OpenCloudOS-Kernel/arch/arm64/kernel/cpufeature.c

1526 lines
48 KiB
C

/*
* Contains CPU feature definitions
*
* Copyright (C) 2015 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define pr_fmt(fmt) "CPU features: " fmt
#include <linux/bsearch.h>
#include <linux/cpumask.h>
#include <linux/sort.h>
#include <linux/stop_machine.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <asm/cpu.h>
#include <asm/cpufeature.h>
#include <asm/cpu_ops.h>
#include <asm/fpsimd.h>
#include <asm/mmu_context.h>
#include <asm/processor.h>
#include <asm/sysreg.h>
#include <asm/traps.h>
#include <asm/virt.h>
unsigned long elf_hwcap __read_mostly;
EXPORT_SYMBOL_GPL(elf_hwcap);
#ifdef CONFIG_COMPAT
#define COMPAT_ELF_HWCAP_DEFAULT \
(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
COMPAT_HWCAP_LPAE)
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
unsigned int compat_elf_hwcap2 __read_mostly;
#endif
DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
EXPORT_SYMBOL(cpu_hwcaps);
/*
* Flag to indicate if we have computed the system wide
* capabilities based on the boot time active CPUs. This
* will be used to determine if a new booting CPU should
* go through the verification process to make sure that it
* supports the system capabilities, without using a hotplug
* notifier.
*/
static bool sys_caps_initialised;
static inline void set_sys_caps_initialised(void)
{
sys_caps_initialised = true;
}
static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
{
/* file-wide pr_fmt adds "CPU features: " prefix */
pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
return 0;
}
static struct notifier_block cpu_hwcaps_notifier = {
.notifier_call = dump_cpu_hwcaps
};
static int __init register_cpu_hwcaps_dumper(void)
{
atomic_notifier_chain_register(&panic_notifier_list,
&cpu_hwcaps_notifier);
return 0;
}
__initcall(register_cpu_hwcaps_dumper);
DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
EXPORT_SYMBOL(cpu_hwcap_keys);
#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
{ \
.sign = SIGNED, \
.visible = VISIBLE, \
.strict = STRICT, \
.type = TYPE, \
.shift = SHIFT, \
.width = WIDTH, \
.safe_val = SAFE_VAL, \
}
/* Define a feature with unsigned values */
#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
/* Define a feature with a signed value */
#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
#define ARM64_FTR_END \
{ \
.width = 0, \
}
/* meta feature for alternatives */
static bool __maybe_unused
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
/*
* NOTE: Any changes to the visibility of features should be kept in
* sync with the documentation of the CPU feature register ABI.
*/
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
/* Linux doesn't care about the EL3 */
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
/* Linux shouldn't care about secure memory */
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
/*
* Differing PARange is fine as long as all peripherals and memory are mapped
* within the minimum PARange of all CPUs
*/
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_ctr[] = {
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
/*
* Linux can handle differing I-cache policies. Userspace JITs will
* make use of *minLine.
* If we have differing I-cache policies, report it as the weakest - VIPT.
*/
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
ARM64_FTR_END,
};
struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
.name = "SYS_CTR_EL0",
.ftr_bits = ftr_ctr
};
static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf), /* InnerShr */
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), /* FCSE */
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), /* TCM */
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* ShareLvl */
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf), /* OuterShr */
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* PMSA */
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* VMSA */
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
/*
* We can instantiate multiple PMU instances with different levels
* of support.
*/
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_mvfr2[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* FPMisc */
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* SIMDMisc */
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_dczid[] = {
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_isar5[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* ac2 */
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_pfr0[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* State3 */
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), /* State2 */
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* State1 */
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* State0 */
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_dfr0[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_zcr[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */
ARM64_FTR_END,
};
/*
* Common ftr bits for a 32bit register with all hidden, strict
* attributes, with 4bit feature fields and a default safe value of
* 0. Covers the following 32bit registers:
* id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
*/
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
ARM64_FTR_END,
};
/* Table for a single 32bit feature value */
static const struct arm64_ftr_bits ftr_single32[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_raz[] = {
ARM64_FTR_END,
};
#define ARM64_FTR_REG(id, table) { \
.sys_id = id, \
.reg = &(struct arm64_ftr_reg){ \
.name = #id, \
.ftr_bits = &((table)[0]), \
}}
static const struct __ftr_reg_entry {
u32 sys_id;
struct arm64_ftr_reg *reg;
} arm64_ftr_regs[] = {
/* Op1 = 0, CRn = 0, CRm = 1 */
ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
/* Op1 = 0, CRn = 0, CRm = 2 */
ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
/* Op1 = 0, CRn = 0, CRm = 3 */
ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
/* Op1 = 0, CRn = 0, CRm = 4 */
ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
/* Op1 = 0, CRn = 0, CRm = 5 */
ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
/* Op1 = 0, CRn = 0, CRm = 6 */
ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
/* Op1 = 0, CRn = 0, CRm = 7 */
ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
/* Op1 = 0, CRn = 1, CRm = 2 */
ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
/* Op1 = 3, CRn = 0, CRm = 0 */
{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
/* Op1 = 3, CRn = 14, CRm = 0 */
ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
};
static int search_cmp_ftr_reg(const void *id, const void *regp)
{
return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
}
/*
* get_arm64_ftr_reg - Lookup a feature register entry using its
* sys_reg() encoding. With the array arm64_ftr_regs sorted in the
* ascending order of sys_id , we use binary search to find a matching
* entry.
*
* returns - Upon success, matching ftr_reg entry for id.
* - NULL on failure. It is upto the caller to decide
* the impact of a failure.
*/
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
{
const struct __ftr_reg_entry *ret;
ret = bsearch((const void *)(unsigned long)sys_id,
arm64_ftr_regs,
ARRAY_SIZE(arm64_ftr_regs),
sizeof(arm64_ftr_regs[0]),
search_cmp_ftr_reg);
if (ret)
return ret->reg;
return NULL;
}
static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
s64 ftr_val)
{
u64 mask = arm64_ftr_mask(ftrp);
reg &= ~mask;
reg |= (ftr_val << ftrp->shift) & mask;
return reg;
}
static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
s64 cur)
{
s64 ret = 0;
switch (ftrp->type) {
case FTR_EXACT:
ret = ftrp->safe_val;
break;
case FTR_LOWER_SAFE:
ret = new < cur ? new : cur;
break;
case FTR_HIGHER_SAFE:
ret = new > cur ? new : cur;
break;
default:
BUG();
}
return ret;
}
static void __init sort_ftr_regs(void)
{
int i;
/* Check that the array is sorted so that we can do the binary search */
for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
}
/*
* Initialise the CPU feature register from Boot CPU values.
* Also initiliases the strict_mask for the register.
* Any bits that are not covered by an arm64_ftr_bits entry are considered
* RES0 for the system-wide value, and must strictly match.
*/
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
{
u64 val = 0;
u64 strict_mask = ~0x0ULL;
u64 user_mask = 0;
u64 valid_mask = 0;
const struct arm64_ftr_bits *ftrp;
struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
BUG_ON(!reg);
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
u64 ftr_mask = arm64_ftr_mask(ftrp);
s64 ftr_new = arm64_ftr_value(ftrp, new);
val = arm64_ftr_set_value(ftrp, val, ftr_new);
valid_mask |= ftr_mask;
if (!ftrp->strict)
strict_mask &= ~ftr_mask;
if (ftrp->visible)
user_mask |= ftr_mask;
else
reg->user_val = arm64_ftr_set_value(ftrp,
reg->user_val,
ftrp->safe_val);
}
val &= valid_mask;
reg->sys_val = val;
reg->strict_mask = strict_mask;
reg->user_mask = user_mask;
}
void __init init_cpu_features(struct cpuinfo_arm64 *info)
{
/* Before we start using the tables, make sure it is sorted */
sort_ftr_regs();
init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
}
if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
sve_init_vq_map();
}
}
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
{
const struct arm64_ftr_bits *ftrp;
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
s64 ftr_new = arm64_ftr_value(ftrp, new);
if (ftr_cur == ftr_new)
continue;
/* Find a safe value */
ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
}
}
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
{
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
BUG_ON(!regp);
update_cpu_ftr_reg(regp, val);
if ((boot & regp->strict_mask) == (val & regp->strict_mask))
return 0;
pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
regp->name, boot, cpu, val);
return 1;
}
/*
* Update system wide CPU feature registers with the values from a
* non-boot CPU. Also performs SANITY checks to make sure that there
* aren't any insane variations from that of the boot CPU.
*/
void update_cpu_features(int cpu,
struct cpuinfo_arm64 *info,
struct cpuinfo_arm64 *boot)
{
int taint = 0;
/*
* The kernel can handle differing I-cache policies, but otherwise
* caches should look identical. Userspace JITs will make use of
* *minLine.
*/
taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
info->reg_ctr, boot->reg_ctr);
/*
* Userspace may perform DC ZVA instructions. Mismatched block sizes
* could result in too much or too little memory being zeroed if a
* process is preempted and migrated between CPUs.
*/
taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
info->reg_dczid, boot->reg_dczid);
/* If different, timekeeping will be broken (especially with KVM) */
taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
info->reg_cntfrq, boot->reg_cntfrq);
/*
* The kernel uses self-hosted debug features and expects CPUs to
* support identical debug features. We presently need CTX_CMPs, WRPs,
* and BRPs to be identical.
* ID_AA64DFR1 is currently RES0.
*/
taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
/*
* Even in big.LITTLE, processors should be identical instruction-set
* wise.
*/
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
/*
* Differing PARange support is fine as long as all peripherals and
* memory are mapped within the minimum PARange of all CPUs.
* Linux should not care about secure memory.
*/
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
/*
* EL3 is not our concern.
* ID_AA64PFR1 is currently RES0.
*/
taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
/*
* If we have AArch32, we care about 32-bit features for compat.
* If the system doesn't support AArch32, don't update them.
*/
if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
info->reg_id_dfr0, boot->reg_id_dfr0);
taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
info->reg_id_isar0, boot->reg_id_isar0);
taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
info->reg_id_isar1, boot->reg_id_isar1);
taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
info->reg_id_isar2, boot->reg_id_isar2);
taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
info->reg_id_isar3, boot->reg_id_isar3);
taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
info->reg_id_isar4, boot->reg_id_isar4);
taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
info->reg_id_isar5, boot->reg_id_isar5);
/*
* Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
* ACTLR formats could differ across CPUs and therefore would have to
* be trapped for virtualization anyway.
*/
taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
info->reg_id_mmfr0, boot->reg_id_mmfr0);
taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
info->reg_id_mmfr1, boot->reg_id_mmfr1);
taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
info->reg_id_mmfr2, boot->reg_id_mmfr2);
taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
info->reg_id_mmfr3, boot->reg_id_mmfr3);
taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
info->reg_id_pfr0, boot->reg_id_pfr0);
taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
info->reg_id_pfr1, boot->reg_id_pfr1);
taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
info->reg_mvfr0, boot->reg_mvfr0);
taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
info->reg_mvfr1, boot->reg_mvfr1);
taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
info->reg_mvfr2, boot->reg_mvfr2);
}
if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
info->reg_zcr, boot->reg_zcr);
/* Probe vector lengths, unless we already gave up on SVE */
if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
!sys_caps_initialised)
sve_update_vq_map();
}
/*
* Mismatched CPU features are a recipe for disaster. Don't even
* pretend to support them.
*/
if (taint) {
pr_warn_once("Unsupported CPU feature variation detected.\n");
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
}
}
u64 read_sanitised_ftr_reg(u32 id)
{
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
/* We shouldn't get a request for an unsupported register */
BUG_ON(!regp);
return regp->sys_val;
}
#define read_sysreg_case(r) \
case r: return read_sysreg_s(r)
/*
* __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
* Read the system register on the current CPU
*/
static u64 __read_sysreg_by_encoding(u32 sys_id)
{
switch (sys_id) {
read_sysreg_case(SYS_ID_PFR0_EL1);
read_sysreg_case(SYS_ID_PFR1_EL1);
read_sysreg_case(SYS_ID_DFR0_EL1);
read_sysreg_case(SYS_ID_MMFR0_EL1);
read_sysreg_case(SYS_ID_MMFR1_EL1);
read_sysreg_case(SYS_ID_MMFR2_EL1);
read_sysreg_case(SYS_ID_MMFR3_EL1);
read_sysreg_case(SYS_ID_ISAR0_EL1);
read_sysreg_case(SYS_ID_ISAR1_EL1);
read_sysreg_case(SYS_ID_ISAR2_EL1);
read_sysreg_case(SYS_ID_ISAR3_EL1);
read_sysreg_case(SYS_ID_ISAR4_EL1);
read_sysreg_case(SYS_ID_ISAR5_EL1);
read_sysreg_case(SYS_MVFR0_EL1);
read_sysreg_case(SYS_MVFR1_EL1);
read_sysreg_case(SYS_MVFR2_EL1);
read_sysreg_case(SYS_ID_AA64PFR0_EL1);
read_sysreg_case(SYS_ID_AA64PFR1_EL1);
read_sysreg_case(SYS_ID_AA64DFR0_EL1);
read_sysreg_case(SYS_ID_AA64DFR1_EL1);
read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
read_sysreg_case(SYS_CNTFRQ_EL0);
read_sysreg_case(SYS_CTR_EL0);
read_sysreg_case(SYS_DCZID_EL0);
default:
BUG();
return 0;
}
}
#include <linux/irqchip/arm-gic-v3.h>
static bool
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
{
int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
return val >= entry->min_field_value;
}
static bool
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
{
u64 val;
WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
if (scope == SCOPE_SYSTEM)
val = read_sanitised_ftr_reg(entry->sys_reg);
else
val = __read_sysreg_by_encoding(entry->sys_reg);
return feature_matches(val, entry);
}
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
{
bool has_sre;
if (!has_cpuid_feature(entry, scope))
return false;
has_sre = gic_enable_sre();
if (!has_sre)
pr_warn_once("%s present but disabled by higher exception level\n",
entry->desc);
return has_sre;
}
static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
{
u32 midr = read_cpuid_id();
/* Cavium ThunderX pass 1.x and 2.x */
return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
MIDR_CPU_VAR_REV(0, 0),
MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
}
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
{
return is_kernel_in_hyp_mode();
}
static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
int __unused)
{
phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
/*
* Activate the lower HYP offset only if:
* - the idmap doesn't clash with it,
* - the kernel is not running at EL2.
*/
return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
}
static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
{
u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
return cpuid_feature_extract_signed_field(pfr0,
ID_AA64PFR0_FP_SHIFT) < 0;
}
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
int __unused)
{
char const *str = "command line option";
u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
/*
* For reasons that aren't entirely clear, enabling KPTI on Cavium
* ThunderX leads to apparent I-cache corruption of kernel text, which
* ends as well as you might imagine. Don't even try.
*/
if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
str = "ARM64_WORKAROUND_CAVIUM_27456";
__kpti_forced = -1;
}
/* Forced? */
if (__kpti_forced) {
pr_info_once("kernel page table isolation forced %s by %s\n",
__kpti_forced > 0 ? "ON" : "OFF", str);
return __kpti_forced > 0;
}
/* Useful for KASLR robustness */
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
return true;
/* Don't force KPTI for CPUs that are not vulnerable */
switch (read_cpuid_id() & MIDR_CPU_MODEL_MASK) {
case MIDR_CAVIUM_THUNDERX2:
case MIDR_BRCM_VULCAN:
return false;
}
/* Defer to CPU feature registers */
return !cpuid_feature_extract_unsigned_field(pfr0,
ID_AA64PFR0_CSV3_SHIFT);
}
static int kpti_install_ng_mappings(void *__unused)
{
typedef void (kpti_remap_fn)(int, int, phys_addr_t);
extern kpti_remap_fn idmap_kpti_install_ng_mappings;
kpti_remap_fn *remap_fn;
static bool kpti_applied = false;
int cpu = smp_processor_id();
if (kpti_applied)
return 0;
remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
cpu_install_idmap();
remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
cpu_uninstall_idmap();
if (!cpu)
kpti_applied = true;
return 0;
}
static int __init parse_kpti(char *str)
{
bool enabled;
int ret = strtobool(str, &enabled);
if (ret)
return ret;
__kpti_forced = enabled ? 1 : -1;
return 0;
}
__setup("kpti=", parse_kpti);
#endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
static int cpu_copy_el2regs(void *__unused)
{
/*
* Copy register values that aren't redirected by hardware.
*
* Before code patching, we only set tpidr_el1, all CPUs need to copy
* this value to tpidr_el2 before we patch the code. Once we've done
* that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
* do anything here.
*/
if (!alternatives_applied)
write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
return 0;
}
static const struct arm64_cpu_capabilities arm64_features[] = {
{
.desc = "GIC system register CPU interface",
.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
.def_scope = SCOPE_SYSTEM,
.matches = has_useable_gicv3_cpuif,
.sys_reg = SYS_ID_AA64PFR0_EL1,
.field_pos = ID_AA64PFR0_GIC_SHIFT,
.sign = FTR_UNSIGNED,
.min_field_value = 1,
},
#ifdef CONFIG_ARM64_PAN
{
.desc = "Privileged Access Never",
.capability = ARM64_HAS_PAN,
.def_scope = SCOPE_SYSTEM,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64MMFR1_EL1,
.field_pos = ID_AA64MMFR1_PAN_SHIFT,
.sign = FTR_UNSIGNED,
.min_field_value = 1,
.enable = cpu_enable_pan,
},
#endif /* CONFIG_ARM64_PAN */
#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
{
.desc = "LSE atomic instructions",
.capability = ARM64_HAS_LSE_ATOMICS,
.def_scope = SCOPE_SYSTEM,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64ISAR0_EL1,
.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
.sign = FTR_UNSIGNED,
.min_field_value = 2,
},
#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
{
.desc = "Software prefetching using PRFM",
.capability = ARM64_HAS_NO_HW_PREFETCH,
.def_scope = SCOPE_SYSTEM,
.matches = has_no_hw_prefetch,
},
#ifdef CONFIG_ARM64_UAO
{
.desc = "User Access Override",
.capability = ARM64_HAS_UAO,
.def_scope = SCOPE_SYSTEM,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64MMFR2_EL1,
.field_pos = ID_AA64MMFR2_UAO_SHIFT,
.min_field_value = 1,
/*
* We rely on stop_machine() calling uao_thread_switch() to set
* UAO immediately after patching.
*/
},
#endif /* CONFIG_ARM64_UAO */
#ifdef CONFIG_ARM64_PAN
{
.capability = ARM64_ALT_PAN_NOT_UAO,
.def_scope = SCOPE_SYSTEM,
.matches = cpufeature_pan_not_uao,
},
#endif /* CONFIG_ARM64_PAN */
{
.desc = "Virtualization Host Extensions",
.capability = ARM64_HAS_VIRT_HOST_EXTN,
.def_scope = SCOPE_SYSTEM,
.matches = runs_at_el2,
.enable = cpu_copy_el2regs,
},
{
.desc = "32-bit EL0 Support",
.capability = ARM64_HAS_32BIT_EL0,
.def_scope = SCOPE_SYSTEM,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64PFR0_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64PFR0_EL0_SHIFT,
.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
},
{
.desc = "Reduced HYP mapping offset",
.capability = ARM64_HYP_OFFSET_LOW,
.def_scope = SCOPE_SYSTEM,
.matches = hyp_offset_low,
},
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
{
.desc = "Kernel page table isolation (KPTI)",
.capability = ARM64_UNMAP_KERNEL_AT_EL0,
.def_scope = SCOPE_SYSTEM,
.matches = unmap_kernel_at_el0,
.enable = kpti_install_ng_mappings,
},
#endif
{
/* FP/SIMD is not implemented */
.capability = ARM64_HAS_NO_FPSIMD,
.def_scope = SCOPE_SYSTEM,
.min_field_value = 0,
.matches = has_no_fpsimd,
},
#ifdef CONFIG_ARM64_PMEM
{
.desc = "Data cache clean to Point of Persistence",
.capability = ARM64_HAS_DCPOP,
.def_scope = SCOPE_SYSTEM,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64ISAR1_EL1,
.field_pos = ID_AA64ISAR1_DPB_SHIFT,
.min_field_value = 1,
},
#endif
#ifdef CONFIG_ARM64_SVE
{
.desc = "Scalable Vector Extension",
.capability = ARM64_SVE,
.def_scope = SCOPE_SYSTEM,
.sys_reg = SYS_ID_AA64PFR0_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64PFR0_SVE_SHIFT,
.min_field_value = ID_AA64PFR0_SVE,
.matches = has_cpuid_feature,
.enable = sve_kernel_enable,
},
#endif /* CONFIG_ARM64_SVE */
#ifdef CONFIG_ARM64_RAS_EXTN
{
.desc = "RAS Extension Support",
.capability = ARM64_HAS_RAS_EXTN,
.def_scope = SCOPE_SYSTEM,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64PFR0_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64PFR0_RAS_SHIFT,
.min_field_value = ID_AA64PFR0_RAS_V1,
.enable = cpu_clear_disr,
},
#endif /* CONFIG_ARM64_RAS_EXTN */
{},
};
#define HWCAP_CAP(reg, field, s, min_value, type, cap) \
{ \
.desc = #cap, \
.def_scope = SCOPE_SYSTEM, \
.matches = has_cpuid_feature, \
.sys_reg = reg, \
.field_pos = field, \
.sign = s, \
.min_field_value = min_value, \
.hwcap_type = type, \
.hwcap = cap, \
}
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
#ifdef CONFIG_ARM64_SVE
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
#endif
{},
};
static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
#ifdef CONFIG_COMPAT
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
#endif
{},
};
static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
{
switch (cap->hwcap_type) {
case CAP_HWCAP:
elf_hwcap |= cap->hwcap;
break;
#ifdef CONFIG_COMPAT
case CAP_COMPAT_HWCAP:
compat_elf_hwcap |= (u32)cap->hwcap;
break;
case CAP_COMPAT_HWCAP2:
compat_elf_hwcap2 |= (u32)cap->hwcap;
break;
#endif
default:
WARN_ON(1);
break;
}
}
/* Check if we have a particular HWCAP enabled */
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
{
bool rc;
switch (cap->hwcap_type) {
case CAP_HWCAP:
rc = (elf_hwcap & cap->hwcap) != 0;
break;
#ifdef CONFIG_COMPAT
case CAP_COMPAT_HWCAP:
rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
break;
case CAP_COMPAT_HWCAP2:
rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
break;
#endif
default:
WARN_ON(1);
rc = false;
}
return rc;
}
static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
{
/* We support emulation of accesses to CPU ID feature registers */
elf_hwcap |= HWCAP_CPUID;
for (; hwcaps->matches; hwcaps++)
if (hwcaps->matches(hwcaps, hwcaps->def_scope))
cap_set_elf_hwcap(hwcaps);
}
/*
* Check if the current CPU has a given feature capability.
* Should be called from non-preemptible context.
*/
static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
unsigned int cap)
{
const struct arm64_cpu_capabilities *caps;
if (WARN_ON(preemptible()))
return false;
for (caps = cap_array; caps->matches; caps++)
if (caps->capability == cap &&
caps->matches(caps, SCOPE_LOCAL_CPU))
return true;
return false;
}
void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
const char *info)
{
for (; caps->matches; caps++) {
if (!caps->matches(caps, caps->def_scope))
continue;
if (!cpus_have_cap(caps->capability) && caps->desc)
pr_info("%s %s\n", info, caps->desc);
cpus_set_cap(caps->capability);
}
}
/*
* Run through the enabled capabilities and enable() it on all active
* CPUs
*/
void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
{
for (; caps->matches; caps++) {
unsigned int num = caps->capability;
if (!cpus_have_cap(num))
continue;
/* Ensure cpus_have_const_cap(num) works */
static_branch_enable(&cpu_hwcap_keys[num]);
if (caps->enable) {
/*
* Use stop_machine() as it schedules the work allowing
* us to modify PSTATE, instead of on_each_cpu() which
* uses an IPI, giving us a PSTATE that disappears when
* we return.
*/
stop_machine(caps->enable, (void *)caps, cpu_online_mask);
}
}
}
/*
* Check for CPU features that are used in early boot
* based on the Boot CPU value.
*/
static void check_early_cpu_features(void)
{
verify_cpu_run_el();
verify_cpu_asid_bits();
}
static void
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
{
for (; caps->matches; caps++)
if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
pr_crit("CPU%d: missing HWCAP: %s\n",
smp_processor_id(), caps->desc);
cpu_die_early();
}
}
static void
verify_local_cpu_features(const struct arm64_cpu_capabilities *caps_list)
{
const struct arm64_cpu_capabilities *caps = caps_list;
for (; caps->matches; caps++) {
if (!cpus_have_cap(caps->capability))
continue;
/*
* If the new CPU misses an advertised feature, we cannot proceed
* further, park the cpu.
*/
if (!__this_cpu_has_cap(caps_list, caps->capability)) {
pr_crit("CPU%d: missing feature: %s\n",
smp_processor_id(), caps->desc);
cpu_die_early();
}
if (caps->enable)
caps->enable((void *)caps);
}
}
static void verify_sve_features(void)
{
u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
u64 zcr = read_zcr_features();
unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
unsigned int len = zcr & ZCR_ELx_LEN_MASK;
if (len < safe_len || sve_verify_vq_map()) {
pr_crit("CPU%d: SVE: required vector length(s) missing\n",
smp_processor_id());
cpu_die_early();
}
/* Add checks on other ZCR bits here if necessary */
}
/*
* Run through the enabled system capabilities and enable() it on this CPU.
* The capabilities were decided based on the available CPUs at the boot time.
* Any new CPU should match the system wide status of the capability. If the
* new CPU doesn't have a capability which the system now has enabled, we
* cannot do anything to fix it up and could cause unexpected failures. So
* we park the CPU.
*/
static void verify_local_cpu_capabilities(void)
{
verify_local_cpu_errata_workarounds();
verify_local_cpu_features(arm64_features);
verify_local_elf_hwcaps(arm64_elf_hwcaps);
if (system_supports_32bit_el0())
verify_local_elf_hwcaps(compat_elf_hwcaps);
if (system_supports_sve())
verify_sve_features();
if (system_uses_ttbr0_pan())
pr_info("Emulating Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
}
void check_local_cpu_capabilities(void)
{
/*
* All secondary CPUs should conform to the early CPU features
* in use by the kernel based on boot CPU.
*/
check_early_cpu_features();
/*
* If we haven't finalised the system capabilities, this CPU gets
* a chance to update the errata work arounds.
* Otherwise, this CPU should verify that it has all the system
* advertised capabilities.
*/
if (!sys_caps_initialised)
update_cpu_errata_workarounds();
else
verify_local_cpu_capabilities();
}
static void __init setup_feature_capabilities(void)
{
update_cpu_capabilities(arm64_features, "detected feature:");
enable_cpu_capabilities(arm64_features);
}
DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
EXPORT_SYMBOL(arm64_const_caps_ready);
static void __init mark_const_caps_ready(void)
{
static_branch_enable(&arm64_const_caps_ready);
}
extern const struct arm64_cpu_capabilities arm64_errata[];
bool this_cpu_has_cap(unsigned int cap)
{
return (__this_cpu_has_cap(arm64_features, cap) ||
__this_cpu_has_cap(arm64_errata, cap));
}
void __init setup_cpu_features(void)
{
u32 cwg;
int cls;
/* Set the CPU feature capabilies */
setup_feature_capabilities();
enable_errata_workarounds();
mark_const_caps_ready();
setup_elf_hwcaps(arm64_elf_hwcaps);
if (system_supports_32bit_el0())
setup_elf_hwcaps(compat_elf_hwcaps);
sve_setup();
/* Advertise that we have computed the system capabilities */
set_sys_caps_initialised();
/*
* Check for sane CTR_EL0.CWG value.
*/
cwg = cache_type_cwg();
cls = cache_line_size();
if (!cwg)
pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
cls);
if (L1_CACHE_BYTES < cls)
pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
L1_CACHE_BYTES, cls);
}
static bool __maybe_unused
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
{
return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
}
/*
* We emulate only the following system register space.
* Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
* See Table C5-6 System instruction encodings for System register accesses,
* ARMv8 ARM(ARM DDI 0487A.f) for more details.
*/
static inline bool __attribute_const__ is_emulated(u32 id)
{
return (sys_reg_Op0(id) == 0x3 &&
sys_reg_CRn(id) == 0x0 &&
sys_reg_Op1(id) == 0x0 &&
(sys_reg_CRm(id) == 0 ||
((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
}
/*
* With CRm == 0, reg should be one of :
* MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
*/
static inline int emulate_id_reg(u32 id, u64 *valp)
{
switch (id) {
case SYS_MIDR_EL1:
*valp = read_cpuid_id();
break;
case SYS_MPIDR_EL1:
*valp = SYS_MPIDR_SAFE_VAL;
break;
case SYS_REVIDR_EL1:
/* IMPLEMENTATION DEFINED values are emulated with 0 */
*valp = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int emulate_sys_reg(u32 id, u64 *valp)
{
struct arm64_ftr_reg *regp;
if (!is_emulated(id))
return -EINVAL;
if (sys_reg_CRm(id) == 0)
return emulate_id_reg(id, valp);
regp = get_arm64_ftr_reg(id);
if (regp)
*valp = arm64_ftr_reg_user_value(regp);
else
/*
* The untracked registers are either IMPLEMENTATION DEFINED
* (e.g, ID_AFR0_EL1) or reserved RAZ.
*/
*valp = 0;
return 0;
}
static int emulate_mrs(struct pt_regs *regs, u32 insn)
{
int rc;
u32 sys_reg, dst;
u64 val;
/*
* sys_reg values are defined as used in mrs/msr instruction.
* shift the imm value to get the encoding.
*/
sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
rc = emulate_sys_reg(sys_reg, &val);
if (!rc) {
dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
pt_regs_write_reg(regs, dst, val);
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
}
return rc;
}
static struct undef_hook mrs_hook = {
.instr_mask = 0xfff00000,
.instr_val = 0xd5300000,
.pstate_mask = COMPAT_PSR_MODE_MASK,
.pstate_val = PSR_MODE_EL0t,
.fn = emulate_mrs,
};
static int __init enable_mrs_emulation(void)
{
register_undef_hook(&mrs_hook);
return 0;
}
core_initcall(enable_mrs_emulation);
int cpu_clear_disr(void *__unused)
{
/* Firmware may have left a deferred SError in this register. */
write_sysreg_s(0, SYS_DISR_EL1);
return 0;
}