.phys_addr = vcpu->mmio_phys_addr;
memcpy(run->mmio.data, vcpu->mmio_data, 8);
run->mmio.len = vcpu->mmio_size;
run->mmio.is_write = vcpu->mmio_is_write;
}
if (r) {
if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
return EMULATE_DONE;
if (!vcpu->mmio_needed) {
kvm_report_emulation_failure(vcpu, "mmio");
return EMULATE_FAIL;
}
return EMULATE_DO_MMIO;
}
kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
if (vcpu->mmio_is_write) {
vcpu->mmio_needed = 0;
return EMULATE_DO_MMIO;
}
return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(emulate_instruction);
static int pio_copy_data(struct kvm_vcpu *vcpu)
{
void *p = vcpu->arch.pio_data;
gva_t q = vcpu->arch.pio.guest_gva;
unsigned bytes;
int ret;
bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
if (vcpu->arch.pio.in)
ret = kvm_write_guest_virt(q, p, bytes, vcpu);
else
ret = kvm_read_guest_virt(q, p, bytes, vcpu);
return ret;
}
int complete_pio(struct kvm_vcpu *vcpu)
{
struct kvm_pio_request *io = &vcpu->arch.pio;
long delta;
int r;
unsigned long val;
if (!io->string) {
if (io->in) {
val = kvm_register_read(vcpu, VCPU_REGS_RAX);
memcpy(&val, vcpu->arch.pio_data, io->size);
kvm_register_write(vcpu, VCPU_REGS_RAX, val);
}
} else {
if (io->in) {
r = pio_copy_data(vcpu);
if (r)
return r;
}
delta = 1;
if (io->rep) {
delta *= io->cur_count;
/*
* The size of the register should really depend on
* current address size.
*/
val = kvm_register_read(vcpu, VCPU_REGS_RCX);
val -= delta;
kvm_register_write(vcpu, VCPU_REGS_RCX, val);
}
if (io->down)
delta = -delta;
delta *= io->size;
if (io->in) {
val = kvm_register_read(vcpu, VCPU_REGS_RDI);
val += delta;
kvm_register_write(vcpu, VCPU_REGS_RDI, val);
} else {
val = kvm_register_read(vcpu, VCPU_REGS_RSI);
val += delta;
kvm_register_write(vcpu, VCPU_REGS_RSI, val);
}
}
io->count -= io->cur_count;
io->cur_count = 0;
return 0;
}
static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
{
/* TODO: String I/O for in kernel device */
int r;
if (vcpu->arch.pio.in)
r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
vcpu->arch.pio.size, pd);
else
r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
vcpu->arch.pio.size, pd);
return r;
}
static int pio_string_write(struct kvm_vcpu *vcpu)
{
struct kvm_pio_request *io = &vcpu->arch.pio;
void *pd = vcpu->arch.pio_data;
int i, r = 0;
for (i = 0; i < io->cur_count; i++) {
if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
io->port, io->size, pd)) {
r = -EOPNOTSUPP;
break;
}
pd += io->size;
}
return r;
}
int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
{
unsigned long val;
vcpu->run->exit_reason = KVM_EXIT_IO;
vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
vcpu->run->io.size = vcpu->arch.pio.size = size;
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
vcpu->run->io.port = vcpu->arch.pio.port = port;
vcpu->arch.pio.in = in;
vcpu->arch.pio.string = 0;
vcpu->arch.pio.down = 0;
vcpu->arch.pio.rep = 0;
trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
size, 1);
val = kvm_register_read(vcpu, VCPU_REGS_RAX);
memcpy(vcpu->arch.pio_data, &val, 4);
if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
complete_pio(vcpu);
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio);
int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
int size, unsigned long count, int down,
gva_t address, int rep, unsigned port)
{
unsigned now, in_page;
int ret = 0;
vcpu->run->exit_reason = KVM_EXIT_IO;
vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
vcpu->run->io.size = vcpu->arch.pio.size = size;
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
vcpu->run->io.port = vcpu->arch.pio.port = port;
vcpu->arch.pio.in = in;
vcpu->arch.pio.string = 1;
vcpu->arch.pio.down = down;
vcpu->arch.pio.rep = rep;
trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
size, count);
if (!count) {
kvm_x86_ops->skip_emulated_instruction(vcpu);
return 1;
}
if (!down)
in_page = PAGE_SIZE - offset_in_page(address);
else
in_page = offset_in_page(address) + size;
now = min(count, (unsigned long)in_page / size);
if (!now)
now = 1;
if (down) {
/*
* String I/O in reverse. Yuck. Kill the guest, fix later.
*/
pr_unimpl(vcpu, "guest string pio down\n");
kvm_inject_gp(vcpu, 0);
return 1;
}
vcpu->run->io.count = now;
vcpu->arch.pio.cur_count = now;
if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
kvm_x86_ops->skip_emulated_instruction(vcpu);
vcpu->arch.pio.guest_gva = address;
if (!vcpu->arch.pio.in) {
/* string PIO write */
ret = pio_copy_data(vcpu);
if (ret == X86EMUL_PROPAGATE_FAULT) {
kvm_inject_gp(vcpu, 0);
return 1;
}
if (ret == 0 && !pio_string_write(vcpu)) {
complete_pio(vcpu);
if (vcpu->arch.pio.count == 0)
ret = 1;
}
}
/* no string PIO read support yet */
return ret;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
static void bounce_off(void *info)
{
/* nothing */
}
static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_freqs *freq = data;
struct kvm *kvm;
struct kvm_vcpu *vcpu;
int i, send_ipi = 0;
if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
return 0;
if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
return 0;
per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
spin_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list) {
kvm_for_each_vcpu(i, vcpu, kvm) {
if (vcpu->cpu != freq->cpu)
continue;
if (!kvm_request_guest_time_update(vcpu))
continue;
if (vcpu->cpu != smp_processor_id())
send_ipi++;
}
}
spin_unlock(&kvm_lock);
if (freq->old < freq->new && send_ipi) {
/*
* We upscale the frequency. Must make the guest
* doesn't see old kvmclock values while running with
* the new frequency, otherwise we risk the guest sees
* time go backwards.
*
* In case we update the frequency for another cpu
* (which might be in guest context) send an interrupt
* to kick the cpu out of guest context. Next time
* guest context is entered kvmclock will be updated,
* so the guest will not see stale values.
*/
smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
}
return 0;
}
static struct notifier_block kvmclock_cpufreq_notifier_block = {
.notifier_call = kvmclock_cpufreq_notifier
};
static void kvm_timer_init(void)
{
int cpu;
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
for_each_online_cpu(cpu) {
unsigned long khz = cpufreq_get(cpu);
if (!khz)
khz = tsc_khz;
per_cpu(cpu_tsc_khz, cpu) = khz;
}
} else {
for_each_possible_cpu(cpu)
per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
}
}
int kvm_arch_init(void *opaque)
{
int r;
struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
if (kvm_x86_ops) {
printk(KERN_ERR "kvm: already loaded the other module\n");
r = -EEXIST;
goto out;
}
if (!ops->cpu_has_kvm_support()) {
printk(KERN_ERR "kvm: no hardware support\n");
r = -EOPNOTSUPP;
goto out;
}
if (ops->disabled_by_bios()) {
printk(KERN_ERR "kvm: disabled by bios\n");
r = -EOPNOTSUPP;
goto out;
}
r = kvm_mmu_module_init();
if (r)
goto out;
kvm_init_msr_list();
kvm_x86_ops = ops;
kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
PT_DIRTY_MASK, PT64_NX_MASK, 0);
kvm_timer_init();
return 0;
out:
return r;
}
void kvm_arch_exit(void)
{
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
kvm_x86_ops = NULL;
kvm_mmu_module_exit();
}
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
++vcpu->stat.halt_exits;
if (irqchip_in_kernel(vcpu->kvm)) {
vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
return 1;
} else {
vcpu->run->exit_reason = KVM_EXIT_HLT;
return 0;
}
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);
static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
unsigned long a1)
{
if (is_long_mode(vcpu))
return a0;
else
return a0 | ((gpa_t)a1 << 32);
}
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
unsigned long nr, a0, a1, a2, a3, ret;
int r = 1;
nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
trace_kvm_hypercall(nr, a0, a1, a2, a3);
if (!is_long_mode(vcpu)) {
nr &= 0xFFFFFFFF;
a0 &= 0xFFFFFFFF;
a1 &= 0xFFFFFFFF;
a2 &= 0xFFFFFFFF;
a3 &= 0xFFFFFFFF;
}
if (kvm_x86_ops->get_cpl(vcpu) != 0) {
ret = -KVM_EPERM;
goto out;
}
switch (nr) {
case KVM_HC_VAPIC_POLL_IRQ:
ret = 0;
break;
case KVM_HC_MMU_OP:
r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
break;
default:
ret = -KVM_ENOSYS;
break;
}
out:
kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
++vcpu->stat.hypercalls;
return r;
}
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
{
char instruction[3];
int ret = 0;
unsigned long rip = kvm_rip_read(vcpu);
/*
* Blow out the MMU to ensure that no other VCPU has an active mapping
* to ensure that the updated hypercall appears atomically across all
* VCPUs.
*/
kvm_mmu_zap_all(vcpu->kvm);
kvm_x86_ops->patch_hypercall(vcpu, instruction);
if (emulator_write_emulated(rip, instruction, 3, vcpu)
!= X86EMUL_CONTINUE)
ret = -EFAULT;
return ret;
}
static u64 mk_cr_64(u64 curr_cr, u32 new_val)
{
return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
}
void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
struct descriptor_table dt = { limit, base };
kvm_x86_ops->set_gdt(vcpu, &dt);
}
void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
struct descriptor_table dt = { limit, base };
kvm_x86_ops->set_idt(vcpu, &dt);
}
void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
unsigned long *rflags)
{
kvm_lmsw(vcpu, msw);
*rflags = kvm_get_rflags(vcpu);
}
unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
{
unsigned long value;
kvm_x86_ops->decache_cr4_guest_bits(vcpu);
switch (cr) {
case 0:
value = vcpu->arch.cr0;
break;
case 2:
value = vcpu->arch.cr2;
break;
case 3:
value = vcpu->arch.cr3;
break;
case 4:
value = vcpu->arch.cr4;
break;
case 8:
value = kvm_get_cr8(vcpu);
break;
default:
vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
return 0;
}
return value;
}
void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
unsigned long *rflags)
{
switch (cr) {
case 0:
kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
*rflags = kvm_get_rflags(vcpu);
break;
case 2:
vcpu->arch.cr2 = val;
break;
case 3:
kvm_set_cr3(vcpu, val);
break;
case 4:
kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
break;
case 8:
kvm_set_cr8(vcpu, val & 0xfUL);
break;
default:
vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
}
}
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
{
struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
int j, nent = vcpu->arch.cpuid_nent;
e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
/* when no next entry is found, the current entry[i] is reselected */
for (j = i + 1; ; j = (j + 1) % nent) {
struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
if (ej->function == e->function) {
ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
return j;
}
}
return 0; /* silence gcc, even though control never reaches here */
}
/* find an entry with matching function, matching index (if needed), and that
* should be read next (if it's stateful) */
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
u32 function, u32 index)
{
if (e->function != function)
return 0;
if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
return 0;
if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
return 0;
return 1;
}
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
u32 function, u32 index)
{
int i;
struct kvm_cpuid_entry2 *best = NULL;
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
struct kvm_cpuid_entry2 *e;
e = &vcpu->arch.cpuid_entries[i];
if (is_matching_cpuid_entry(e, function, index)) {
if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
move_to_next_stateful_cpuid_entry(vcpu, i);
best = e;
break;
}
/*
* Both basic or both extended?
*/
if (((e->function ^ function) & 0x80000000) == 0)
if (!best || e->function > best->function)
best = e;
}
return best;
}
int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
if (best)
return best->eax & 0xff;
return 36;
}
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
u32 function, index;
struct kvm_cpuid_entry2 *best;
function = kvm_register_read(vcpu, VCPU_REGS_RAX);
index = kvm_register_read(vcpu, VCPU_REGS_RCX);
kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
best = kvm_find_cpuid_entry(vcpu, function, index);
if (best) {
kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
}
kvm_x86_ops->skip_emulated_instruction(vcpu);
trace_kvm_cpuid(function,
kvm_register_read(vcpu, VCPU_REGS_RAX),
kvm_register_read(vcpu, VCPU_REGS_RBX),
kvm_register_read(vcpu, VCPU_REGS_RCX),
kvm_register_read(vcpu, VCPU_REGS_RDX));
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
/*
* Check if userspace requested an interrupt window, and that the
* interrupt window is open.
*
* No need to exit to userspace if we already have an interrupt queued.
*/
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
{
return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
vcpu->run->request_interrupt_window &&
kvm_arch_interrupt_allowed(vcpu));
}
static void post_kvm_run_save(struct kvm_vcpu *vcpu)
{
struct kvm_run *kvm_run = vcpu->run;
kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
kvm_run->cr8 = kvm_get_cr8(vcpu);
kvm_run->apic_base = kvm_get_apic_base(vcpu);
if (irqchip_in_kernel(vcpu->kvm))
kvm_run->ready_for_interrupt_injection = 1;
else
kvm_run->ready_for_interrupt_injection =
kvm_arch_interrupt_allowed(vcpu) &&
!kvm_cpu_has_interrupt(vcpu) &&
!kvm_event_needs_reinjection(vcpu);
}
static void vapic_enter(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
struct page *page;
if (!apic || !apic->vapic_addr)
return;
page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
vcpu->arch.apic->vapic_page = page;
}
static void vapic_exit(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
if (!apic || !apic->vapic_addr)
return;
down_read(&vcpu->kvm->slots_lock);
kvm_release_page_dirty(apic->vapic_page);
mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
up_read(&vcpu->kvm->slots_lock);
}
static void update_cr8_intercept(struct kvm_vcpu *vcpu)
{
int max_irr, tpr;
if (!kvm_x86_ops->update_cr8_intercept)
return;
if (!vcpu->arch.apic)
return;
if (!vcpu->arch.apic->vapic_addr)
max_irr = kvm_lapic_find_highest_irr(vcpu);
else
max_irr = -1;
if (max_irr != -1)
max_irr >>= 4;
tpr = kvm_lapic_get_cr8(vcpu);
kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
}
static void inject_pending_event(struct kvm_vcpu *vcpu)
{
/* try to reinject previous events if any */
if (vcpu->arch.exception.pending) {
kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
vcpu->arch.exception.has_error_code,
vcpu->arch.exception.error_code);
return;
}
if (vcpu->arch.nmi_injected) {
kvm_x86_ops->set_nmi(vcpu);
return;
}
if (vcpu->arch.interrupt.pending) {
kvm_x86_ops->set_irq(vcpu);
return;
}
/* try to inject new event if pending */
if (vcpu->arch.nmi_pending) {
if (kvm_x86_ops->nmi_allowed(vcpu)) {
vcpu->arch.nmi_pending = false;
vcpu->arch.nmi_injected = true;
kvm_x86_ops->set_nmi(vcpu);
}
} else if (kvm_cpu_has_interrupt(vcpu)) {
if (kvm_x86_ops->interrupt_allowed(vcpu)) {
kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
false);
kvm_x86_ops->set_irq(vcpu);
}
}
}
static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
{
int r;
bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
vcpu->run->request_interrupt_window;
if (vcpu->requests)
if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
kvm_mmu_unload(vcpu);
r = kvm_mmu_reload(vcpu);
if (unlikely(r))
goto out;
if (vcpu->requests) {
if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
__kvm_migrate_timers(vcpu);
if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
kvm_write_guest_time(vcpu);
if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
kvm_mmu_sync_roots(vcpu);
if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
kvm_x86_ops->tlb_flush(vcpu);
if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
&vcpu->requests)) {
vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
r = 0;
goto out;
}
if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
r = 0;
goto out;
}
}
preempt_disable();
kvm_x86_ops->prepare_guest_switch(vcpu);
kvm_load_guest_fpu(vcpu);
local_irq_disable();
clear_bit(KVM_REQ_KICK, &vcpu->requests);
smp_mb__after_clear_bit();
if (vcpu->requests || need_resched() || signal_pending(current)) {
set_bit(KVM_REQ_KICK, &vcpu->requests);
local_irq_enable();
preempt_enable();
r = 1;
goto out;
}
inject_pending_event(vcpu);
/* enable NMI/IRQ window open exits if needed */
if (vcpu->arch.nmi_pending)
kvm_x86_ops->enable_nmi_window(vcpu);
else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
kvm_x86_ops->enable_irq_window(vcpu);
if (kvm_lapic_enabled(vcpu)) {
update_cr8_intercept(vcpu);
kvm_lapic_sync_to_vapic(vcpu);
}
up_read(&vcpu->kvm->slots_lock);
kvm_guest_enter();
if (unlikely(vcpu->arch.switch_db_regs)) {
set_debugreg(0, 7);
set_debugreg(vcpu->arch.eff_db[0], 0);
set_debugreg(vcpu->arch.eff_db[1], 1);
set_debugreg(vcpu->arch.eff_db[2], 2);
set_debugreg(vcpu->arch.eff_db[3], 3);
}
trace_kvm_entry(vcpu->vcpu_id);
kvm_x86_ops->run(vcpu);
/*
* If the guest has used debug registers, at least dr7
* will be disabled while returning to the host.
* If we don't have active breakpoints in the host, we don't
* care about the messed up debug address registers. But if
* we have some of them active, restore the old state.
*/
if (hw_breakpoint_active())
hw_breakpoint_restore();
set_bit(KVM_REQ_KICK, &vcpu->requests);
local_irq_enable();
++vcpu->stat.exits;
/*
* We must have an instruction between local_irq_enable() and
* kvm_guest_exit(), so the timer interrupt isn't delayed by
* the interrupt shadow. The stat.exits increment will do nicely.
* But we need to prevent reordering, hence this barrier():
*/
barrier();
kvm_guest_exit();
preempt_enable();
down_read(&vcpu->kvm->slots_lock);
/*
* Profile KVM exit RIPs:
*/
if (unlikely(prof_on == KVM_PROFILING)) {
unsigned long rip = kvm_rip_read(vcpu);
profile_hit(KVM_PROFILING, (void *)rip);
}
kvm_lapic_sync_from_vapic(vcpu);
r = kvm_x86_ops->handle_exit(vcpu);
out:
return r;
}
static int __vcpu_run(struct kvm_vcpu *vcpu)
{
int r;
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
pr_debug("vcpu %d received sipi with vector # %x\n",
vcpu->vcpu_id, vcpu->arch.sipi_vector);
kvm_lapic_reset(vcpu);
r = kvm_arch_vcpu_reset(vcpu);
if (r)
return r;
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
}
down_read(&vcpu->kvm->slots_lock);
vapic_enter(vcpu);
r = 1;
while (r > 0) {
if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
r = vcpu_enter_guest(vcpu);
else {
up_read(&vcpu->kvm->slots_lock);
kvm_vcpu_block(vcpu);
down_read(&vcpu->kvm->slots_lock);
if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
{
switch(vcpu->arch.mp_state) {
case KVM_MP_STATE_HALTED:
vcpu->arch.mp_state =
KVM_MP_STATE_RUNNABLE;
case KVM_MP_STATE_RUNNABLE:
break;
case KVM_MP_STATE_SIPI_RECEIVED:
default:
r = -EINTR;
break;
}
}
}
if (r <= 0)
break;
clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
if (kvm_cpu_has_pending_timer(vcpu))
kvm_inject_pending_timer_irqs(vcpu);
if (dm_request_for_irq_injection(vcpu)) {
r = -EINTR;
vcpu->run->exit_reason = KVM_EXIT_INTR;
++vcpu->stat.request_irq_exits;
}
if (signal_pending(current)) {
r = -EINTR;
vcpu->run->exit_reason = KVM_EXIT_INTR;
++vcpu->stat.signal_exits;
}
if (need_resched()) {
up_read(&vcpu->kvm->slots_lock);
kvm_resched(vcpu);
down_read(&vcpu->kvm->slots_lock);
}
}
up_read(&vcpu->kvm->slots_lock);
post_kvm_run_save(vcpu);
vapic_exit(vcpu);
return r;
}
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
int r;
sigset_t sigsaved;
vcpu_load(vcpu);
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
kvm_vcpu_block(vcpu);
clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
r = -EAGAIN;
goto out;
}
/* re-sync apic's tpr */
if (!irqchip_in_kernel(vcpu->kvm))
kvm_set_cr8(vcpu, kvm_run->cr8);
if (vcpu->arch.pio.cur_count) {
r = complete_pio(vcpu);
if (r)
goto out;
}
if (vcpu->mmio_needed) {
memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
vcpu->mmio_read_completed = 1;
vcpu->mmio_needed = 0;
down_read(&vcpu->kvm->slots_lock);
r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
EMULTYPE_NO_DECODE);
up_read(&vcpu->kvm->slots_lock);
if (r == EMULATE_DO_MMIO) {
/*
* Read-modify-write. Back to userspace.
*/
r = 0;
goto out;
}
}
if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
kvm_register_write(vcpu, VCPU_REGS_RAX,
kvm_run->hypercall.ret);
r = __vcpu_run(vcpu);
out:
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
vcpu_put(vcpu);
return r;
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
vcpu_load(vcpu);
regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
#ifdef CONFIG_X86_64
regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
#endif
regs->rip = kvm_rip_read(vcpu);
regs->rflags = kvm_get_rflags(vcpu);
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
vcpu_load(vcpu);
kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
#ifdef CONFIG_X86_64
kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
#endif
kvm_rip_write(vcpu, regs->rip);
kvm_set_rflags(vcpu, regs->rflags);
vcpu->arch.exception.pending = false;
vcpu_put(vcpu);
return 0;
}
void kvm_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
kvm_x86_ops->get_segment(vcpu, var, seg);
}
void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
struct kvm_segment cs;
kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
*db = cs.db;
*l = cs.l;
}
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct descriptor_table dt;
vcpu_load(vcpu);
kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
kvm_x86_ops->get_idt(vcpu, &dt);
sregs->idt.limit = dt.limit;
sregs->idt.base = dt.base;
kvm_x86_ops->get_gdt(vcpu, &dt);
sregs->gdt.limit = dt.limit;
sregs->gdt.base = dt.base;
kvm_x86_ops->decache_cr4_guest_bits(vcpu);
sregs->cr0 = vcpu->arch.cr0;
sregs->cr2 = vcpu->arch.cr2;
sregs->cr3 = vcpu->arch.cr3;
sregs->cr4 = vcpu->arch.cr4;
sregs->cr8 = kvm_get_cr8(vcpu);
sregs->efer = vcpu->arch.shadow_efer;
sregs->apic_base = kvm_get_apic_base(vcpu);
memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
set_bit(vcpu->arch.interrupt.nr,
(unsigned long *)sregs->interrupt_bitmap);
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
vcpu_load(vcpu);
mp_state->mp_state = vcpu->arch.mp_state;
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
vcpu_load(vcpu);
vcpu->arch.mp_state = mp_state->mp_state;
vcpu_put(vcpu);
return 0;
}
static void kvm_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
kvm_x86_ops->set_segment(vcpu, var, seg);
}
static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
struct kvm_segment *kvm_desct)
{
kvm_desct->base = get_desc_base(seg_desc);
kvm_desct->limit = get_desc_limit(seg_desc);
if (seg_desc->g) {
kvm_desct->limit <<= 12;
kvm_desct->limit |= 0xfff;
}
kvm_desct->selector = selector;
kvm_desct->type = seg_desc->type;
kvm_desct->present = seg_desc->p;
kvm_desct->dpl = seg_desc->dpl;
kvm_desct->db = seg_desc->d;
kvm_desct->s = seg_desc->s;
kvm_desct->l = seg_desc->l;
kvm_desct->g = seg_desc->g;
kvm_desct->avl = seg_desc->avl;
if (!selector)
kvm_desct->unusable = 1;
else
kvm_desct->unusable = 0;
kvm_desct->padding = 0;
}
static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
u16 selector,
struct descriptor_table *dtable)
{
if (selector & 1 << 2) {
struct kvm_segment kvm_seg;
kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
if (kvm_seg.unusable)
dtable->limit = 0;
else
dtable->limit = kvm_seg.limit;
dtable->base = kvm_seg.base;
}
else
kvm_x86_ops->get_gdt(vcpu, dtable);
}
/* allowed just for 8 bytes segments */
static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
struct desc_struct *seg_desc)
{
struct descriptor_table dtable;
u16 index = selector >> 3;
get_segment_descriptor_dtable(vcpu, selector, &dtable);
if (dtable.limit < index * 8 + 7) {
kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
return 1;
}
return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
}
/* allowed just for 8 bytes segments */
static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
struct desc_struct *seg_desc)
{
struct descriptor_table dtable;
u16 index = selector >> 3;
get_segment_descriptor_dtable(vcpu, selector, &dtable);
if (dtable.limit < index * 8 + 7)
return 1;
return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
}
static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
struct desc_struct *seg_desc)
{
u32 base_addr = get_desc_base(seg_desc);
return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
}
static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment kvm_seg;
kvm_get_segment(vcpu, &kvm_seg, seg);
return kvm_seg.selector;
}
static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
u16 selector,
struct kvm_segment *kvm_seg)
{
struct desc_struct seg_desc;
if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
return 1;
seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
return 0;
}
static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
{
struct kvm_segment segvar = {
.base = selector << 4,
.limit = 0xffff,
.selector = selector,
.type = 3,
.present = 1,
.dpl = 3,
.db = 0,
.s = 1,
.l = 0,
.g = 0,
.avl = 0,
.unusable = 0,
};
kvm_x86_ops->set_segment(vcpu, &segvar, seg);
return 0;
}
static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
{
return (seg != VCPU_SREG_LDTR) &&
(seg != VCPU_SREG_TR) &&
(kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
}
int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
int type_bits, int seg)
{
struct kvm_segment kvm_seg;
if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
return kvm_load_realmode_segment(vcpu, selector, seg);
if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
return 1;
kvm_seg.type |= type_bits;
if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
seg != VCPU_SREG_LDTR)
if (!kvm_seg.s)
kvm_seg.unusable = 1;
kvm_set_segment(vcpu, &kvm_seg, seg);
return 0;
}
static void save_state_to_tss32(struct kvm_vcpu *vcpu,
struct tss_segment_32 *tss)
{
tss->cr3 = vcpu->arch.cr3;
tss->eip = kvm_rip_read(vcpu);
tss->eflags = kvm_get_rflags(vcpu);
tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
}
static int load_state_from_tss32(struct kvm_vcpu *vcpu,
struct tss_segment_32 *tss)
{
kvm_set_cr3(vcpu, tss->cr3);
kvm_rip_write(vcpu, tss->eip);
kvm_set_rflags(vcpu, tss->eflags | 2);
kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
return 1;
if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
return 1;
if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
return 1;
if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
return 1;
if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
return 1;
if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
return 1;
if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
return 1;
return 0;
}
static void save_state_to_tss16(struct kvm_vcpu *vcpu,
struct tss_segment_16 *tss)
{
tss->ip = kvm_rip_read(vcpu);
tss->flag = kvm_get_rflags(vcpu);
tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
}
static int load_state_from_tss16(struct kvm_vcpu *vcpu,
struct tss_segment_16 *tss)
{
kvm_rip_write(vcpu, tss->ip);
kvm_set_rflags(vcpu, tss->flag | 2);
kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
return 1;
if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
return 1;
if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
return 1;
if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
return 1;
if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
return 1;
return 0;
}
static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
u16 old_tss_sel, u32 old_tss_base,
struct desc_struct *nseg_desc)
{
struct tss_segment_16 tss_segment_16;
int ret = 0;
if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
sizeof tss_segment_16))
goto out;
save_state_to_tss16(vcpu, &tss_segment_16);
if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
sizeof tss_segment_16))
goto out;
if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
&tss_segment_16, sizeof tss_segment_16))
goto out;
if (old_tss_sel != 0xffff) {
tss_segment_16.prev_task_link = old_tss_sel;
if (kvm_write_guest(vcpu->kvm,
get_tss_base_addr(vcpu, nseg_desc),
&tss_segment_16.prev_task_link,
sizeof tss_segment_16.prev_task_link))
goto out;
}
if (load_state_from_tss16(vcpu, &tss_segment_16))
goto out;
ret = 1;
out:
return ret;
}
static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
u16 old_tss_sel, u32 old_tss_base,
struct desc_struct *nseg_desc)
{
struct tss_segment_32 tss_segment_32;
int ret = 0;
if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
sizeof tss_segment_32))
goto out;
save_state_to_tss32(vcpu, &tss_segment_32);
if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
sizeof tss_segment_32))
goto out;
if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
&tss_segment_32, sizeof tss_segment_32))
goto out;
if (old_tss_sel != 0xffff) {
tss_segment_32.prev_task_link = old_tss_sel;
if (kvm_write_guest(vcpu->kvm,
get_tss_base_addr(vcpu, nseg_desc),
&tss_segment_32.prev_task_link,
sizeof tss_segment_32.prev_task_link))
goto out;
}
if (load_state_from_tss32(vcpu, &tss_segment_32))
goto out;
ret = 1;
out:
return ret;
}
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
{
struct kvm_segment tr_seg;
struct desc_struct cseg_desc;
struct desc_struct nseg_desc;
int ret = 0;
u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
/* FIXME: Handle errors. Failure to read either TSS or their
* descriptors should generate a pagefault.
*/
if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
goto out;
if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
goto out;
if (reason != TASK_SWITCH_IRET) {
int cpl;
cpl = kvm_x86_ops->get_cpl(vcpu);
if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
return 1;
}
}
if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
return 1;
}
if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
cseg_desc.type &= ~(1 << 1); //clear the B flag
save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
}
if (reason == TASK_SWITCH_IRET) {
u32 eflags = kvm_get_rflags(vcpu);
kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
}
/* set back link to prev task only if NT bit is set in eflags
note that old_tss_sel is not used afetr this point */
if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
old_tss_sel = 0xffff;
if (nseg_desc.type & 8)
ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
old_tss_base, &nseg_desc);
else
ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
old_tss_base, &nseg_desc);
if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
u32 eflags = kvm_get_rflags(vcpu);
kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
}
if (reason != TASK_SWITCH_IRET) {
nseg_desc.type |= (1 << 1);
save_guest_segment_descriptor(vcpu, tss_selector,
&nseg_desc);
}
kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
tr_seg.type = 11;
kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
out:
return ret;
}
EXPORT_SYMBOL_GPL(kvm_task_switch);
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int mmu_reset_needed = 0;
int pending_vec, max_bits;
struct descriptor_table dt;
vcpu_load(vcpu);
dt.limit = sregs->idt.limit;
dt.base = sregs->idt.base;
kvm_x86_ops->set_idt(vcpu, &dt);
dt.limit = sregs->gdt.limit;
dt.base = sregs->gdt.base;
kvm_x86_ops->set_gdt(vcpu, &dt);
vcpu->arch.cr2 = sregs->cr2;
mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
vcpu->arch.cr3 = sregs->cr3;
kvm_set_cr8(vcpu, sregs->cr8);
mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
kvm_x86_ops->set_efer(vcpu, sregs->efer);
kvm_set_apic_base(vcpu, sregs->apic_base);
kvm_x86_ops->decache_cr4_guest_bits(vcpu);
mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
vcpu->arch.cr0 = sregs->cr0;
mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
if (!is_long_mode(vcpu) && is_pae(vcpu)) {
load_pdptrs(vcpu, vcpu->arch.cr3);
mmu_reset_needed = 1;
}
if (mmu_reset_needed)
kvm_mmu_reset_context(vcpu);
max_bits = (sizeof sregs->interrupt_bitmap) << 3;
pending_vec = find_first_bit(
(const unsigned long *)sregs->interrupt_bitmap, max_bits);
if (pending_vec < max_bits) {
kvm_queue_interrupt(vcpu, pending_vec, false);
pr_debug("Set back pending irq %d\n", pending_vec);
if (irqchip_in_kernel(vcpu->kvm))
kvm_pic_clear_isr_ack(vcpu->kvm);
}
kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
update_cr8_intercept(vcpu);
/* Older userspace won't unhalt the vcpu on reset. */
if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
!(vcpu->arch.cr0 & X86_CR0_PE))
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
unsigned long rflags;
int i, r;
vcpu_load(vcpu);
if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
r = -EBUSY;
if (vcpu->arch.exception.pending)
goto unlock_out;
if (dbg->control & KVM_GUESTDBG_INJECT_DB)
kvm_queue_exception(vcpu, DB_VECTOR);
else
kvm_queue_exception(vcpu, BP_VECTOR);
}
/*
* Read rflags as long as potentially injected trace flags are still
* filtered out.
*/
rflags = kvm_get_rflags(vcpu);
vcpu->guest_debug = dbg->control;
if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
vcpu->guest_debug = 0;
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
for (i = 0; i < KVM_NR_DB_REGS; ++i)
vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
vcpu->arch.switch_db_regs =
(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
} else {
for (i = 0; i < KVM_NR_DB_REGS; i++)
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
}
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
vcpu->arch.singlestep_cs =
get_segment_selector(vcpu, VCPU_SREG_CS);
vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
}
/*
* Trigger an rflags update that will inject or remove the trace
* flags.
*/
kvm_set_rflags(vcpu, rflags);
kvm_x86_ops->set_guest_debug(vcpu, dbg);
r = 0;
unlock_out:
vcpu_put(vcpu);
return r;
}
/*
* fxsave fpu state. Taken from x86_64/processor.h. To be killed when
* we have asm/x86/processor.h
*/
struct fxsave {
u16 cwd;
u16 swd;
u16 twd;
u16 fop;
u64 rip;
u64 rdp;
u32 mxcsr;
u32 mxcsr_mask;
u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
#ifdef CONFIG_X86_64
u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
#else
u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
#endif
};
/*
* Translate a guest virtual address to a guest physical address.
*/
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
unsigned long vaddr = tr->linear_address;
gpa_t gpa;
vcpu_load(vcpu);
down_read(&vcpu->kvm->slots_lock);
gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
up_read(&vcpu->kvm->slots_lock);
tr->physical_address = gpa;
tr->valid = gpa != UNMAPPED_GVA;
tr->writeable = 1;
tr->usermode = 0;
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
vcpu_load(vcpu);
memcpy(fpu->fpr, fxsave->st_space, 128);
fpu->fcw = fxsave->cwd;
fpu->fsw = fxsave->swd;
fpu->ftwx = fxsave->twd;
fpu->last_opcode = fxsave->fop;
fpu->last_ip = fxsave->rip;
fpu->last_dp = fxsave->rdp;
memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
vcpu_load(vcpu);
memcpy(fxsave->st_space, fpu->fpr, 128);
fxsave->cwd = fpu->fcw;
fxsave->swd = fpu->fsw;
fxsave->twd = fpu->ftwx;
fxsave->fop = fpu->last_opcode;
fxsave->rip = fpu->last_ip;
fxsave->rdp = fpu->last_dp;
memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
vcpu_put(vcpu);
return 0;
}
void fx_init(struct kvm_vcpu *vcpu)
{
unsigned after_mxcsr_mask;
/*
* Touch the fpu the first time in non atomic context as if
* this is the first fpu instruction the exception handler
* will fire before the instruction returns and it'll have to
* allocate ram with GFP_KERNEL.
*/
if (!used_math())
kvm_fx_save(&vcpu->arch.host_fx_image);
/* Initialize guest FPU by resetting ours and saving into guest's */
preempt_disable();
kvm_fx_save(&vcpu->arch.host_fx_image);
kvm_fx_finit();
kvm_fx_save(&vcpu->arch.guest_fx_image);
kvm_fx_restore(&vcpu->arch.host_fx_image);
preempt_enable();
vcpu->arch.cr0 |= X86_CR0_ET;
after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
}
EXPORT_SYMBOL_GPL(fx_init);
void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
return;
vcpu->guest_fpu_loaded = 1;
kvm_fx_save(&vcpu->arch.host_fx_image);
kvm_fx_restore(&vcpu->arch.guest_fx_image);
}
EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
if (!vcpu->guest_fpu_loaded)
return;
vcpu->guest_fpu_loaded = 0;
kvm_fx_save(&vcpu->arch.guest_fx_image);
kvm_fx_restore(&vcpu->arch.host_fx_image);
++vcpu->stat.fpu_reload;
}
EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.time_page) {
kvm_release_page_dirty(vcpu->arch.time_page);
vcpu->arch.time_page = NULL;
}
kvm_x86_ops->vcpu_free(vcpu);
}
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
unsigned int id)
{
return kvm_x86_ops->vcpu_create(kvm, id);
}
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
int r;
/* We do fxsave: this must be aligned. */
BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
vcpu->arch.mtrr_state.have_fixed = 1;
vcpu_load(vcpu);
r = kvm_arch_vcpu_reset(vcpu);
if (r == 0)
r = kvm_mmu_setup(vcpu);
vcpu_put(vcpu);
if (r < 0)
goto free_vcpu;
return 0;
free_vcpu:
kvm_x86_ops->vcpu_free(vcpu);
return r;
}
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
vcpu_load(vcpu);
kvm_mmu_unload(vcpu);
vcpu_put(vcpu);
kvm_x86_ops->vcpu_free(vcpu);
}
int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
{
vcpu->arch.nmi_pending = false;
vcpu->arch.nmi_injected = false;
vcpu->arch.switch_db_regs = 0;
memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
vcpu->arch.dr6 = DR6_FIXED_1;
vcpu->arch.dr7 = DR7_FIXED_1;
return kvm_x86_ops->vcpu_reset(vcpu);
}
int kvm_arch_hardware_enable(void *garbage)
{
/*
* Since this may be called from a hotplug notifcation,
* we can't get the CPU frequency directly.
*/
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
int cpu = raw_smp_processor_id();
per_cpu(cpu_tsc_khz, cpu) = 0;
}
kvm_shared_msr_cpu_online();
return kvm_x86_ops->hardware_enable(garbage);
}
void kvm_arch_hardware_disable(void *garbage)
{
kvm_x86_ops->hardware_disable(garbage);
drop_user_return_notifiers(garbage);
}
int kvm_arch_hardware_setup(void)
{
return kvm_x86_ops->hardware_setup();
}
void kvm_arch_hardware_unsetup(void)
{
kvm_x86_ops->hardware_unsetup();
}
void kvm_arch_check_processor_compat(void *rtn)
{
kvm_x86_ops->check_processor_compatibility(rtn);
}
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
struct page *page;
struct kvm *kvm;
int r;
BUG_ON(vcpu->kvm == NULL);
kvm = vcpu->kvm;
vcpu->arch.mmu.root_hpa = INVALID_PAGE;
if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
else
vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!page) {
r = -ENOMEM;
goto fail;
}
vcpu->arch.pio_data = page_address(page);
r = kvm_mmu_create(vcpu);
if (r < 0)
goto fail_free_pio_data;
if (irqchip_in_kernel(kvm)) {
r = kvm_create_lapic(vcpu);
if (r < 0)
goto fail_mmu_destroy;
}
vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
GFP_KERNEL);
if (!vcpu->arch.mce_banks) {
r = -ENOMEM;
goto fail_free_lapic;
}
vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
return 0;
fail_free_lapic:
kvm_free_lapic(vcpu);
fail_mmu_destroy:
kvm_mmu_destroy(vcpu);
fail_free_pio_data:
free_page((unsigned long)vcpu->arch.pio_data);
fail:
return r;
}
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
kfree(vcpu->arch.mce_banks);
kvm_free_lapic(vcpu);
down_read(&vcpu->kvm->slots_lock);
kvm_mmu_destroy(vcpu);
up_read(&vcpu->kvm->slots_lock);
free_page((unsigned long)vcpu->arch.pio_data);
}
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
rdtscll(kvm->arch.vm_init_tsc);
return kvm;
}
static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
vcpu_load(vcpu);
kvm_mmu_unload(vcpu);
vcpu_put(vcpu);
}
static void kvm_free_vcpus(struct kvm *kvm)
{
unsigned int i;
struct kvm_vcpu *vcpu;
/*
* Unpin any mmu pages first.
*/
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_unload_vcpu_mmu(vcpu);
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_arch_vcpu_free(vcpu);
mutex_lock(&kvm->lock);
for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
kvm->vcpus[i] = NULL;
atomic_set(&kvm->online_vcpus, 0);
mutex_unlock(&kvm->lock);
}
void kvm_arch_sync_events(struct kvm *kvm)
{
kvm_free_all_assigned_devices(kvm);
}
void kvm_arch_destroy_vm(struct kvm *kvm)
{
kvm_iommu_unmap_guest(kvm);
kvm_free_pit(kvm);
kfree(kvm->arch.vpic);
kfree(kvm->arch.vioapic);
kvm_free_vcpus(kvm);
kvm_free_physmem(kvm);
if (kvm->arch.apic_access_page)
put_page(kvm->arch.apic_access_page);
if (kvm->arch.ept_identity_pagetable)
put_page(kvm->arch.ept_identity_pagetable);
kfree(kvm);
}
int kvm_arch_set_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
struct kvm_memory_slot old,
int user_alloc)
{
int npages = mem->memory_size >> PAGE_SHIFT;
struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
/*To keep backward compatibility with older userspace,
*x86 needs to hanlde !user_alloc case.
*/
if (!user_alloc) {
if (npages && !old.rmap) {
unsigned long userspace_addr;
down_write(&current->mm->mmap_sem);
userspace_addr = do_mmap(NULL, 0,
npages * PAGE_SIZE,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
0);
up_write(&current->mm->mmap_sem);
if (IS_ERR((void *)userspace_addr))
return PTR_ERR((void *)userspace_addr);
/* set userspace_addr atomically for kvm_hva_to_rmapp */
spin_lock(&kvm->mmu_lock);
memslot->userspace_addr = userspace_addr;
spin_unlock(&kvm->mmu_lock);
} else {
if (!old.user_alloc && old.rmap) {
int ret;
down_write(&current->mm->mmap_sem);
ret = do_munmap(current->mm, old.userspace_addr,
old.npages * PAGE_SIZE);
up_write(&current->mm->mmap_sem);
if (ret < 0)
printk(KERN_WARNING
"kvm_vm_ioctl_set_memory_region: "
"failed to munmap memory\n");
}
}
}
spin_lock(&kvm->mmu_lock);
if (!kvm->arch.n_requested_mmu_pages) {
unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
}
kvm_mmu_slot_remove_write_access(kvm, mem->slot);
spin_unlock(&kvm->mmu_lock);
return 0;
}
void kvm_arch_flush_shadow(struct kvm *kvm)
{
kvm_mmu_zap_all(kvm);
kvm_reload_remote_mmus(kvm);
}
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
|| vcpu->arch.nmi_pending ||
(kvm_arch_interrupt_allowed(vcpu) &&
kvm_cpu_has_interrupt(vcpu));
}
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
int me;
int cpu = vcpu->cpu;
if (waitqueue_active(&vcpu->wq)) {
wake_up_interruptible(&vcpu->wq);
++vcpu->stat.halt_wakeup;
}
me = get_cpu();
if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
smp_send_reschedule(cpu);
put_cpu();
}
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
{
return kvm_x86_ops->interrupt_allowed(vcpu);
}
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
{
unsigned long rflags;
rflags = kvm_x86_ops->get_rflags(vcpu);
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
return rflags;
}
EXPORT_SYMBOL_GPL(kvm_get_rflags);
void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
vcpu->arch.singlestep_cs ==
get_segment_selector(vcpu, VCPU_SREG_CS) &&
vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
kvm_x86_ops->set_rflags(vcpu, rflags);
}
EXPORT_SYMBOL_GPL(kvm_set_rflags);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);