OpenCloudOS-Kernel/drivers/clk/sunxi/clk-sunxi.c

1203 lines
30 KiB
C

/*
* Copyright 2013 Emilio López
*
* Emilio López <emilio@elopez.com.ar>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/reset-controller.h>
#include <linux/spinlock.h>
#include "clk-factors.h"
static DEFINE_SPINLOCK(clk_lock);
/* Maximum number of parents our clocks have */
#define SUNXI_MAX_PARENTS 5
/**
* sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
* PLL1 rate is calculated as follows
* rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
* parent_rate is always 24Mhz
*/
static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 div;
/* Normalize value to a 6M multiple */
div = *freq / 6000000;
*freq = 6000000 * div;
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
/* m is always zero for pll1 */
*m = 0;
/* k is 1 only on these cases */
if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
*k = 1;
else
*k = 0;
/* p will be 3 for divs under 10 */
if (div < 10)
*p = 3;
/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
else if (div < 20 || (div < 32 && (div & 1)))
*p = 2;
/* p will be 1 for even divs under 32, divs under 40 and odd pairs
* of divs between 40-62 */
else if (div < 40 || (div < 64 && (div & 2)))
*p = 1;
/* any other entries have p = 0 */
else
*p = 0;
/* calculate a suitable n based on k and p */
div <<= *p;
div /= (*k + 1);
*n = div / 4;
}
/**
* sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
* PLL1 rate is calculated as follows
* rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
* parent_rate should always be 24MHz
*/
static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
/*
* We can operate only on MHz, this will make our life easier
* later.
*/
u32 freq_mhz = *freq / 1000000;
u32 parent_freq_mhz = parent_rate / 1000000;
/*
* Round down the frequency to the closest multiple of either
* 6 or 16
*/
u32 round_freq_6 = round_down(freq_mhz, 6);
u32 round_freq_16 = round_down(freq_mhz, 16);
if (round_freq_6 > round_freq_16)
freq_mhz = round_freq_6;
else
freq_mhz = round_freq_16;
*freq = freq_mhz * 1000000;
/*
* If the factors pointer are null, we were just called to
* round down the frequency.
* Exit.
*/
if (n == NULL)
return;
/* If the frequency is a multiple of 32 MHz, k is always 3 */
if (!(freq_mhz % 32))
*k = 3;
/* If the frequency is a multiple of 9 MHz, k is always 2 */
else if (!(freq_mhz % 9))
*k = 2;
/* If the frequency is a multiple of 8 MHz, k is always 1 */
else if (!(freq_mhz % 8))
*k = 1;
/* Otherwise, we don't use the k factor */
else
*k = 0;
/*
* If the frequency is a multiple of 2 but not a multiple of
* 3, m is 3. This is the first time we use 6 here, yet we
* will use it on several other places.
* We use this number because it's the lowest frequency we can
* generate (with n = 0, k = 0, m = 3), so every other frequency
* somehow relates to this frequency.
*/
if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
*m = 2;
/*
* If the frequency is a multiple of 6MHz, but the factor is
* odd, m will be 3
*/
else if ((freq_mhz / 6) & 1)
*m = 3;
/* Otherwise, we end up with m = 1 */
else
*m = 1;
/* Calculate n thanks to the above factors we already got */
*n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
/*
* If n end up being outbound, and that we can still decrease
* m, do it.
*/
if ((*n + 1) > 31 && (*m + 1) > 1) {
*n = (*n + 1) / 2 - 1;
*m = (*m + 1) / 2 - 1;
}
}
/**
* sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
* PLL1 rate is calculated as follows
* rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
* parent_rate is always 24Mhz
*/
static void sun8i_a23_get_pll1_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 div;
/* Normalize value to a 6M multiple */
div = *freq / 6000000;
*freq = 6000000 * div;
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
/* m is always zero for pll1 */
*m = 0;
/* k is 1 only on these cases */
if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
*k = 1;
else
*k = 0;
/* p will be 2 for divs under 20 and odd divs under 32 */
if (div < 20 || (div < 32 && (div & 1)))
*p = 2;
/* p will be 1 for even divs under 32, divs under 40 and odd pairs
* of divs between 40-62 */
else if (div < 40 || (div < 64 && (div & 2)))
*p = 1;
/* any other entries have p = 0 */
else
*p = 0;
/* calculate a suitable n based on k and p */
div <<= *p;
div /= (*k + 1);
*n = div / 4 - 1;
}
/**
* sun4i_get_pll5_factors() - calculates n, k factors for PLL5
* PLL5 rate is calculated as follows
* rate = parent_rate * n * (k + 1)
* parent_rate is always 24Mhz
*/
static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 div;
/* Normalize value to a parent_rate multiple (24M) */
div = *freq / parent_rate;
*freq = parent_rate * div;
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
if (div < 31)
*k = 0;
else if (div / 2 < 31)
*k = 1;
else if (div / 3 < 31)
*k = 2;
else
*k = 3;
*n = DIV_ROUND_UP(div, (*k+1));
}
/**
* sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6
* PLL6 rate is calculated as follows
* rate = parent_rate * n * (k + 1) / 2
* parent_rate is always 24Mhz
*/
static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 div;
/*
* We always have 24MHz / 2, so we can just say that our
* parent clock is 12MHz.
*/
parent_rate = parent_rate / 2;
/* Normalize value to a parent_rate multiple (24M / 2) */
div = *freq / parent_rate;
*freq = parent_rate * div;
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
*k = div / 32;
if (*k > 3)
*k = 3;
*n = DIV_ROUND_UP(div, (*k+1));
}
/**
* sun4i_get_apb1_factors() - calculates m, p factors for APB1
* APB1 rate is calculated as follows
* rate = (parent_rate >> p) / (m + 1);
*/
static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 calcm, calcp;
if (parent_rate < *freq)
*freq = parent_rate;
parent_rate = DIV_ROUND_UP(parent_rate, *freq);
/* Invalid rate! */
if (parent_rate > 32)
return;
if (parent_rate <= 4)
calcp = 0;
else if (parent_rate <= 8)
calcp = 1;
else if (parent_rate <= 16)
calcp = 2;
else
calcp = 3;
calcm = (parent_rate >> calcp) - 1;
*freq = (parent_rate >> calcp) / (calcm + 1);
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
*m = calcm;
*p = calcp;
}
/**
* sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
* CLK_OUT rate is calculated as follows
* rate = (parent_rate >> p) / (m + 1);
*/
static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 div, calcm, calcp;
/* These clocks can only divide, so we will never be able to achieve
* frequencies higher than the parent frequency */
if (*freq > parent_rate)
*freq = parent_rate;
div = DIV_ROUND_UP(parent_rate, *freq);
if (div < 32)
calcp = 0;
else if (div / 2 < 32)
calcp = 1;
else if (div / 4 < 32)
calcp = 2;
else
calcp = 3;
calcm = DIV_ROUND_UP(div, 1 << calcp);
*freq = (parent_rate >> calcp) / calcm;
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
*m = calcm - 1;
*p = calcp;
}
/**
* clk_sunxi_mmc_phase_control() - configures MMC clock phase control
*/
void clk_sunxi_mmc_phase_control(struct clk *clk, u8 sample, u8 output)
{
#define to_clk_composite(_hw) container_of(_hw, struct clk_composite, hw)
#define to_clk_factors(_hw) container_of(_hw, struct clk_factors, hw)
struct clk_hw *hw = __clk_get_hw(clk);
struct clk_composite *composite = to_clk_composite(hw);
struct clk_hw *rate_hw = composite->rate_hw;
struct clk_factors *factors = to_clk_factors(rate_hw);
unsigned long flags = 0;
u32 reg;
if (factors->lock)
spin_lock_irqsave(factors->lock, flags);
reg = readl(factors->reg);
/* set sample clock phase control */
reg &= ~(0x7 << 20);
reg |= ((sample & 0x7) << 20);
/* set output clock phase control */
reg &= ~(0x7 << 8);
reg |= ((output & 0x7) << 8);
writel(reg, factors->reg);
if (factors->lock)
spin_unlock_irqrestore(factors->lock, flags);
}
EXPORT_SYMBOL(clk_sunxi_mmc_phase_control);
/**
* sunxi_factors_clk_setup() - Setup function for factor clocks
*/
static struct clk_factors_config sun4i_pll1_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
.mshift = 0,
.mwidth = 2,
.pshift = 16,
.pwidth = 2,
};
static struct clk_factors_config sun6i_a31_pll1_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
.mshift = 0,
.mwidth = 2,
};
static struct clk_factors_config sun8i_a23_pll1_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
.mshift = 0,
.mwidth = 2,
.pshift = 16,
.pwidth = 2,
.n_start = 1,
};
static struct clk_factors_config sun4i_pll5_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
};
static struct clk_factors_config sun6i_a31_pll6_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
};
static struct clk_factors_config sun4i_apb1_config = {
.mshift = 0,
.mwidth = 5,
.pshift = 16,
.pwidth = 2,
};
/* user manual says "n" but it's really "p" */
static struct clk_factors_config sun7i_a20_out_config = {
.mshift = 8,
.mwidth = 5,
.pshift = 20,
.pwidth = 2,
};
static const struct factors_data sun4i_pll1_data __initconst = {
.enable = 31,
.table = &sun4i_pll1_config,
.getter = sun4i_get_pll1_factors,
};
static const struct factors_data sun6i_a31_pll1_data __initconst = {
.enable = 31,
.table = &sun6i_a31_pll1_config,
.getter = sun6i_a31_get_pll1_factors,
};
static const struct factors_data sun8i_a23_pll1_data __initconst = {
.enable = 31,
.table = &sun8i_a23_pll1_config,
.getter = sun8i_a23_get_pll1_factors,
};
static const struct factors_data sun7i_a20_pll4_data __initconst = {
.enable = 31,
.table = &sun4i_pll5_config,
.getter = sun4i_get_pll5_factors,
};
static const struct factors_data sun4i_pll5_data __initconst = {
.enable = 31,
.table = &sun4i_pll5_config,
.getter = sun4i_get_pll5_factors,
.name = "pll5",
};
static const struct factors_data sun4i_pll6_data __initconst = {
.enable = 31,
.table = &sun4i_pll5_config,
.getter = sun4i_get_pll5_factors,
.name = "pll6",
};
static const struct factors_data sun6i_a31_pll6_data __initconst = {
.enable = 31,
.table = &sun6i_a31_pll6_config,
.getter = sun6i_a31_get_pll6_factors,
};
static const struct factors_data sun4i_apb1_data __initconst = {
.table = &sun4i_apb1_config,
.getter = sun4i_get_apb1_factors,
};
static const struct factors_data sun7i_a20_out_data __initconst = {
.enable = 31,
.mux = 24,
.table = &sun7i_a20_out_config,
.getter = sun7i_a20_get_out_factors,
};
static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
const struct factors_data *data)
{
return sunxi_factors_register(node, data, &clk_lock);
}
/**
* sunxi_mux_clk_setup() - Setup function for muxes
*/
#define SUNXI_MUX_GATE_WIDTH 2
struct mux_data {
u8 shift;
};
static const struct mux_data sun4i_cpu_mux_data __initconst = {
.shift = 16,
};
static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
.shift = 12,
};
static const struct mux_data sun4i_apb1_mux_data __initconst = {
.shift = 24,
};
static void __init sunxi_mux_clk_setup(struct device_node *node,
struct mux_data *data)
{
struct clk *clk;
const char *clk_name = node->name;
const char *parents[SUNXI_MAX_PARENTS];
void __iomem *reg;
int i = 0;
reg = of_iomap(node, 0);
while (i < SUNXI_MAX_PARENTS &&
(parents[i] = of_clk_get_parent_name(node, i)) != NULL)
i++;
of_property_read_string(node, "clock-output-names", &clk_name);
clk = clk_register_mux(NULL, clk_name, parents, i,
CLK_SET_RATE_NO_REPARENT, reg,
data->shift, SUNXI_MUX_GATE_WIDTH,
0, &clk_lock);
if (clk) {
of_clk_add_provider(node, of_clk_src_simple_get, clk);
clk_register_clkdev(clk, clk_name, NULL);
}
}
/**
* sunxi_divider_clk_setup() - Setup function for simple divider clocks
*/
struct div_data {
u8 shift;
u8 pow;
u8 width;
const struct clk_div_table *table;
};
static const struct div_data sun4i_axi_data __initconst = {
.shift = 0,
.pow = 0,
.width = 2,
};
static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
{ .val = 0, .div = 1 },
{ .val = 1, .div = 2 },
{ .val = 2, .div = 3 },
{ .val = 3, .div = 4 },
{ .val = 4, .div = 4 },
{ .val = 5, .div = 4 },
{ .val = 6, .div = 4 },
{ .val = 7, .div = 4 },
{ } /* sentinel */
};
static const struct div_data sun8i_a23_axi_data __initconst = {
.width = 3,
.table = sun8i_a23_axi_table,
};
static const struct div_data sun4i_ahb_data __initconst = {
.shift = 4,
.pow = 1,
.width = 2,
};
static const struct clk_div_table sun4i_apb0_table[] __initconst = {
{ .val = 0, .div = 2 },
{ .val = 1, .div = 2 },
{ .val = 2, .div = 4 },
{ .val = 3, .div = 8 },
{ } /* sentinel */
};
static const struct div_data sun4i_apb0_data __initconst = {
.shift = 8,
.pow = 1,
.width = 2,
.table = sun4i_apb0_table,
};
static const struct div_data sun6i_a31_apb2_div_data __initconst = {
.shift = 0,
.pow = 0,
.width = 4,
};
static void __init sunxi_divider_clk_setup(struct device_node *node,
struct div_data *data)
{
struct clk *clk;
const char *clk_name = node->name;
const char *clk_parent;
void __iomem *reg;
reg = of_iomap(node, 0);
clk_parent = of_clk_get_parent_name(node, 0);
of_property_read_string(node, "clock-output-names", &clk_name);
clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
reg, data->shift, data->width,
data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
data->table, &clk_lock);
if (clk) {
of_clk_add_provider(node, of_clk_src_simple_get, clk);
clk_register_clkdev(clk, clk_name, NULL);
}
}
/**
* sunxi_gates_reset... - reset bits in leaf gate clk registers handling
*/
struct gates_reset_data {
void __iomem *reg;
spinlock_t *lock;
struct reset_controller_dev rcdev;
};
static int sunxi_gates_reset_assert(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct gates_reset_data *data = container_of(rcdev,
struct gates_reset_data,
rcdev);
unsigned long flags;
u32 reg;
spin_lock_irqsave(data->lock, flags);
reg = readl(data->reg);
writel(reg & ~BIT(id), data->reg);
spin_unlock_irqrestore(data->lock, flags);
return 0;
}
static int sunxi_gates_reset_deassert(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct gates_reset_data *data = container_of(rcdev,
struct gates_reset_data,
rcdev);
unsigned long flags;
u32 reg;
spin_lock_irqsave(data->lock, flags);
reg = readl(data->reg);
writel(reg | BIT(id), data->reg);
spin_unlock_irqrestore(data->lock, flags);
return 0;
}
static struct reset_control_ops sunxi_gates_reset_ops = {
.assert = sunxi_gates_reset_assert,
.deassert = sunxi_gates_reset_deassert,
};
/**
* sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
*/
#define SUNXI_GATES_MAX_SIZE 64
struct gates_data {
DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
u32 reset_mask;
};
static const struct gates_data sun4i_axi_gates_data __initconst = {
.mask = {1},
};
static const struct gates_data sun4i_ahb_gates_data __initconst = {
.mask = {0x7F77FFF, 0x14FB3F},
};
static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
.mask = {0x147667e7, 0x185915},
};
static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
.mask = {0x107067e7, 0x185111},
};
static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
.mask = {0xEDFE7F62, 0x794F931},
};
static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
.mask = { 0x12f77fff, 0x16ff3f },
};
static const struct gates_data sun8i_a23_ahb1_gates_data __initconst = {
.mask = {0x25386742, 0x2505111},
};
static const struct gates_data sun4i_apb0_gates_data __initconst = {
.mask = {0x4EF},
};
static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
.mask = {0x469},
};
static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
.mask = {0x61},
};
static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
.mask = { 0x4ff },
};
static const struct gates_data sun4i_apb1_gates_data __initconst = {
.mask = {0xFF00F7},
};
static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
.mask = {0xf0007},
};
static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
.mask = {0xa0007},
};
static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
.mask = {0x3031},
};
static const struct gates_data sun8i_a23_apb1_gates_data __initconst = {
.mask = {0x3021},
};
static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
.mask = {0x3F000F},
};
static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
.mask = { 0xff80ff },
};
static const struct gates_data sun8i_a23_apb2_gates_data __initconst = {
.mask = {0x1F0007},
};
static const struct gates_data sun4i_a10_usb_gates_data __initconst = {
.mask = {0x1C0},
.reset_mask = 0x07,
};
static const struct gates_data sun5i_a13_usb_gates_data __initconst = {
.mask = {0x140},
.reset_mask = 0x03,
};
static const struct gates_data sun6i_a31_usb_gates_data __initconst = {
.mask = { BIT(18) | BIT(17) | BIT(16) | BIT(10) | BIT(9) | BIT(8) },
.reset_mask = BIT(2) | BIT(1) | BIT(0),
};
static void __init sunxi_gates_clk_setup(struct device_node *node,
struct gates_data *data)
{
struct clk_onecell_data *clk_data;
struct gates_reset_data *reset_data;
const char *clk_parent;
const char *clk_name;
void __iomem *reg;
int qty;
int i = 0;
int j = 0;
reg = of_iomap(node, 0);
clk_parent = of_clk_get_parent_name(node, 0);
/* Worst-case size approximation and memory allocation */
qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
if (!clk_data)
return;
clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
if (!clk_data->clks) {
kfree(clk_data);
return;
}
for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
of_property_read_string_index(node, "clock-output-names",
j, &clk_name);
clk_data->clks[i] = clk_register_gate(NULL, clk_name,
clk_parent, 0,
reg + 4 * (i/32), i % 32,
0, &clk_lock);
WARN_ON(IS_ERR(clk_data->clks[i]));
clk_register_clkdev(clk_data->clks[i], clk_name, NULL);
j++;
}
/* Adjust to the real max */
clk_data->clk_num = i;
of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
/* Register a reset controler for gates with reset bits */
if (data->reset_mask == 0)
return;
reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL);
if (!reset_data)
return;
reset_data->reg = reg;
reset_data->lock = &clk_lock;
reset_data->rcdev.nr_resets = __fls(data->reset_mask) + 1;
reset_data->rcdev.ops = &sunxi_gates_reset_ops;
reset_data->rcdev.of_node = node;
reset_controller_register(&reset_data->rcdev);
}
/**
* sunxi_divs_clk_setup() helper data
*/
#define SUNXI_DIVS_MAX_QTY 2
#define SUNXI_DIVISOR_WIDTH 2
struct divs_data {
const struct factors_data *factors; /* data for the factor clock */
struct {
u8 fixed; /* is it a fixed divisor? if not... */
struct clk_div_table *table; /* is it a table based divisor? */
u8 shift; /* otherwise it's a normal divisor with this shift */
u8 pow; /* is it power-of-two based? */
u8 gate; /* is it independently gateable? */
} div[SUNXI_DIVS_MAX_QTY];
};
static struct clk_div_table pll6_sata_tbl[] = {
{ .val = 0, .div = 6, },
{ .val = 1, .div = 12, },
{ .val = 2, .div = 18, },
{ .val = 3, .div = 24, },
{ } /* sentinel */
};
static const struct divs_data pll5_divs_data __initconst = {
.factors = &sun4i_pll5_data,
.div = {
{ .shift = 0, .pow = 0, }, /* M, DDR */
{ .shift = 16, .pow = 1, }, /* P, other */
}
};
static const struct divs_data pll6_divs_data __initconst = {
.factors = &sun4i_pll6_data,
.div = {
{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
{ .fixed = 2 }, /* P, other */
}
};
/**
* sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
*
* These clocks look something like this
* ________________________
* | ___divisor 1---|----> to consumer
* parent >--| pll___/___divisor 2---|----> to consumer
* | \_______________|____> to consumer
* |________________________|
*/
static void __init sunxi_divs_clk_setup(struct device_node *node,
struct divs_data *data)
{
struct clk_onecell_data *clk_data;
const char *parent;
const char *clk_name;
struct clk **clks, *pclk;
struct clk_hw *gate_hw, *rate_hw;
const struct clk_ops *rate_ops;
struct clk_gate *gate = NULL;
struct clk_fixed_factor *fix_factor;
struct clk_divider *divider;
void __iomem *reg;
int i = 0;
int flags, clkflags;
/* Set up factor clock that we will be dividing */
pclk = sunxi_factors_clk_setup(node, data->factors);
parent = __clk_get_name(pclk);
reg = of_iomap(node, 0);
clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
if (!clk_data)
return;
clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL);
if (!clks)
goto free_clkdata;
clk_data->clks = clks;
/* It's not a good idea to have automatic reparenting changing
* our RAM clock! */
clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
for (i = 0; i < SUNXI_DIVS_MAX_QTY; i++) {
if (of_property_read_string_index(node, "clock-output-names",
i, &clk_name) != 0)
break;
gate_hw = NULL;
rate_hw = NULL;
rate_ops = NULL;
/* If this leaf clock can be gated, create a gate */
if (data->div[i].gate) {
gate = kzalloc(sizeof(*gate), GFP_KERNEL);
if (!gate)
goto free_clks;
gate->reg = reg;
gate->bit_idx = data->div[i].gate;
gate->lock = &clk_lock;
gate_hw = &gate->hw;
}
/* Leaves can be fixed or configurable divisors */
if (data->div[i].fixed) {
fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
if (!fix_factor)
goto free_gate;
fix_factor->mult = 1;
fix_factor->div = data->div[i].fixed;
rate_hw = &fix_factor->hw;
rate_ops = &clk_fixed_factor_ops;
} else {
divider = kzalloc(sizeof(*divider), GFP_KERNEL);
if (!divider)
goto free_gate;
flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
divider->reg = reg;
divider->shift = data->div[i].shift;
divider->width = SUNXI_DIVISOR_WIDTH;
divider->flags = flags;
divider->lock = &clk_lock;
divider->table = data->div[i].table;
rate_hw = &divider->hw;
rate_ops = &clk_divider_ops;
}
/* Wrap the (potential) gate and the divisor on a composite
* clock to unify them */
clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
NULL, NULL,
rate_hw, rate_ops,
gate_hw, &clk_gate_ops,
clkflags);
WARN_ON(IS_ERR(clk_data->clks[i]));
clk_register_clkdev(clks[i], clk_name, NULL);
}
/* The last clock available on the getter is the parent */
clks[i++] = pclk;
/* Adjust to the real max */
clk_data->clk_num = i;
of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
return;
free_gate:
kfree(gate);
free_clks:
kfree(clks);
free_clkdata:
kfree(clk_data);
}
/* Matches for factors clocks */
static const struct of_device_id clk_factors_match[] __initconst = {
{.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
{.compatible = "allwinner,sun8i-a23-pll1-clk", .data = &sun8i_a23_pll1_data,},
{.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
{.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_data,},
{.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
{.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
{}
};
/* Matches for divider clocks */
static const struct of_device_id clk_div_match[] __initconst = {
{.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
{.compatible = "allwinner,sun8i-a23-axi-clk", .data = &sun8i_a23_axi_data,},
{.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
{.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
{.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,},
{}
};
/* Matches for divided outputs */
static const struct of_device_id clk_divs_match[] __initconst = {
{.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
{.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
{}
};
/* Matches for mux clocks */
static const struct of_device_id clk_mux_match[] __initconst = {
{.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
{.compatible = "allwinner,sun4i-a10-apb1-mux-clk", .data = &sun4i_apb1_mux_data,},
{.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
{}
};
/* Matches for gate clocks */
static const struct of_device_id clk_gates_match[] __initconst = {
{.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,},
{.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
{.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
{.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
{.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
{.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
{.compatible = "allwinner,sun8i-a23-ahb1-gates-clk", .data = &sun8i_a23_ahb1_gates_data,},
{.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
{.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
{.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
{.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
{.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
{.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
{.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
{.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
{.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
{.compatible = "allwinner,sun8i-a23-apb1-gates-clk", .data = &sun8i_a23_apb1_gates_data,},
{.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
{.compatible = "allwinner,sun8i-a23-apb2-gates-clk", .data = &sun8i_a23_apb2_gates_data,},
{.compatible = "allwinner,sun4i-a10-usb-clk", .data = &sun4i_a10_usb_gates_data,},
{.compatible = "allwinner,sun5i-a13-usb-clk", .data = &sun5i_a13_usb_gates_data,},
{.compatible = "allwinner,sun6i-a31-usb-clk", .data = &sun6i_a31_usb_gates_data,},
{}
};
static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
void *function)
{
struct device_node *np;
const struct div_data *data;
const struct of_device_id *match;
void (*setup_function)(struct device_node *, const void *) = function;
for_each_matching_node_and_match(np, clk_match, &match) {
data = match->data;
setup_function(np, data);
}
}
static void __init sunxi_init_clocks(const char *clocks[], int nclocks)
{
unsigned int i;
/* Register factor clocks */
of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
/* Register divider clocks */
of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
/* Register divided output clocks */
of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
/* Register mux clocks */
of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
/* Register gate clocks */
of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
/* Protect the clocks that needs to stay on */
for (i = 0; i < nclocks; i++) {
struct clk *clk = clk_get(NULL, clocks[i]);
if (!IS_ERR(clk))
clk_prepare_enable(clk);
}
}
static const char *sun4i_a10_critical_clocks[] __initdata = {
"pll5_ddr",
"ahb_sdram",
};
static void __init sun4i_a10_init_clocks(struct device_node *node)
{
sunxi_init_clocks(sun4i_a10_critical_clocks,
ARRAY_SIZE(sun4i_a10_critical_clocks));
}
CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks);
static const char *sun5i_critical_clocks[] __initdata = {
"pll5_ddr",
"ahb_sdram",
};
static void __init sun5i_init_clocks(struct device_node *node)
{
sunxi_init_clocks(sun5i_critical_clocks,
ARRAY_SIZE(sun5i_critical_clocks));
}
CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks);
CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks);
CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks);
static const char *sun6i_critical_clocks[] __initdata = {
"cpu",
"ahb1_sdram",
};
static void __init sun6i_init_clocks(struct device_node *node)
{
sunxi_init_clocks(sun6i_critical_clocks,
ARRAY_SIZE(sun6i_critical_clocks));
}
CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks);
CLK_OF_DECLARE(sun8i_a23_clk_init, "allwinner,sun8i-a23", sun6i_init_clocks);