893 lines
24 KiB
C
893 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_error.h"
|
|
|
|
#include <linux/iversion.h>
|
|
|
|
struct kmem_cache *xfs_ili_cache; /* inode log item */
|
|
|
|
static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_inode_log_item, ili_item);
|
|
}
|
|
|
|
/*
|
|
* The logged size of an inode fork is always the current size of the inode
|
|
* fork. This means that when an inode fork is relogged, the size of the logged
|
|
* region is determined by the current state, not the combination of the
|
|
* previously logged state + the current state. This is different relogging
|
|
* behaviour to most other log items which will retain the size of the
|
|
* previously logged changes when smaller regions are relogged.
|
|
*
|
|
* Hence operations that remove data from the inode fork (e.g. shortform
|
|
* dir/attr remove, extent form extent removal, etc), the size of the relogged
|
|
* inode gets -smaller- rather than stays the same size as the previously logged
|
|
* size and this can result in the committing transaction reducing the amount of
|
|
* space being consumed by the CIL.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_data_fork_size(
|
|
struct xfs_inode_log_item *iip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
|
|
switch (ip->i_df.if_format) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
if ((iip->ili_fields & XFS_ILOG_DEXT) &&
|
|
ip->i_df.if_nextents > 0 &&
|
|
ip->i_df.if_bytes > 0) {
|
|
/* worst case, doesn't subtract delalloc extents */
|
|
*nbytes += XFS_IFORK_DSIZE(ip);
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_BTREE:
|
|
if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
|
|
ip->i_df.if_broot_bytes > 0) {
|
|
*nbytes += ip->i_df.if_broot_bytes;
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
if ((iip->ili_fields & XFS_ILOG_DDATA) &&
|
|
ip->i_df.if_bytes > 0) {
|
|
*nbytes += roundup(ip->i_df.if_bytes, 4);
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_DEV:
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_item_attr_fork_size(
|
|
struct xfs_inode_log_item *iip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
|
|
switch (ip->i_afp->if_format) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
if ((iip->ili_fields & XFS_ILOG_AEXT) &&
|
|
ip->i_afp->if_nextents > 0 &&
|
|
ip->i_afp->if_bytes > 0) {
|
|
/* worst case, doesn't subtract unused space */
|
|
*nbytes += XFS_IFORK_ASIZE(ip);
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_BTREE:
|
|
if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
|
|
ip->i_afp->if_broot_bytes > 0) {
|
|
*nbytes += ip->i_afp->if_broot_bytes;
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
if ((iip->ili_fields & XFS_ILOG_ADATA) &&
|
|
ip->i_afp->if_bytes > 0) {
|
|
*nbytes += roundup(ip->i_afp->if_bytes, 4);
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This returns the number of iovecs needed to log the given inode item.
|
|
*
|
|
* We need one iovec for the inode log format structure, one for the
|
|
* inode core, and possibly one for the inode data/extents/b-tree root
|
|
* and one for the inode attribute data/extents/b-tree root.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
|
|
*nvecs += 2;
|
|
*nbytes += sizeof(struct xfs_inode_log_format) +
|
|
xfs_log_dinode_size(ip->i_mount);
|
|
|
|
xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
|
|
if (XFS_IFORK_Q(ip))
|
|
xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_item_format_data_fork(
|
|
struct xfs_inode_log_item *iip,
|
|
struct xfs_inode_log_format *ilf,
|
|
struct xfs_log_vec *lv,
|
|
struct xfs_log_iovec **vecp)
|
|
{
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
size_t data_bytes;
|
|
|
|
switch (ip->i_df.if_format) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
|
|
|
|
if ((iip->ili_fields & XFS_ILOG_DEXT) &&
|
|
ip->i_df.if_nextents > 0 &&
|
|
ip->i_df.if_bytes > 0) {
|
|
struct xfs_bmbt_rec *p;
|
|
|
|
ASSERT(xfs_iext_count(&ip->i_df) > 0);
|
|
|
|
p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
|
|
data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
|
|
xlog_finish_iovec(lv, *vecp, data_bytes);
|
|
|
|
ASSERT(data_bytes <= ip->i_df.if_bytes);
|
|
|
|
ilf->ilf_dsize = data_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
iip->ili_fields &= ~XFS_ILOG_DEXT;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_BTREE:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
|
|
|
|
if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
|
|
ip->i_df.if_broot_bytes > 0) {
|
|
ASSERT(ip->i_df.if_broot != NULL);
|
|
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
|
|
ip->i_df.if_broot,
|
|
ip->i_df.if_broot_bytes);
|
|
ilf->ilf_dsize = ip->i_df.if_broot_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
ASSERT(!(iip->ili_fields &
|
|
XFS_ILOG_DBROOT));
|
|
iip->ili_fields &= ~XFS_ILOG_DBROOT;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
|
|
if ((iip->ili_fields & XFS_ILOG_DDATA) &&
|
|
ip->i_df.if_bytes > 0) {
|
|
/*
|
|
* Round i_bytes up to a word boundary.
|
|
* The underlying memory is guaranteed
|
|
* to be there by xfs_idata_realloc().
|
|
*/
|
|
data_bytes = roundup(ip->i_df.if_bytes, 4);
|
|
ASSERT(ip->i_df.if_u1.if_data != NULL);
|
|
ASSERT(ip->i_disk_size > 0);
|
|
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
|
|
ip->i_df.if_u1.if_data, data_bytes);
|
|
ilf->ilf_dsize = (unsigned)data_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
iip->ili_fields &= ~XFS_ILOG_DDATA;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_DEV:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
|
|
if (iip->ili_fields & XFS_ILOG_DEV)
|
|
ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_item_format_attr_fork(
|
|
struct xfs_inode_log_item *iip,
|
|
struct xfs_inode_log_format *ilf,
|
|
struct xfs_log_vec *lv,
|
|
struct xfs_log_iovec **vecp)
|
|
{
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
size_t data_bytes;
|
|
|
|
switch (ip->i_afp->if_format) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
|
|
|
|
if ((iip->ili_fields & XFS_ILOG_AEXT) &&
|
|
ip->i_afp->if_nextents > 0 &&
|
|
ip->i_afp->if_bytes > 0) {
|
|
struct xfs_bmbt_rec *p;
|
|
|
|
ASSERT(xfs_iext_count(ip->i_afp) ==
|
|
ip->i_afp->if_nextents);
|
|
|
|
p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
|
|
data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
|
|
xlog_finish_iovec(lv, *vecp, data_bytes);
|
|
|
|
ilf->ilf_asize = data_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
iip->ili_fields &= ~XFS_ILOG_AEXT;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_BTREE:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
|
|
|
|
if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
|
|
ip->i_afp->if_broot_bytes > 0) {
|
|
ASSERT(ip->i_afp->if_broot != NULL);
|
|
|
|
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
|
|
ip->i_afp->if_broot,
|
|
ip->i_afp->if_broot_bytes);
|
|
ilf->ilf_asize = ip->i_afp->if_broot_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
iip->ili_fields &= ~XFS_ILOG_ABROOT;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
|
|
|
|
if ((iip->ili_fields & XFS_ILOG_ADATA) &&
|
|
ip->i_afp->if_bytes > 0) {
|
|
/*
|
|
* Round i_bytes up to a word boundary.
|
|
* The underlying memory is guaranteed
|
|
* to be there by xfs_idata_realloc().
|
|
*/
|
|
data_bytes = roundup(ip->i_afp->if_bytes, 4);
|
|
ASSERT(ip->i_afp->if_u1.if_data != NULL);
|
|
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
|
|
ip->i_afp->if_u1.if_data,
|
|
data_bytes);
|
|
ilf->ilf_asize = (unsigned)data_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
iip->ili_fields &= ~XFS_ILOG_ADATA;
|
|
}
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Convert an incore timestamp to a log timestamp. Note that the log format
|
|
* specifies host endian format!
|
|
*/
|
|
static inline xfs_log_timestamp_t
|
|
xfs_inode_to_log_dinode_ts(
|
|
struct xfs_inode *ip,
|
|
const struct timespec64 tv)
|
|
{
|
|
struct xfs_log_legacy_timestamp *lits;
|
|
xfs_log_timestamp_t its;
|
|
|
|
if (xfs_inode_has_bigtime(ip))
|
|
return xfs_inode_encode_bigtime(tv);
|
|
|
|
lits = (struct xfs_log_legacy_timestamp *)&its;
|
|
lits->t_sec = tv.tv_sec;
|
|
lits->t_nsec = tv.tv_nsec;
|
|
|
|
return its;
|
|
}
|
|
|
|
/*
|
|
* The legacy DMAPI fields are only present in the on-disk and in-log inodes,
|
|
* but not in the in-memory one. But we are guaranteed to have an inode buffer
|
|
* in memory when logging an inode, so we can just copy it from the on-disk
|
|
* inode to the in-log inode here so that recovery of file system with these
|
|
* fields set to non-zero values doesn't lose them. For all other cases we zero
|
|
* the fields.
|
|
*/
|
|
static void
|
|
xfs_copy_dm_fields_to_log_dinode(
|
|
struct xfs_inode *ip,
|
|
struct xfs_log_dinode *to)
|
|
{
|
|
struct xfs_dinode *dip;
|
|
|
|
dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
|
|
ip->i_imap.im_boffset);
|
|
|
|
if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
|
|
to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
|
|
to->di_dmstate = be16_to_cpu(dip->di_dmstate);
|
|
} else {
|
|
to->di_dmevmask = 0;
|
|
to->di_dmstate = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
xfs_inode_to_log_dinode(
|
|
struct xfs_inode *ip,
|
|
struct xfs_log_dinode *to,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct inode *inode = VFS_I(ip);
|
|
|
|
to->di_magic = XFS_DINODE_MAGIC;
|
|
to->di_format = xfs_ifork_format(&ip->i_df);
|
|
to->di_uid = i_uid_read(inode);
|
|
to->di_gid = i_gid_read(inode);
|
|
to->di_projid_lo = ip->i_projid & 0xffff;
|
|
to->di_projid_hi = ip->i_projid >> 16;
|
|
|
|
memset(to->di_pad, 0, sizeof(to->di_pad));
|
|
memset(to->di_pad3, 0, sizeof(to->di_pad3));
|
|
to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
|
|
to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
|
|
to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime);
|
|
to->di_nlink = inode->i_nlink;
|
|
to->di_gen = inode->i_generation;
|
|
to->di_mode = inode->i_mode;
|
|
|
|
to->di_size = ip->i_disk_size;
|
|
to->di_nblocks = ip->i_nblocks;
|
|
to->di_extsize = ip->i_extsize;
|
|
to->di_nextents = xfs_ifork_nextents(&ip->i_df);
|
|
to->di_anextents = xfs_ifork_nextents(ip->i_afp);
|
|
to->di_forkoff = ip->i_forkoff;
|
|
to->di_aformat = xfs_ifork_format(ip->i_afp);
|
|
to->di_flags = ip->i_diflags;
|
|
|
|
xfs_copy_dm_fields_to_log_dinode(ip, to);
|
|
|
|
/* log a dummy value to ensure log structure is fully initialised */
|
|
to->di_next_unlinked = NULLAGINO;
|
|
|
|
if (xfs_has_v3inodes(ip->i_mount)) {
|
|
to->di_version = 3;
|
|
to->di_changecount = inode_peek_iversion(inode);
|
|
to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
|
|
to->di_flags2 = ip->i_diflags2;
|
|
to->di_cowextsize = ip->i_cowextsize;
|
|
to->di_ino = ip->i_ino;
|
|
to->di_lsn = lsn;
|
|
memset(to->di_pad2, 0, sizeof(to->di_pad2));
|
|
uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
|
|
to->di_flushiter = 0;
|
|
} else {
|
|
to->di_version = 2;
|
|
to->di_flushiter = ip->i_flushiter;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Format the inode core. Current timestamp data is only in the VFS inode
|
|
* fields, so we need to grab them from there. Hence rather than just copying
|
|
* the XFS inode core structure, format the fields directly into the iovec.
|
|
*/
|
|
static void
|
|
xfs_inode_item_format_core(
|
|
struct xfs_inode *ip,
|
|
struct xfs_log_vec *lv,
|
|
struct xfs_log_iovec **vecp)
|
|
{
|
|
struct xfs_log_dinode *dic;
|
|
|
|
dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
|
|
xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
|
|
xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the given inode
|
|
* log item. It fills the first item with an inode log format structure,
|
|
* the second with the on-disk inode structure, and a possible third and/or
|
|
* fourth with the inode data/extents/b-tree root and inode attributes
|
|
* data/extents/b-tree root.
|
|
*
|
|
* Note: Always use the 64 bit inode log format structure so we don't
|
|
* leave an uninitialised hole in the format item on 64 bit systems. Log
|
|
* recovery on 32 bit systems handles this just fine, so there's no reason
|
|
* for not using an initialising the properly padded structure all the time.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
struct xfs_inode_log_format *ilf;
|
|
|
|
ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
|
|
ilf->ilf_type = XFS_LI_INODE;
|
|
ilf->ilf_ino = ip->i_ino;
|
|
ilf->ilf_blkno = ip->i_imap.im_blkno;
|
|
ilf->ilf_len = ip->i_imap.im_len;
|
|
ilf->ilf_boffset = ip->i_imap.im_boffset;
|
|
ilf->ilf_fields = XFS_ILOG_CORE;
|
|
ilf->ilf_size = 2; /* format + core */
|
|
|
|
/*
|
|
* make sure we don't leak uninitialised data into the log in the case
|
|
* when we don't log every field in the inode.
|
|
*/
|
|
ilf->ilf_dsize = 0;
|
|
ilf->ilf_asize = 0;
|
|
ilf->ilf_pad = 0;
|
|
memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
|
|
|
|
xlog_finish_iovec(lv, vecp, sizeof(*ilf));
|
|
|
|
xfs_inode_item_format_core(ip, lv, &vecp);
|
|
xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
|
|
if (XFS_IFORK_Q(ip)) {
|
|
xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
|
|
} else {
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
|
|
}
|
|
|
|
/* update the format with the exact fields we actually logged */
|
|
ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
|
|
}
|
|
|
|
/*
|
|
* This is called to pin the inode associated with the inode log
|
|
* item in memory so it cannot be written out.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_pin(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
|
|
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
|
|
ASSERT(lip->li_buf);
|
|
|
|
trace_xfs_inode_pin(ip, _RET_IP_);
|
|
atomic_inc(&ip->i_pincount);
|
|
}
|
|
|
|
|
|
/*
|
|
* This is called to unpin the inode associated with the inode log
|
|
* item which was previously pinned with a call to xfs_inode_item_pin().
|
|
*
|
|
* Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
|
|
*
|
|
* Note that unpin can race with inode cluster buffer freeing marking the buffer
|
|
* stale. In that case, flush completions are run from the buffer unpin call,
|
|
* which may happen before the inode is unpinned. If we lose the race, there
|
|
* will be no buffer attached to the log item, but the inode will be marked
|
|
* XFS_ISTALE.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_unpin(
|
|
struct xfs_log_item *lip,
|
|
int remove)
|
|
{
|
|
struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
|
|
|
|
trace_xfs_inode_unpin(ip, _RET_IP_);
|
|
ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
|
|
ASSERT(atomic_read(&ip->i_pincount) > 0);
|
|
if (atomic_dec_and_test(&ip->i_pincount))
|
|
wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
|
|
}
|
|
|
|
STATIC uint
|
|
xfs_inode_item_push(
|
|
struct xfs_log_item *lip,
|
|
struct list_head *buffer_list)
|
|
__releases(&lip->li_ailp->ail_lock)
|
|
__acquires(&lip->li_ailp->ail_lock)
|
|
{
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
struct xfs_buf *bp = lip->li_buf;
|
|
uint rval = XFS_ITEM_SUCCESS;
|
|
int error;
|
|
|
|
ASSERT(iip->ili_item.li_buf);
|
|
|
|
if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) ||
|
|
(ip->i_flags & XFS_ISTALE))
|
|
return XFS_ITEM_PINNED;
|
|
|
|
if (xfs_iflags_test(ip, XFS_IFLUSHING))
|
|
return XFS_ITEM_FLUSHING;
|
|
|
|
if (!xfs_buf_trylock(bp))
|
|
return XFS_ITEM_LOCKED;
|
|
|
|
spin_unlock(&lip->li_ailp->ail_lock);
|
|
|
|
/*
|
|
* We need to hold a reference for flushing the cluster buffer as it may
|
|
* fail the buffer without IO submission. In which case, we better get a
|
|
* reference for that completion because otherwise we don't get a
|
|
* reference for IO until we queue the buffer for delwri submission.
|
|
*/
|
|
xfs_buf_hold(bp);
|
|
error = xfs_iflush_cluster(bp);
|
|
if (!error) {
|
|
if (!xfs_buf_delwri_queue(bp, buffer_list))
|
|
rval = XFS_ITEM_FLUSHING;
|
|
xfs_buf_relse(bp);
|
|
} else {
|
|
/*
|
|
* Release the buffer if we were unable to flush anything. On
|
|
* any other error, the buffer has already been released.
|
|
*/
|
|
if (error == -EAGAIN)
|
|
xfs_buf_relse(bp);
|
|
rval = XFS_ITEM_LOCKED;
|
|
}
|
|
|
|
spin_lock(&lip->li_ailp->ail_lock);
|
|
return rval;
|
|
}
|
|
|
|
/*
|
|
* Unlock the inode associated with the inode log item.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_release(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
unsigned short lock_flags;
|
|
|
|
ASSERT(ip->i_itemp != NULL);
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
|
|
|
|
lock_flags = iip->ili_lock_flags;
|
|
iip->ili_lock_flags = 0;
|
|
if (lock_flags)
|
|
xfs_iunlock(ip, lock_flags);
|
|
}
|
|
|
|
/*
|
|
* This is called to find out where the oldest active copy of the inode log
|
|
* item in the on disk log resides now that the last log write of it completed
|
|
* at the given lsn. Since we always re-log all dirty data in an inode, the
|
|
* latest copy in the on disk log is the only one that matters. Therefore,
|
|
* simply return the given lsn.
|
|
*
|
|
* If the inode has been marked stale because the cluster is being freed, we
|
|
* don't want to (re-)insert this inode into the AIL. There is a race condition
|
|
* where the cluster buffer may be unpinned before the inode is inserted into
|
|
* the AIL during transaction committed processing. If the buffer is unpinned
|
|
* before the inode item has been committed and inserted, then it is possible
|
|
* for the buffer to be written and IO completes before the inode is inserted
|
|
* into the AIL. In that case, we'd be inserting a clean, stale inode into the
|
|
* AIL which will never get removed. It will, however, get reclaimed which
|
|
* triggers an assert in xfs_inode_free() complaining about freein an inode
|
|
* still in the AIL.
|
|
*
|
|
* To avoid this, just unpin the inode directly and return a LSN of -1 so the
|
|
* transaction committed code knows that it does not need to do any further
|
|
* processing on the item.
|
|
*/
|
|
STATIC xfs_lsn_t
|
|
xfs_inode_item_committed(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
|
|
if (xfs_iflags_test(ip, XFS_ISTALE)) {
|
|
xfs_inode_item_unpin(lip, 0);
|
|
return -1;
|
|
}
|
|
return lsn;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_item_committing(
|
|
struct xfs_log_item *lip,
|
|
xfs_csn_t seq)
|
|
{
|
|
INODE_ITEM(lip)->ili_commit_seq = seq;
|
|
return xfs_inode_item_release(lip);
|
|
}
|
|
|
|
static const struct xfs_item_ops xfs_inode_item_ops = {
|
|
.iop_size = xfs_inode_item_size,
|
|
.iop_format = xfs_inode_item_format,
|
|
.iop_pin = xfs_inode_item_pin,
|
|
.iop_unpin = xfs_inode_item_unpin,
|
|
.iop_release = xfs_inode_item_release,
|
|
.iop_committed = xfs_inode_item_committed,
|
|
.iop_push = xfs_inode_item_push,
|
|
.iop_committing = xfs_inode_item_committing,
|
|
};
|
|
|
|
|
|
/*
|
|
* Initialize the inode log item for a newly allocated (in-core) inode.
|
|
*/
|
|
void
|
|
xfs_inode_item_init(
|
|
struct xfs_inode *ip,
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_inode_log_item *iip;
|
|
|
|
ASSERT(ip->i_itemp == NULL);
|
|
iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
|
|
iip->ili_inode = ip;
|
|
spin_lock_init(&iip->ili_lock);
|
|
xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
|
|
&xfs_inode_item_ops);
|
|
}
|
|
|
|
/*
|
|
* Free the inode log item and any memory hanging off of it.
|
|
*/
|
|
void
|
|
xfs_inode_item_destroy(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_inode_log_item *iip = ip->i_itemp;
|
|
|
|
ASSERT(iip->ili_item.li_buf == NULL);
|
|
|
|
ip->i_itemp = NULL;
|
|
kmem_free(iip->ili_item.li_lv_shadow);
|
|
kmem_cache_free(xfs_ili_cache, iip);
|
|
}
|
|
|
|
|
|
/*
|
|
* We only want to pull the item from the AIL if it is actually there
|
|
* and its location in the log has not changed since we started the
|
|
* flush. Thus, we only bother if the inode's lsn has not changed.
|
|
*/
|
|
static void
|
|
xfs_iflush_ail_updates(
|
|
struct xfs_ail *ailp,
|
|
struct list_head *list)
|
|
{
|
|
struct xfs_log_item *lip;
|
|
xfs_lsn_t tail_lsn = 0;
|
|
|
|
/* this is an opencoded batch version of xfs_trans_ail_delete */
|
|
spin_lock(&ailp->ail_lock);
|
|
list_for_each_entry(lip, list, li_bio_list) {
|
|
xfs_lsn_t lsn;
|
|
|
|
clear_bit(XFS_LI_FAILED, &lip->li_flags);
|
|
if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
|
|
continue;
|
|
|
|
lsn = xfs_ail_delete_one(ailp, lip);
|
|
if (!tail_lsn && lsn)
|
|
tail_lsn = lsn;
|
|
}
|
|
xfs_ail_update_finish(ailp, tail_lsn);
|
|
}
|
|
|
|
/*
|
|
* Walk the list of inodes that have completed their IOs. If they are clean
|
|
* remove them from the list and dissociate them from the buffer. Buffers that
|
|
* are still dirty remain linked to the buffer and on the list. Caller must
|
|
* handle them appropriately.
|
|
*/
|
|
static void
|
|
xfs_iflush_finish(
|
|
struct xfs_buf *bp,
|
|
struct list_head *list)
|
|
{
|
|
struct xfs_log_item *lip, *n;
|
|
|
|
list_for_each_entry_safe(lip, n, list, li_bio_list) {
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
bool drop_buffer = false;
|
|
|
|
spin_lock(&iip->ili_lock);
|
|
|
|
/*
|
|
* Remove the reference to the cluster buffer if the inode is
|
|
* clean in memory and drop the buffer reference once we've
|
|
* dropped the locks we hold.
|
|
*/
|
|
ASSERT(iip->ili_item.li_buf == bp);
|
|
if (!iip->ili_fields) {
|
|
iip->ili_item.li_buf = NULL;
|
|
list_del_init(&lip->li_bio_list);
|
|
drop_buffer = true;
|
|
}
|
|
iip->ili_last_fields = 0;
|
|
iip->ili_flush_lsn = 0;
|
|
spin_unlock(&iip->ili_lock);
|
|
xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
|
|
if (drop_buffer)
|
|
xfs_buf_rele(bp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Inode buffer IO completion routine. It is responsible for removing inodes
|
|
* attached to the buffer from the AIL if they have not been re-logged and
|
|
* completing the inode flush.
|
|
*/
|
|
void
|
|
xfs_buf_inode_iodone(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_log_item *lip, *n;
|
|
LIST_HEAD(flushed_inodes);
|
|
LIST_HEAD(ail_updates);
|
|
|
|
/*
|
|
* Pull the attached inodes from the buffer one at a time and take the
|
|
* appropriate action on them.
|
|
*/
|
|
list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
|
|
if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
|
|
xfs_iflush_abort(iip->ili_inode);
|
|
continue;
|
|
}
|
|
if (!iip->ili_last_fields)
|
|
continue;
|
|
|
|
/* Do an unlocked check for needing the AIL lock. */
|
|
if (iip->ili_flush_lsn == lip->li_lsn ||
|
|
test_bit(XFS_LI_FAILED, &lip->li_flags))
|
|
list_move_tail(&lip->li_bio_list, &ail_updates);
|
|
else
|
|
list_move_tail(&lip->li_bio_list, &flushed_inodes);
|
|
}
|
|
|
|
if (!list_empty(&ail_updates)) {
|
|
xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
|
|
list_splice_tail(&ail_updates, &flushed_inodes);
|
|
}
|
|
|
|
xfs_iflush_finish(bp, &flushed_inodes);
|
|
if (!list_empty(&flushed_inodes))
|
|
list_splice_tail(&flushed_inodes, &bp->b_li_list);
|
|
}
|
|
|
|
void
|
|
xfs_buf_inode_io_fail(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_log_item *lip;
|
|
|
|
list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
|
|
set_bit(XFS_LI_FAILED, &lip->li_flags);
|
|
}
|
|
|
|
/*
|
|
* This is the inode flushing abort routine. It is called when
|
|
* the filesystem is shutting down to clean up the inode state. It is
|
|
* responsible for removing the inode item from the AIL if it has not been
|
|
* re-logged and clearing the inode's flush state.
|
|
*/
|
|
void
|
|
xfs_iflush_abort(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_inode_log_item *iip = ip->i_itemp;
|
|
struct xfs_buf *bp = NULL;
|
|
|
|
if (iip) {
|
|
/*
|
|
* Clear the failed bit before removing the item from the AIL so
|
|
* xfs_trans_ail_delete() doesn't try to clear and release the
|
|
* buffer attached to the log item before we are done with it.
|
|
*/
|
|
clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
|
|
xfs_trans_ail_delete(&iip->ili_item, 0);
|
|
|
|
/*
|
|
* Clear the inode logging fields so no more flushes are
|
|
* attempted.
|
|
*/
|
|
spin_lock(&iip->ili_lock);
|
|
iip->ili_last_fields = 0;
|
|
iip->ili_fields = 0;
|
|
iip->ili_fsync_fields = 0;
|
|
iip->ili_flush_lsn = 0;
|
|
bp = iip->ili_item.li_buf;
|
|
iip->ili_item.li_buf = NULL;
|
|
list_del_init(&iip->ili_item.li_bio_list);
|
|
spin_unlock(&iip->ili_lock);
|
|
}
|
|
xfs_iflags_clear(ip, XFS_IFLUSHING);
|
|
if (bp)
|
|
xfs_buf_rele(bp);
|
|
}
|
|
|
|
/*
|
|
* convert an xfs_inode_log_format struct from the old 32 bit version
|
|
* (which can have different field alignments) to the native 64 bit version
|
|
*/
|
|
int
|
|
xfs_inode_item_format_convert(
|
|
struct xfs_log_iovec *buf,
|
|
struct xfs_inode_log_format *in_f)
|
|
{
|
|
struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
|
|
|
|
if (buf->i_len != sizeof(*in_f32)) {
|
|
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
in_f->ilf_type = in_f32->ilf_type;
|
|
in_f->ilf_size = in_f32->ilf_size;
|
|
in_f->ilf_fields = in_f32->ilf_fields;
|
|
in_f->ilf_asize = in_f32->ilf_asize;
|
|
in_f->ilf_dsize = in_f32->ilf_dsize;
|
|
in_f->ilf_ino = in_f32->ilf_ino;
|
|
memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
|
|
in_f->ilf_blkno = in_f32->ilf_blkno;
|
|
in_f->ilf_len = in_f32->ilf_len;
|
|
in_f->ilf_boffset = in_f32->ilf_boffset;
|
|
return 0;
|
|
}
|