876 lines
22 KiB
C
876 lines
22 KiB
C
/**********************************************************************
|
|
* Author: Cavium, Inc.
|
|
*
|
|
* Contact: support@cavium.com
|
|
* Please include "LiquidIO" in the subject.
|
|
*
|
|
* Copyright (c) 2003-2016 Cavium, Inc.
|
|
*
|
|
* This file is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, Version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
|
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
|
|
* NONINFRINGEMENT. See the GNU General Public License for more
|
|
* details.
|
|
**********************************************************************/
|
|
#include <linux/pci.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/vmalloc.h>
|
|
#include "liquidio_common.h"
|
|
#include "octeon_droq.h"
|
|
#include "octeon_iq.h"
|
|
#include "response_manager.h"
|
|
#include "octeon_device.h"
|
|
#include "octeon_main.h"
|
|
#include "octeon_network.h"
|
|
#include "cn66xx_device.h"
|
|
#include "cn23xx_pf_device.h"
|
|
#include "cn23xx_vf_device.h"
|
|
|
|
struct iq_post_status {
|
|
int status;
|
|
int index;
|
|
};
|
|
|
|
static void check_db_timeout(struct work_struct *work);
|
|
static void __check_db_timeout(struct octeon_device *oct, u64 iq_no);
|
|
|
|
static void (*reqtype_free_fn[MAX_OCTEON_DEVICES][REQTYPE_LAST + 1]) (void *);
|
|
|
|
static inline int IQ_INSTR_MODE_64B(struct octeon_device *oct, int iq_no)
|
|
{
|
|
struct octeon_instr_queue *iq =
|
|
(struct octeon_instr_queue *)oct->instr_queue[iq_no];
|
|
return iq->iqcmd_64B;
|
|
}
|
|
|
|
#define IQ_INSTR_MODE_32B(oct, iq_no) (!IQ_INSTR_MODE_64B(oct, iq_no))
|
|
|
|
/* Define this to return the request status comaptible to old code */
|
|
/*#define OCTEON_USE_OLD_REQ_STATUS*/
|
|
|
|
/* Return 0 on success, 1 on failure */
|
|
int octeon_init_instr_queue(struct octeon_device *oct,
|
|
union oct_txpciq txpciq,
|
|
u32 num_descs)
|
|
{
|
|
struct octeon_instr_queue *iq;
|
|
struct octeon_iq_config *conf = NULL;
|
|
u32 iq_no = (u32)txpciq.s.q_no;
|
|
u32 q_size;
|
|
struct cavium_wq *db_wq;
|
|
int numa_node = dev_to_node(&oct->pci_dev->dev);
|
|
|
|
if (OCTEON_CN6XXX(oct))
|
|
conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn6xxx)));
|
|
else if (OCTEON_CN23XX_PF(oct))
|
|
conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_pf)));
|
|
else if (OCTEON_CN23XX_VF(oct))
|
|
conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_vf)));
|
|
|
|
if (!conf) {
|
|
dev_err(&oct->pci_dev->dev, "Unsupported Chip %x\n",
|
|
oct->chip_id);
|
|
return 1;
|
|
}
|
|
|
|
q_size = (u32)conf->instr_type * num_descs;
|
|
|
|
iq = oct->instr_queue[iq_no];
|
|
|
|
iq->oct_dev = oct;
|
|
|
|
iq->base_addr = lio_dma_alloc(oct, q_size, &iq->base_addr_dma);
|
|
if (!iq->base_addr) {
|
|
dev_err(&oct->pci_dev->dev, "Cannot allocate memory for instr queue %d\n",
|
|
iq_no);
|
|
return 1;
|
|
}
|
|
|
|
iq->max_count = num_descs;
|
|
|
|
/* Initialize a list to holds requests that have been posted to Octeon
|
|
* but has yet to be fetched by octeon
|
|
*/
|
|
iq->request_list = vmalloc_node((sizeof(*iq->request_list) * num_descs),
|
|
numa_node);
|
|
if (!iq->request_list)
|
|
iq->request_list = vmalloc(sizeof(*iq->request_list) *
|
|
num_descs);
|
|
if (!iq->request_list) {
|
|
lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
|
|
dev_err(&oct->pci_dev->dev, "Alloc failed for IQ[%d] nr free list\n",
|
|
iq_no);
|
|
return 1;
|
|
}
|
|
|
|
memset(iq->request_list, 0, sizeof(*iq->request_list) * num_descs);
|
|
|
|
dev_dbg(&oct->pci_dev->dev, "IQ[%d]: base: %p basedma: %llx count: %d\n",
|
|
iq_no, iq->base_addr, iq->base_addr_dma, iq->max_count);
|
|
|
|
iq->txpciq.u64 = txpciq.u64;
|
|
iq->fill_threshold = (u32)conf->db_min;
|
|
iq->fill_cnt = 0;
|
|
iq->host_write_index = 0;
|
|
iq->octeon_read_index = 0;
|
|
iq->flush_index = 0;
|
|
iq->last_db_time = 0;
|
|
iq->do_auto_flush = 1;
|
|
iq->db_timeout = (u32)conf->db_timeout;
|
|
atomic_set(&iq->instr_pending, 0);
|
|
|
|
/* Initialize the spinlock for this instruction queue */
|
|
spin_lock_init(&iq->lock);
|
|
spin_lock_init(&iq->post_lock);
|
|
|
|
spin_lock_init(&iq->iq_flush_running_lock);
|
|
|
|
oct->io_qmask.iq |= BIT_ULL(iq_no);
|
|
|
|
/* Set the 32B/64B mode for each input queue */
|
|
oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no);
|
|
iq->iqcmd_64B = (conf->instr_type == 64);
|
|
|
|
oct->fn_list.setup_iq_regs(oct, iq_no);
|
|
|
|
oct->check_db_wq[iq_no].wq = alloc_workqueue("check_iq_db",
|
|
WQ_MEM_RECLAIM,
|
|
0);
|
|
if (!oct->check_db_wq[iq_no].wq) {
|
|
vfree(iq->request_list);
|
|
iq->request_list = NULL;
|
|
lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
|
|
dev_err(&oct->pci_dev->dev, "check db wq create failed for iq %d\n",
|
|
iq_no);
|
|
return 1;
|
|
}
|
|
|
|
db_wq = &oct->check_db_wq[iq_no];
|
|
|
|
INIT_DELAYED_WORK(&db_wq->wk.work, check_db_timeout);
|
|
db_wq->wk.ctxptr = oct;
|
|
db_wq->wk.ctxul = iq_no;
|
|
queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(1));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int octeon_delete_instr_queue(struct octeon_device *oct, u32 iq_no)
|
|
{
|
|
u64 desc_size = 0, q_size;
|
|
struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
|
|
|
|
cancel_delayed_work_sync(&oct->check_db_wq[iq_no].wk.work);
|
|
destroy_workqueue(oct->check_db_wq[iq_no].wq);
|
|
|
|
if (OCTEON_CN6XXX(oct))
|
|
desc_size =
|
|
CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn6xxx));
|
|
else if (OCTEON_CN23XX_PF(oct))
|
|
desc_size =
|
|
CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_pf));
|
|
else if (OCTEON_CN23XX_VF(oct))
|
|
desc_size =
|
|
CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_vf));
|
|
|
|
vfree(iq->request_list);
|
|
|
|
if (iq->base_addr) {
|
|
q_size = iq->max_count * desc_size;
|
|
lio_dma_free(oct, (u32)q_size, iq->base_addr,
|
|
iq->base_addr_dma);
|
|
oct->io_qmask.iq &= ~(1ULL << iq_no);
|
|
vfree(oct->instr_queue[iq_no]);
|
|
oct->instr_queue[iq_no] = NULL;
|
|
oct->num_iqs--;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Return 0 on success, 1 on failure */
|
|
int octeon_setup_iq(struct octeon_device *oct,
|
|
int ifidx,
|
|
int q_index,
|
|
union oct_txpciq txpciq,
|
|
u32 num_descs,
|
|
void *app_ctx)
|
|
{
|
|
u32 iq_no = (u32)txpciq.s.q_no;
|
|
int numa_node = dev_to_node(&oct->pci_dev->dev);
|
|
|
|
if (oct->instr_queue[iq_no]) {
|
|
dev_dbg(&oct->pci_dev->dev, "IQ is in use. Cannot create the IQ: %d again\n",
|
|
iq_no);
|
|
oct->instr_queue[iq_no]->txpciq.u64 = txpciq.u64;
|
|
oct->instr_queue[iq_no]->app_ctx = app_ctx;
|
|
return 0;
|
|
}
|
|
oct->instr_queue[iq_no] =
|
|
vmalloc_node(sizeof(struct octeon_instr_queue), numa_node);
|
|
if (!oct->instr_queue[iq_no])
|
|
oct->instr_queue[iq_no] =
|
|
vmalloc(sizeof(struct octeon_instr_queue));
|
|
if (!oct->instr_queue[iq_no])
|
|
return 1;
|
|
|
|
memset(oct->instr_queue[iq_no], 0,
|
|
sizeof(struct octeon_instr_queue));
|
|
|
|
oct->instr_queue[iq_no]->q_index = q_index;
|
|
oct->instr_queue[iq_no]->app_ctx = app_ctx;
|
|
oct->instr_queue[iq_no]->ifidx = ifidx;
|
|
|
|
if (octeon_init_instr_queue(oct, txpciq, num_descs)) {
|
|
vfree(oct->instr_queue[iq_no]);
|
|
oct->instr_queue[iq_no] = NULL;
|
|
return 1;
|
|
}
|
|
|
|
oct->num_iqs++;
|
|
if (oct->fn_list.enable_io_queues(oct))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int lio_wait_for_instr_fetch(struct octeon_device *oct)
|
|
{
|
|
int i, retry = 1000, pending, instr_cnt = 0;
|
|
|
|
do {
|
|
instr_cnt = 0;
|
|
|
|
for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
|
|
if (!(oct->io_qmask.iq & BIT_ULL(i)))
|
|
continue;
|
|
pending =
|
|
atomic_read(&oct->instr_queue[i]->instr_pending);
|
|
if (pending)
|
|
__check_db_timeout(oct, i);
|
|
instr_cnt += pending;
|
|
}
|
|
|
|
if (instr_cnt == 0)
|
|
break;
|
|
|
|
schedule_timeout_uninterruptible(1);
|
|
|
|
} while (retry-- && instr_cnt);
|
|
|
|
return instr_cnt;
|
|
}
|
|
|
|
static inline void
|
|
ring_doorbell(struct octeon_device *oct, struct octeon_instr_queue *iq)
|
|
{
|
|
if (atomic_read(&oct->status) == OCT_DEV_RUNNING) {
|
|
writel(iq->fill_cnt, iq->doorbell_reg);
|
|
/* make sure doorbell write goes through */
|
|
mmiowb();
|
|
iq->fill_cnt = 0;
|
|
iq->last_db_time = jiffies;
|
|
return;
|
|
}
|
|
}
|
|
|
|
void
|
|
octeon_ring_doorbell_locked(struct octeon_device *oct, u32 iq_no)
|
|
{
|
|
struct octeon_instr_queue *iq;
|
|
|
|
iq = oct->instr_queue[iq_no];
|
|
spin_lock(&iq->post_lock);
|
|
if (iq->fill_cnt)
|
|
ring_doorbell(oct, iq);
|
|
spin_unlock(&iq->post_lock);
|
|
}
|
|
|
|
static inline void __copy_cmd_into_iq(struct octeon_instr_queue *iq,
|
|
u8 *cmd)
|
|
{
|
|
u8 *iqptr, cmdsize;
|
|
|
|
cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
|
|
iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
|
|
|
|
memcpy(iqptr, cmd, cmdsize);
|
|
}
|
|
|
|
static inline struct iq_post_status
|
|
__post_command2(struct octeon_instr_queue *iq, u8 *cmd)
|
|
{
|
|
struct iq_post_status st;
|
|
|
|
st.status = IQ_SEND_OK;
|
|
|
|
/* This ensures that the read index does not wrap around to the same
|
|
* position if queue gets full before Octeon could fetch any instr.
|
|
*/
|
|
if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 1)) {
|
|
st.status = IQ_SEND_FAILED;
|
|
st.index = -1;
|
|
return st;
|
|
}
|
|
|
|
if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 2))
|
|
st.status = IQ_SEND_STOP;
|
|
|
|
__copy_cmd_into_iq(iq, cmd);
|
|
|
|
/* "index" is returned, host_write_index is modified. */
|
|
st.index = iq->host_write_index;
|
|
iq->host_write_index = incr_index(iq->host_write_index, 1,
|
|
iq->max_count);
|
|
iq->fill_cnt++;
|
|
|
|
/* Flush the command into memory. We need to be sure the data is in
|
|
* memory before indicating that the instruction is pending.
|
|
*/
|
|
wmb();
|
|
|
|
atomic_inc(&iq->instr_pending);
|
|
|
|
return st;
|
|
}
|
|
|
|
int
|
|
octeon_register_reqtype_free_fn(struct octeon_device *oct, int reqtype,
|
|
void (*fn)(void *))
|
|
{
|
|
if (reqtype > REQTYPE_LAST) {
|
|
dev_err(&oct->pci_dev->dev, "%s: Invalid reqtype: %d\n",
|
|
__func__, reqtype);
|
|
return -EINVAL;
|
|
}
|
|
|
|
reqtype_free_fn[oct->octeon_id][reqtype] = fn;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
__add_to_request_list(struct octeon_instr_queue *iq,
|
|
int idx, void *buf, int reqtype)
|
|
{
|
|
iq->request_list[idx].buf = buf;
|
|
iq->request_list[idx].reqtype = reqtype;
|
|
}
|
|
|
|
/* Can only run in process context */
|
|
int
|
|
lio_process_iq_request_list(struct octeon_device *oct,
|
|
struct octeon_instr_queue *iq, u32 napi_budget)
|
|
{
|
|
struct cavium_wq *cwq = &oct->dma_comp_wq;
|
|
int reqtype;
|
|
void *buf;
|
|
u32 old = iq->flush_index;
|
|
u32 inst_count = 0;
|
|
unsigned int pkts_compl = 0, bytes_compl = 0;
|
|
struct octeon_soft_command *sc;
|
|
struct octeon_instr_irh *irh;
|
|
unsigned long flags;
|
|
|
|
while (old != iq->octeon_read_index) {
|
|
reqtype = iq->request_list[old].reqtype;
|
|
buf = iq->request_list[old].buf;
|
|
|
|
if (reqtype == REQTYPE_NONE)
|
|
goto skip_this;
|
|
|
|
octeon_update_tx_completion_counters(buf, reqtype, &pkts_compl,
|
|
&bytes_compl);
|
|
|
|
switch (reqtype) {
|
|
case REQTYPE_NORESP_NET:
|
|
case REQTYPE_NORESP_NET_SG:
|
|
case REQTYPE_RESP_NET_SG:
|
|
reqtype_free_fn[oct->octeon_id][reqtype](buf);
|
|
break;
|
|
case REQTYPE_RESP_NET:
|
|
case REQTYPE_SOFT_COMMAND:
|
|
sc = buf;
|
|
|
|
if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct))
|
|
irh = (struct octeon_instr_irh *)
|
|
&sc->cmd.cmd3.irh;
|
|
else
|
|
irh = (struct octeon_instr_irh *)
|
|
&sc->cmd.cmd2.irh;
|
|
if (irh->rflag) {
|
|
/* We're expecting a response from Octeon.
|
|
* It's up to lio_process_ordered_list() to
|
|
* process sc. Add sc to the ordered soft
|
|
* command response list because we expect
|
|
* a response from Octeon.
|
|
*/
|
|
spin_lock_irqsave
|
|
(&oct->response_list
|
|
[OCTEON_ORDERED_SC_LIST].lock,
|
|
flags);
|
|
atomic_inc(&oct->response_list
|
|
[OCTEON_ORDERED_SC_LIST].
|
|
pending_req_count);
|
|
list_add_tail(&sc->node, &oct->response_list
|
|
[OCTEON_ORDERED_SC_LIST].head);
|
|
spin_unlock_irqrestore
|
|
(&oct->response_list
|
|
[OCTEON_ORDERED_SC_LIST].lock,
|
|
flags);
|
|
} else {
|
|
if (sc->callback) {
|
|
/* This callback must not sleep */
|
|
sc->callback(oct, OCTEON_REQUEST_DONE,
|
|
sc->callback_arg);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
dev_err(&oct->pci_dev->dev,
|
|
"%s Unknown reqtype: %d buf: %p at idx %d\n",
|
|
__func__, reqtype, buf, old);
|
|
}
|
|
|
|
iq->request_list[old].buf = NULL;
|
|
iq->request_list[old].reqtype = 0;
|
|
|
|
skip_this:
|
|
inst_count++;
|
|
old = incr_index(old, 1, iq->max_count);
|
|
|
|
if ((napi_budget) && (inst_count >= napi_budget))
|
|
break;
|
|
}
|
|
if (bytes_compl)
|
|
octeon_report_tx_completion_to_bql(iq->app_ctx, pkts_compl,
|
|
bytes_compl);
|
|
iq->flush_index = old;
|
|
|
|
if (atomic_read(&oct->response_list
|
|
[OCTEON_ORDERED_SC_LIST].pending_req_count))
|
|
queue_delayed_work(cwq->wq, &cwq->wk.work, msecs_to_jiffies(1));
|
|
|
|
return inst_count;
|
|
}
|
|
|
|
/* Can only be called from process context */
|
|
int
|
|
octeon_flush_iq(struct octeon_device *oct, struct octeon_instr_queue *iq,
|
|
u32 napi_budget)
|
|
{
|
|
u32 inst_processed = 0;
|
|
u32 tot_inst_processed = 0;
|
|
int tx_done = 1;
|
|
|
|
if (!spin_trylock(&iq->iq_flush_running_lock))
|
|
return tx_done;
|
|
|
|
spin_lock_bh(&iq->lock);
|
|
|
|
iq->octeon_read_index = oct->fn_list.update_iq_read_idx(iq);
|
|
|
|
do {
|
|
/* Process any outstanding IQ packets. */
|
|
if (iq->flush_index == iq->octeon_read_index)
|
|
break;
|
|
|
|
if (napi_budget)
|
|
inst_processed =
|
|
lio_process_iq_request_list(oct, iq,
|
|
napi_budget -
|
|
tot_inst_processed);
|
|
else
|
|
inst_processed =
|
|
lio_process_iq_request_list(oct, iq, 0);
|
|
|
|
if (inst_processed) {
|
|
atomic_sub(inst_processed, &iq->instr_pending);
|
|
iq->stats.instr_processed += inst_processed;
|
|
}
|
|
|
|
tot_inst_processed += inst_processed;
|
|
} while (tot_inst_processed < napi_budget);
|
|
|
|
if (napi_budget && (tot_inst_processed >= napi_budget))
|
|
tx_done = 0;
|
|
|
|
iq->last_db_time = jiffies;
|
|
|
|
spin_unlock_bh(&iq->lock);
|
|
|
|
spin_unlock(&iq->iq_flush_running_lock);
|
|
|
|
return tx_done;
|
|
}
|
|
|
|
/* Process instruction queue after timeout.
|
|
* This routine gets called from a workqueue or when removing the module.
|
|
*/
|
|
static void __check_db_timeout(struct octeon_device *oct, u64 iq_no)
|
|
{
|
|
struct octeon_instr_queue *iq;
|
|
u64 next_time;
|
|
|
|
if (!oct)
|
|
return;
|
|
|
|
iq = oct->instr_queue[iq_no];
|
|
if (!iq)
|
|
return;
|
|
|
|
/* return immediately, if no work pending */
|
|
if (!atomic_read(&iq->instr_pending))
|
|
return;
|
|
/* If jiffies - last_db_time < db_timeout do nothing */
|
|
next_time = iq->last_db_time + iq->db_timeout;
|
|
if (!time_after(jiffies, (unsigned long)next_time))
|
|
return;
|
|
iq->last_db_time = jiffies;
|
|
|
|
/* Flush the instruction queue */
|
|
octeon_flush_iq(oct, iq, 0);
|
|
|
|
lio_enable_irq(NULL, iq);
|
|
}
|
|
|
|
/* Called by the Poll thread at regular intervals to check the instruction
|
|
* queue for commands to be posted and for commands that were fetched by Octeon.
|
|
*/
|
|
static void check_db_timeout(struct work_struct *work)
|
|
{
|
|
struct cavium_wk *wk = (struct cavium_wk *)work;
|
|
struct octeon_device *oct = (struct octeon_device *)wk->ctxptr;
|
|
u64 iq_no = wk->ctxul;
|
|
struct cavium_wq *db_wq = &oct->check_db_wq[iq_no];
|
|
u32 delay = 10;
|
|
|
|
__check_db_timeout(oct, iq_no);
|
|
queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(delay));
|
|
}
|
|
|
|
int
|
|
octeon_send_command(struct octeon_device *oct, u32 iq_no,
|
|
u32 force_db, void *cmd, void *buf,
|
|
u32 datasize, u32 reqtype)
|
|
{
|
|
int xmit_stopped;
|
|
struct iq_post_status st;
|
|
struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
|
|
|
|
/* Get the lock and prevent other tasks and tx interrupt handler from
|
|
* running.
|
|
*/
|
|
spin_lock_bh(&iq->post_lock);
|
|
|
|
st = __post_command2(iq, cmd);
|
|
|
|
if (st.status != IQ_SEND_FAILED) {
|
|
xmit_stopped = octeon_report_sent_bytes_to_bql(buf, reqtype);
|
|
__add_to_request_list(iq, st.index, buf, reqtype);
|
|
INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize);
|
|
INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1);
|
|
|
|
if (iq->fill_cnt >= MAX_OCTEON_FILL_COUNT || force_db ||
|
|
xmit_stopped || st.status == IQ_SEND_STOP)
|
|
ring_doorbell(oct, iq);
|
|
} else {
|
|
INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1);
|
|
}
|
|
|
|
spin_unlock_bh(&iq->post_lock);
|
|
|
|
/* This is only done here to expedite packets being flushed
|
|
* for cases where there are no IQ completion interrupts.
|
|
*/
|
|
|
|
return st.status;
|
|
}
|
|
|
|
void
|
|
octeon_prepare_soft_command(struct octeon_device *oct,
|
|
struct octeon_soft_command *sc,
|
|
u8 opcode,
|
|
u8 subcode,
|
|
u32 irh_ossp,
|
|
u64 ossp0,
|
|
u64 ossp1)
|
|
{
|
|
struct octeon_config *oct_cfg;
|
|
struct octeon_instr_ih2 *ih2;
|
|
struct octeon_instr_ih3 *ih3;
|
|
struct octeon_instr_pki_ih3 *pki_ih3;
|
|
struct octeon_instr_irh *irh;
|
|
struct octeon_instr_rdp *rdp;
|
|
|
|
WARN_ON(opcode > 15);
|
|
WARN_ON(subcode > 127);
|
|
|
|
oct_cfg = octeon_get_conf(oct);
|
|
|
|
if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
|
|
ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
|
|
|
|
ih3->pkind = oct->instr_queue[sc->iq_no]->txpciq.s.pkind;
|
|
|
|
pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3;
|
|
|
|
pki_ih3->w = 1;
|
|
pki_ih3->raw = 1;
|
|
pki_ih3->utag = 1;
|
|
pki_ih3->uqpg =
|
|
oct->instr_queue[sc->iq_no]->txpciq.s.use_qpg;
|
|
pki_ih3->utt = 1;
|
|
pki_ih3->tag = LIO_CONTROL;
|
|
pki_ih3->tagtype = ATOMIC_TAG;
|
|
pki_ih3->qpg =
|
|
oct->instr_queue[sc->iq_no]->txpciq.s.ctrl_qpg;
|
|
|
|
pki_ih3->pm = 0x7;
|
|
pki_ih3->sl = 8;
|
|
|
|
if (sc->datasize)
|
|
ih3->dlengsz = sc->datasize;
|
|
|
|
irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
|
|
irh->opcode = opcode;
|
|
irh->subcode = subcode;
|
|
|
|
/* opcode/subcode specific parameters (ossp) */
|
|
irh->ossp = irh_ossp;
|
|
sc->cmd.cmd3.ossp[0] = ossp0;
|
|
sc->cmd.cmd3.ossp[1] = ossp1;
|
|
|
|
if (sc->rdatasize) {
|
|
rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp;
|
|
rdp->pcie_port = oct->pcie_port;
|
|
rdp->rlen = sc->rdatasize;
|
|
|
|
irh->rflag = 1;
|
|
/*PKI IH3*/
|
|
/* pki_ih3 irh+ossp[0]+ossp[1]+rdp+rptr = 48 bytes */
|
|
ih3->fsz = LIO_SOFTCMDRESP_IH3;
|
|
} else {
|
|
irh->rflag = 0;
|
|
/*PKI IH3*/
|
|
/* pki_h3 + irh + ossp[0] + ossp[1] = 32 bytes */
|
|
ih3->fsz = LIO_PCICMD_O3;
|
|
}
|
|
|
|
} else {
|
|
ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
|
|
ih2->tagtype = ATOMIC_TAG;
|
|
ih2->tag = LIO_CONTROL;
|
|
ih2->raw = 1;
|
|
ih2->grp = CFG_GET_CTRL_Q_GRP(oct_cfg);
|
|
|
|
if (sc->datasize) {
|
|
ih2->dlengsz = sc->datasize;
|
|
ih2->rs = 1;
|
|
}
|
|
|
|
irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
|
|
irh->opcode = opcode;
|
|
irh->subcode = subcode;
|
|
|
|
/* opcode/subcode specific parameters (ossp) */
|
|
irh->ossp = irh_ossp;
|
|
sc->cmd.cmd2.ossp[0] = ossp0;
|
|
sc->cmd.cmd2.ossp[1] = ossp1;
|
|
|
|
if (sc->rdatasize) {
|
|
rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd2.rdp;
|
|
rdp->pcie_port = oct->pcie_port;
|
|
rdp->rlen = sc->rdatasize;
|
|
|
|
irh->rflag = 1;
|
|
/* irh+ossp[0]+ossp[1]+rdp+rptr = 40 bytes */
|
|
ih2->fsz = LIO_SOFTCMDRESP_IH2;
|
|
} else {
|
|
irh->rflag = 0;
|
|
/* irh + ossp[0] + ossp[1] = 24 bytes */
|
|
ih2->fsz = LIO_PCICMD_O2;
|
|
}
|
|
}
|
|
}
|
|
|
|
int octeon_send_soft_command(struct octeon_device *oct,
|
|
struct octeon_soft_command *sc)
|
|
{
|
|
struct octeon_instr_ih2 *ih2;
|
|
struct octeon_instr_ih3 *ih3;
|
|
struct octeon_instr_irh *irh;
|
|
u32 len;
|
|
|
|
if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
|
|
ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
|
|
if (ih3->dlengsz) {
|
|
WARN_ON(!sc->dmadptr);
|
|
sc->cmd.cmd3.dptr = sc->dmadptr;
|
|
}
|
|
irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
|
|
if (irh->rflag) {
|
|
WARN_ON(!sc->dmarptr);
|
|
WARN_ON(!sc->status_word);
|
|
*sc->status_word = COMPLETION_WORD_INIT;
|
|
sc->cmd.cmd3.rptr = sc->dmarptr;
|
|
}
|
|
len = (u32)ih3->dlengsz;
|
|
} else {
|
|
ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
|
|
if (ih2->dlengsz) {
|
|
WARN_ON(!sc->dmadptr);
|
|
sc->cmd.cmd2.dptr = sc->dmadptr;
|
|
}
|
|
irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
|
|
if (irh->rflag) {
|
|
WARN_ON(!sc->dmarptr);
|
|
WARN_ON(!sc->status_word);
|
|
*sc->status_word = COMPLETION_WORD_INIT;
|
|
sc->cmd.cmd2.rptr = sc->dmarptr;
|
|
}
|
|
len = (u32)ih2->dlengsz;
|
|
}
|
|
|
|
if (sc->wait_time)
|
|
sc->timeout = jiffies + sc->wait_time;
|
|
|
|
return (octeon_send_command(oct, sc->iq_no, 1, &sc->cmd, sc,
|
|
len, REQTYPE_SOFT_COMMAND));
|
|
}
|
|
|
|
int octeon_setup_sc_buffer_pool(struct octeon_device *oct)
|
|
{
|
|
int i;
|
|
u64 dma_addr;
|
|
struct octeon_soft_command *sc;
|
|
|
|
INIT_LIST_HEAD(&oct->sc_buf_pool.head);
|
|
spin_lock_init(&oct->sc_buf_pool.lock);
|
|
atomic_set(&oct->sc_buf_pool.alloc_buf_count, 0);
|
|
|
|
for (i = 0; i < MAX_SOFT_COMMAND_BUFFERS; i++) {
|
|
sc = (struct octeon_soft_command *)
|
|
lio_dma_alloc(oct,
|
|
SOFT_COMMAND_BUFFER_SIZE,
|
|
(dma_addr_t *)&dma_addr);
|
|
if (!sc) {
|
|
octeon_free_sc_buffer_pool(oct);
|
|
return 1;
|
|
}
|
|
|
|
sc->dma_addr = dma_addr;
|
|
sc->size = SOFT_COMMAND_BUFFER_SIZE;
|
|
|
|
list_add_tail(&sc->node, &oct->sc_buf_pool.head);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int octeon_free_sc_buffer_pool(struct octeon_device *oct)
|
|
{
|
|
struct list_head *tmp, *tmp2;
|
|
struct octeon_soft_command *sc;
|
|
|
|
spin_lock_bh(&oct->sc_buf_pool.lock);
|
|
|
|
list_for_each_safe(tmp, tmp2, &oct->sc_buf_pool.head) {
|
|
list_del(tmp);
|
|
|
|
sc = (struct octeon_soft_command *)tmp;
|
|
|
|
lio_dma_free(oct, sc->size, sc, sc->dma_addr);
|
|
}
|
|
|
|
INIT_LIST_HEAD(&oct->sc_buf_pool.head);
|
|
|
|
spin_unlock_bh(&oct->sc_buf_pool.lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct octeon_soft_command *octeon_alloc_soft_command(struct octeon_device *oct,
|
|
u32 datasize,
|
|
u32 rdatasize,
|
|
u32 ctxsize)
|
|
{
|
|
u64 dma_addr;
|
|
u32 size;
|
|
u32 offset = sizeof(struct octeon_soft_command);
|
|
struct octeon_soft_command *sc = NULL;
|
|
struct list_head *tmp;
|
|
|
|
WARN_ON((offset + datasize + rdatasize + ctxsize) >
|
|
SOFT_COMMAND_BUFFER_SIZE);
|
|
|
|
spin_lock_bh(&oct->sc_buf_pool.lock);
|
|
|
|
if (list_empty(&oct->sc_buf_pool.head)) {
|
|
spin_unlock_bh(&oct->sc_buf_pool.lock);
|
|
return NULL;
|
|
}
|
|
|
|
list_for_each(tmp, &oct->sc_buf_pool.head)
|
|
break;
|
|
|
|
list_del(tmp);
|
|
|
|
atomic_inc(&oct->sc_buf_pool.alloc_buf_count);
|
|
|
|
spin_unlock_bh(&oct->sc_buf_pool.lock);
|
|
|
|
sc = (struct octeon_soft_command *)tmp;
|
|
|
|
dma_addr = sc->dma_addr;
|
|
size = sc->size;
|
|
|
|
memset(sc, 0, sc->size);
|
|
|
|
sc->dma_addr = dma_addr;
|
|
sc->size = size;
|
|
|
|
if (ctxsize) {
|
|
sc->ctxptr = (u8 *)sc + offset;
|
|
sc->ctxsize = ctxsize;
|
|
}
|
|
|
|
/* Start data at 128 byte boundary */
|
|
offset = (offset + ctxsize + 127) & 0xffffff80;
|
|
|
|
if (datasize) {
|
|
sc->virtdptr = (u8 *)sc + offset;
|
|
sc->dmadptr = dma_addr + offset;
|
|
sc->datasize = datasize;
|
|
}
|
|
|
|
/* Start rdata at 128 byte boundary */
|
|
offset = (offset + datasize + 127) & 0xffffff80;
|
|
|
|
if (rdatasize) {
|
|
WARN_ON(rdatasize < 16);
|
|
sc->virtrptr = (u8 *)sc + offset;
|
|
sc->dmarptr = dma_addr + offset;
|
|
sc->rdatasize = rdatasize;
|
|
sc->status_word = (u64 *)((u8 *)(sc->virtrptr) + rdatasize - 8);
|
|
}
|
|
|
|
return sc;
|
|
}
|
|
|
|
void octeon_free_soft_command(struct octeon_device *oct,
|
|
struct octeon_soft_command *sc)
|
|
{
|
|
spin_lock_bh(&oct->sc_buf_pool.lock);
|
|
|
|
list_add_tail(&sc->node, &oct->sc_buf_pool.head);
|
|
|
|
atomic_dec(&oct->sc_buf_pool.alloc_buf_count);
|
|
|
|
spin_unlock_bh(&oct->sc_buf_pool.lock);
|
|
}
|