OpenCloudOS-Kernel/arch/powerpc/kernel/signal_64.c

978 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Derived from "arch/i386/kernel/signal.c"
* Copyright (C) 1991, 1992 Linus Torvalds
* 1997-11-28 Modified for POSIX.1b signals by Richard Henderson
*/
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/errno.h>
#include <linux/wait.h>
#include <linux/unistd.h>
#include <linux/stddef.h>
#include <linux/elf.h>
#include <linux/ptrace.h>
#include <linux/ratelimit.h>
#include <linux/syscalls.h>
#include <linux/pagemap.h>
#include <asm/sigcontext.h>
#include <asm/ucontext.h>
#include <linux/uaccess.h>
#include <asm/unistd.h>
#include <asm/cacheflush.h>
#include <asm/syscalls.h>
#include <asm/vdso.h>
#include <asm/switch_to.h>
#include <asm/tm.h>
#include <asm/asm-prototypes.h>
#include "signal.h"
#define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
#define FP_REGS_SIZE sizeof(elf_fpregset_t)
#define TRAMP_TRACEBACK 4
#define TRAMP_SIZE 7
/*
* When we have signals to deliver, we set up on the user stack,
* going down from the original stack pointer:
* 1) a rt_sigframe struct which contains the ucontext
* 2) a gap of __SIGNAL_FRAMESIZE bytes which acts as a dummy caller
* frame for the signal handler.
*/
struct rt_sigframe {
/* sys_rt_sigreturn requires the ucontext be the first field */
struct ucontext uc;
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
struct ucontext uc_transact;
#endif
unsigned long _unused[2];
unsigned int tramp[TRAMP_SIZE];
struct siginfo __user *pinfo;
void __user *puc;
struct siginfo info;
/* New 64 bit little-endian ABI allows redzone of 512 bytes below sp */
char abigap[USER_REDZONE_SIZE];
} __attribute__ ((aligned (16)));
unsigned long get_min_sigframe_size_64(void)
{
return sizeof(struct rt_sigframe) + __SIGNAL_FRAMESIZE;
}
/*
* This computes a quad word aligned pointer inside the vmx_reserve array
* element. For historical reasons sigcontext might not be quad word aligned,
* but the location we write the VMX regs to must be. See the comment in
* sigcontext for more detail.
*/
#ifdef CONFIG_ALTIVEC
static elf_vrreg_t __user *sigcontext_vmx_regs(struct sigcontext __user *sc)
{
return (elf_vrreg_t __user *) (((unsigned long)sc->vmx_reserve + 15) & ~0xful);
}
#endif
static void prepare_setup_sigcontext(struct task_struct *tsk)
{
#ifdef CONFIG_ALTIVEC
/* save altivec registers */
if (tsk->thread.used_vr)
flush_altivec_to_thread(tsk);
if (cpu_has_feature(CPU_FTR_ALTIVEC))
tsk->thread.vrsave = mfspr(SPRN_VRSAVE);
#endif /* CONFIG_ALTIVEC */
flush_fp_to_thread(tsk);
#ifdef CONFIG_VSX
if (tsk->thread.used_vsr)
flush_vsx_to_thread(tsk);
#endif /* CONFIG_VSX */
}
/*
* Set up the sigcontext for the signal frame.
*/
#define unsafe_setup_sigcontext(sc, tsk, signr, set, handler, ctx_has_vsx_region, label)\
do { \
if (__unsafe_setup_sigcontext(sc, tsk, signr, set, handler, ctx_has_vsx_region))\
goto label; \
} while (0)
static long notrace __unsafe_setup_sigcontext(struct sigcontext __user *sc,
struct task_struct *tsk, int signr, sigset_t *set,
unsigned long handler, int ctx_has_vsx_region)
{
/* When CONFIG_ALTIVEC is set, we _always_ setup v_regs even if the
* process never used altivec yet (MSR_VEC is zero in pt_regs of
* the context). This is very important because we must ensure we
* don't lose the VRSAVE content that may have been set prior to
* the process doing its first vector operation
* Userland shall check AT_HWCAP to know whether it can rely on the
* v_regs pointer or not
*/
#ifdef CONFIG_ALTIVEC
elf_vrreg_t __user *v_regs = sigcontext_vmx_regs(sc);
#endif
struct pt_regs *regs = tsk->thread.regs;
unsigned long msr = regs->msr;
/* Force usr to always see softe as 1 (interrupts enabled) */
unsigned long softe = 0x1;
BUG_ON(tsk != current);
#ifdef CONFIG_ALTIVEC
unsafe_put_user(v_regs, &sc->v_regs, efault_out);
/* save altivec registers */
if (tsk->thread.used_vr) {
/* Copy 33 vec registers (vr0..31 and vscr) to the stack */
unsafe_copy_to_user(v_regs, &tsk->thread.vr_state,
33 * sizeof(vector128), efault_out);
/* set MSR_VEC in the MSR value in the frame to indicate that sc->v_reg)
* contains valid data.
*/
msr |= MSR_VEC;
}
/* We always copy to/from vrsave, it's 0 if we don't have or don't
* use altivec.
*/
unsafe_put_user(tsk->thread.vrsave, (u32 __user *)&v_regs[33], efault_out);
#else /* CONFIG_ALTIVEC */
unsafe_put_user(0, &sc->v_regs, efault_out);
#endif /* CONFIG_ALTIVEC */
/* copy fpr regs and fpscr */
unsafe_copy_fpr_to_user(&sc->fp_regs, tsk, efault_out);
/*
* Clear the MSR VSX bit to indicate there is no valid state attached
* to this context, except in the specific case below where we set it.
*/
msr &= ~MSR_VSX;
#ifdef CONFIG_VSX
/*
* Copy VSX low doubleword to local buffer for formatting,
* then out to userspace. Update v_regs to point after the
* VMX data.
*/
if (tsk->thread.used_vsr && ctx_has_vsx_region) {
v_regs += ELF_NVRREG;
unsafe_copy_vsx_to_user(v_regs, tsk, efault_out);
/* set MSR_VSX in the MSR value in the frame to
* indicate that sc->vs_reg) contains valid data.
*/
msr |= MSR_VSX;
}
#endif /* CONFIG_VSX */
unsafe_put_user(&sc->gp_regs, &sc->regs, efault_out);
unsafe_copy_to_user(&sc->gp_regs, regs, GP_REGS_SIZE, efault_out);
unsafe_put_user(msr, &sc->gp_regs[PT_MSR], efault_out);
unsafe_put_user(softe, &sc->gp_regs[PT_SOFTE], efault_out);
unsafe_put_user(signr, &sc->signal, efault_out);
unsafe_put_user(handler, &sc->handler, efault_out);
if (set != NULL)
unsafe_put_user(set->sig[0], &sc->oldmask, efault_out);
return 0;
efault_out:
return -EFAULT;
}
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
/*
* As above, but Transactional Memory is in use, so deliver sigcontexts
* containing checkpointed and transactional register states.
*
* To do this, we treclaim (done before entering here) to gather both sets of
* registers and set up the 'normal' sigcontext registers with rolled-back
* register values such that a simple signal handler sees a correct
* checkpointed register state. If interested, a TM-aware sighandler can
* examine the transactional registers in the 2nd sigcontext to determine the
* real origin of the signal.
*/
static long setup_tm_sigcontexts(struct sigcontext __user *sc,
struct sigcontext __user *tm_sc,
struct task_struct *tsk,
int signr, sigset_t *set, unsigned long handler,
unsigned long msr)
{
/* When CONFIG_ALTIVEC is set, we _always_ setup v_regs even if the
* process never used altivec yet (MSR_VEC is zero in pt_regs of
* the context). This is very important because we must ensure we
* don't lose the VRSAVE content that may have been set prior to
* the process doing its first vector operation
* Userland shall check AT_HWCAP to know wether it can rely on the
* v_regs pointer or not.
*/
#ifdef CONFIG_ALTIVEC
elf_vrreg_t __user *v_regs = sigcontext_vmx_regs(sc);
elf_vrreg_t __user *tm_v_regs = sigcontext_vmx_regs(tm_sc);
#endif
struct pt_regs *regs = tsk->thread.regs;
long err = 0;
BUG_ON(tsk != current);
BUG_ON(!MSR_TM_ACTIVE(msr));
WARN_ON(tm_suspend_disabled);
/* Restore checkpointed FP, VEC, and VSX bits from ckpt_regs as
* it contains the correct FP, VEC, VSX state after we treclaimed
* the transaction and giveup_all() was called on reclaiming.
*/
msr |= tsk->thread.ckpt_regs.msr & (MSR_FP | MSR_VEC | MSR_VSX);
#ifdef CONFIG_ALTIVEC
err |= __put_user(v_regs, &sc->v_regs);
err |= __put_user(tm_v_regs, &tm_sc->v_regs);
/* save altivec registers */
if (tsk->thread.used_vr) {
/* Copy 33 vec registers (vr0..31 and vscr) to the stack */
err |= __copy_to_user(v_regs, &tsk->thread.ckvr_state,
33 * sizeof(vector128));
/* If VEC was enabled there are transactional VRs valid too,
* else they're a copy of the checkpointed VRs.
*/
if (msr & MSR_VEC)
err |= __copy_to_user(tm_v_regs,
&tsk->thread.vr_state,
33 * sizeof(vector128));
else
err |= __copy_to_user(tm_v_regs,
&tsk->thread.ckvr_state,
33 * sizeof(vector128));
/* set MSR_VEC in the MSR value in the frame to indicate
* that sc->v_reg contains valid data.
*/
msr |= MSR_VEC;
}
/* We always copy to/from vrsave, it's 0 if we don't have or don't
* use altivec.
*/
if (cpu_has_feature(CPU_FTR_ALTIVEC))
tsk->thread.ckvrsave = mfspr(SPRN_VRSAVE);
err |= __put_user(tsk->thread.ckvrsave, (u32 __user *)&v_regs[33]);
if (msr & MSR_VEC)
err |= __put_user(tsk->thread.vrsave,
(u32 __user *)&tm_v_regs[33]);
else
err |= __put_user(tsk->thread.ckvrsave,
(u32 __user *)&tm_v_regs[33]);
#else /* CONFIG_ALTIVEC */
err |= __put_user(0, &sc->v_regs);
err |= __put_user(0, &tm_sc->v_regs);
#endif /* CONFIG_ALTIVEC */
/* copy fpr regs and fpscr */
err |= copy_ckfpr_to_user(&sc->fp_regs, tsk);
if (msr & MSR_FP)
err |= copy_fpr_to_user(&tm_sc->fp_regs, tsk);
else
err |= copy_ckfpr_to_user(&tm_sc->fp_regs, tsk);
#ifdef CONFIG_VSX
/*
* Copy VSX low doubleword to local buffer for formatting,
* then out to userspace. Update v_regs to point after the
* VMX data.
*/
if (tsk->thread.used_vsr) {
v_regs += ELF_NVRREG;
tm_v_regs += ELF_NVRREG;
err |= copy_ckvsx_to_user(v_regs, tsk);
if (msr & MSR_VSX)
err |= copy_vsx_to_user(tm_v_regs, tsk);
else
err |= copy_ckvsx_to_user(tm_v_regs, tsk);
/* set MSR_VSX in the MSR value in the frame to
* indicate that sc->vs_reg) contains valid data.
*/
msr |= MSR_VSX;
}
#endif /* CONFIG_VSX */
err |= __put_user(&sc->gp_regs, &sc->regs);
err |= __put_user(&tm_sc->gp_regs, &tm_sc->regs);
err |= __copy_to_user(&tm_sc->gp_regs, regs, GP_REGS_SIZE);
err |= __copy_to_user(&sc->gp_regs,
&tsk->thread.ckpt_regs, GP_REGS_SIZE);
err |= __put_user(msr, &tm_sc->gp_regs[PT_MSR]);
err |= __put_user(msr, &sc->gp_regs[PT_MSR]);
err |= __put_user(signr, &sc->signal);
err |= __put_user(handler, &sc->handler);
if (set != NULL)
err |= __put_user(set->sig[0], &sc->oldmask);
return err;
}
#endif
/*
* Restore the sigcontext from the signal frame.
*/
#define unsafe_restore_sigcontext(tsk, set, sig, sc, label) do { \
if (__unsafe_restore_sigcontext(tsk, set, sig, sc)) \
goto label; \
} while (0)
static long notrace __unsafe_restore_sigcontext(struct task_struct *tsk, sigset_t *set,
int sig, struct sigcontext __user *sc)
{
#ifdef CONFIG_ALTIVEC
elf_vrreg_t __user *v_regs;
#endif
unsigned long save_r13 = 0;
unsigned long msr;
struct pt_regs *regs = tsk->thread.regs;
#ifdef CONFIG_VSX
int i;
#endif
BUG_ON(tsk != current);
/* If this is not a signal return, we preserve the TLS in r13 */
if (!sig)
save_r13 = regs->gpr[13];
/* copy the GPRs */
unsafe_copy_from_user(regs->gpr, sc->gp_regs, sizeof(regs->gpr), efault_out);
unsafe_get_user(regs->nip, &sc->gp_regs[PT_NIP], efault_out);
/* get MSR separately, transfer the LE bit if doing signal return */
unsafe_get_user(msr, &sc->gp_regs[PT_MSR], efault_out);
if (sig)
regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (msr & MSR_LE));
unsafe_get_user(regs->orig_gpr3, &sc->gp_regs[PT_ORIG_R3], efault_out);
unsafe_get_user(regs->ctr, &sc->gp_regs[PT_CTR], efault_out);
unsafe_get_user(regs->link, &sc->gp_regs[PT_LNK], efault_out);
unsafe_get_user(regs->xer, &sc->gp_regs[PT_XER], efault_out);
unsafe_get_user(regs->ccr, &sc->gp_regs[PT_CCR], efault_out);
/* Don't allow userspace to set SOFTE */
set_trap_norestart(regs);
unsafe_get_user(regs->dar, &sc->gp_regs[PT_DAR], efault_out);
unsafe_get_user(regs->dsisr, &sc->gp_regs[PT_DSISR], efault_out);
unsafe_get_user(regs->result, &sc->gp_regs[PT_RESULT], efault_out);
if (!sig)
regs->gpr[13] = save_r13;
if (set != NULL)
unsafe_get_user(set->sig[0], &sc->oldmask, efault_out);
/*
* Force reload of FP/VEC/VSX so userspace sees any changes.
* Clear these bits from the user process' MSR before copying into the
* thread struct. If we are rescheduled or preempted and another task
* uses FP/VEC/VSX, and this process has the MSR bits set, then the
* context switch code will save the current CPU state into the
* thread_struct - possibly overwriting the data we are updating here.
*/
regs_set_return_msr(regs, regs->msr & ~(MSR_FP | MSR_FE0 | MSR_FE1 | MSR_VEC | MSR_VSX));
#ifdef CONFIG_ALTIVEC
unsafe_get_user(v_regs, &sc->v_regs, efault_out);
if (v_regs && !access_ok(v_regs, 34 * sizeof(vector128)))
return -EFAULT;
/* Copy 33 vec registers (vr0..31 and vscr) from the stack */
if (v_regs != NULL && (msr & MSR_VEC) != 0) {
unsafe_copy_from_user(&tsk->thread.vr_state, v_regs,
33 * sizeof(vector128), efault_out);
tsk->thread.used_vr = true;
} else if (tsk->thread.used_vr) {
memset(&tsk->thread.vr_state, 0, 33 * sizeof(vector128));
}
/* Always get VRSAVE back */
if (v_regs != NULL)
unsafe_get_user(tsk->thread.vrsave, (u32 __user *)&v_regs[33], efault_out);
else
tsk->thread.vrsave = 0;
if (cpu_has_feature(CPU_FTR_ALTIVEC))
mtspr(SPRN_VRSAVE, tsk->thread.vrsave);
#endif /* CONFIG_ALTIVEC */
/* restore floating point */
unsafe_copy_fpr_from_user(tsk, &sc->fp_regs, efault_out);
#ifdef CONFIG_VSX
/*
* Get additional VSX data. Update v_regs to point after the
* VMX data. Copy VSX low doubleword from userspace to local
* buffer for formatting, then into the taskstruct.
*/
v_regs += ELF_NVRREG;
if ((msr & MSR_VSX) != 0) {
unsafe_copy_vsx_from_user(tsk, v_regs, efault_out);
tsk->thread.used_vsr = true;
} else {
for (i = 0; i < 32 ; i++)
tsk->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
}
#endif
return 0;
efault_out:
return -EFAULT;
}
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
/*
* Restore the two sigcontexts from the frame of a transactional processes.
*/
static long restore_tm_sigcontexts(struct task_struct *tsk,
struct sigcontext __user *sc,
struct sigcontext __user *tm_sc)
{
#ifdef CONFIG_ALTIVEC
elf_vrreg_t __user *v_regs, *tm_v_regs;
#endif
unsigned long err = 0;
unsigned long msr;
struct pt_regs *regs = tsk->thread.regs;
#ifdef CONFIG_VSX
int i;
#endif
BUG_ON(tsk != current);
if (tm_suspend_disabled)
return -EINVAL;
/* copy the GPRs */
err |= __copy_from_user(regs->gpr, tm_sc->gp_regs, sizeof(regs->gpr));
err |= __copy_from_user(&tsk->thread.ckpt_regs, sc->gp_regs,
sizeof(regs->gpr));
/*
* TFHAR is restored from the checkpointed 'wound-back' ucontext's NIP.
* TEXASR was set by the signal delivery reclaim, as was TFIAR.
* Users doing anything abhorrent like thread-switching w/ signals for
* TM-Suspended code will have to back TEXASR/TFIAR up themselves.
* For the case of getting a signal and simply returning from it,
* we don't need to re-copy them here.
*/
err |= __get_user(regs->nip, &tm_sc->gp_regs[PT_NIP]);
err |= __get_user(tsk->thread.tm_tfhar, &sc->gp_regs[PT_NIP]);
/* get MSR separately, transfer the LE bit if doing signal return */
err |= __get_user(msr, &sc->gp_regs[PT_MSR]);
/* Don't allow reserved mode. */
if (MSR_TM_RESV(msr))
return -EINVAL;
/* pull in MSR LE from user context */
regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (msr & MSR_LE));
/* The following non-GPR non-FPR non-VR state is also checkpointed: */
err |= __get_user(regs->ctr, &tm_sc->gp_regs[PT_CTR]);
err |= __get_user(regs->link, &tm_sc->gp_regs[PT_LNK]);
err |= __get_user(regs->xer, &tm_sc->gp_regs[PT_XER]);
err |= __get_user(regs->ccr, &tm_sc->gp_regs[PT_CCR]);
err |= __get_user(tsk->thread.ckpt_regs.ctr,
&sc->gp_regs[PT_CTR]);
err |= __get_user(tsk->thread.ckpt_regs.link,
&sc->gp_regs[PT_LNK]);
err |= __get_user(tsk->thread.ckpt_regs.xer,
&sc->gp_regs[PT_XER]);
err |= __get_user(tsk->thread.ckpt_regs.ccr,
&sc->gp_regs[PT_CCR]);
/* Don't allow userspace to set SOFTE */
set_trap_norestart(regs);
/* These regs are not checkpointed; they can go in 'regs'. */
err |= __get_user(regs->dar, &sc->gp_regs[PT_DAR]);
err |= __get_user(regs->dsisr, &sc->gp_regs[PT_DSISR]);
err |= __get_user(regs->result, &sc->gp_regs[PT_RESULT]);
/*
* Force reload of FP/VEC.
* This has to be done before copying stuff into tsk->thread.fpr/vr
* for the reasons explained in the previous comment.
*/
regs_set_return_msr(regs, regs->msr & ~(MSR_FP | MSR_FE0 | MSR_FE1 | MSR_VEC | MSR_VSX));
#ifdef CONFIG_ALTIVEC
err |= __get_user(v_regs, &sc->v_regs);
err |= __get_user(tm_v_regs, &tm_sc->v_regs);
if (err)
return err;
if (v_regs && !access_ok(v_regs, 34 * sizeof(vector128)))
return -EFAULT;
if (tm_v_regs && !access_ok(tm_v_regs, 34 * sizeof(vector128)))
return -EFAULT;
/* Copy 33 vec registers (vr0..31 and vscr) from the stack */
if (v_regs != NULL && tm_v_regs != NULL && (msr & MSR_VEC) != 0) {
err |= __copy_from_user(&tsk->thread.ckvr_state, v_regs,
33 * sizeof(vector128));
err |= __copy_from_user(&tsk->thread.vr_state, tm_v_regs,
33 * sizeof(vector128));
current->thread.used_vr = true;
}
else if (tsk->thread.used_vr) {
memset(&tsk->thread.vr_state, 0, 33 * sizeof(vector128));
memset(&tsk->thread.ckvr_state, 0, 33 * sizeof(vector128));
}
/* Always get VRSAVE back */
if (v_regs != NULL && tm_v_regs != NULL) {
err |= __get_user(tsk->thread.ckvrsave,
(u32 __user *)&v_regs[33]);
err |= __get_user(tsk->thread.vrsave,
(u32 __user *)&tm_v_regs[33]);
}
else {
tsk->thread.vrsave = 0;
tsk->thread.ckvrsave = 0;
}
if (cpu_has_feature(CPU_FTR_ALTIVEC))
mtspr(SPRN_VRSAVE, tsk->thread.vrsave);
#endif /* CONFIG_ALTIVEC */
/* restore floating point */
err |= copy_fpr_from_user(tsk, &tm_sc->fp_regs);
err |= copy_ckfpr_from_user(tsk, &sc->fp_regs);
#ifdef CONFIG_VSX
/*
* Get additional VSX data. Update v_regs to point after the
* VMX data. Copy VSX low doubleword from userspace to local
* buffer for formatting, then into the taskstruct.
*/
if (v_regs && ((msr & MSR_VSX) != 0)) {
v_regs += ELF_NVRREG;
tm_v_regs += ELF_NVRREG;
err |= copy_vsx_from_user(tsk, tm_v_regs);
err |= copy_ckvsx_from_user(tsk, v_regs);
tsk->thread.used_vsr = true;
} else {
for (i = 0; i < 32 ; i++) {
tsk->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
tsk->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
}
}
#endif
tm_enable();
/* Make sure the transaction is marked as failed */
tsk->thread.tm_texasr |= TEXASR_FS;
/*
* Disabling preemption, since it is unsafe to be preempted
* with MSR[TS] set without recheckpointing.
*/
preempt_disable();
/* pull in MSR TS bits from user context */
regs_set_return_msr(regs, regs->msr | (msr & MSR_TS_MASK));
/*
* Ensure that TM is enabled in regs->msr before we leave the signal
* handler. It could be the case that (a) user disabled the TM bit
* through the manipulation of the MSR bits in uc_mcontext or (b) the
* TM bit was disabled because a sufficient number of context switches
* happened whilst in the signal handler and load_tm overflowed,
* disabling the TM bit. In either case we can end up with an illegal
* TM state leading to a TM Bad Thing when we return to userspace.
*
* CAUTION:
* After regs->MSR[TS] being updated, make sure that get_user(),
* put_user() or similar functions are *not* called. These
* functions can generate page faults which will cause the process
* to be de-scheduled with MSR[TS] set but without calling
* tm_recheckpoint(). This can cause a bug.
*/
regs_set_return_msr(regs, regs->msr | MSR_TM);
/* This loads the checkpointed FP/VEC state, if used */
tm_recheckpoint(&tsk->thread);
msr_check_and_set(msr & (MSR_FP | MSR_VEC));
if (msr & MSR_FP) {
load_fp_state(&tsk->thread.fp_state);
regs_set_return_msr(regs, regs->msr | (MSR_FP | tsk->thread.fpexc_mode));
}
if (msr & MSR_VEC) {
load_vr_state(&tsk->thread.vr_state);
regs_set_return_msr(regs, regs->msr | MSR_VEC);
}
preempt_enable();
return err;
}
#else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
static long restore_tm_sigcontexts(struct task_struct *tsk, struct sigcontext __user *sc,
struct sigcontext __user *tm_sc)
{
return -EINVAL;
}
#endif
/*
* Setup the trampoline code on the stack
*/
static long setup_trampoline(unsigned int syscall, unsigned int __user *tramp)
{
int i;
long err = 0;
/* Call the handler and pop the dummy stackframe*/
err |= __put_user(PPC_RAW_BCTRL(), &tramp[0]);
err |= __put_user(PPC_RAW_ADDI(_R1, _R1, __SIGNAL_FRAMESIZE), &tramp[1]);
err |= __put_user(PPC_RAW_LI(_R0, syscall), &tramp[2]);
err |= __put_user(PPC_RAW_SC(), &tramp[3]);
/* Minimal traceback info */
for (i=TRAMP_TRACEBACK; i < TRAMP_SIZE ;i++)
err |= __put_user(0, &tramp[i]);
if (!err)
flush_icache_range((unsigned long) &tramp[0],
(unsigned long) &tramp[TRAMP_SIZE]);
return err;
}
/*
* Userspace code may pass a ucontext which doesn't include VSX added
* at the end. We need to check for this case.
*/
#define UCONTEXTSIZEWITHOUTVSX \
(sizeof(struct ucontext) - 32*sizeof(long))
/*
* Handle {get,set,swap}_context operations
*/
SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
struct ucontext __user *, new_ctx, long, ctx_size)
{
sigset_t set;
unsigned long new_msr = 0;
int ctx_has_vsx_region = 0;
if (new_ctx &&
get_user(new_msr, &new_ctx->uc_mcontext.gp_regs[PT_MSR]))
return -EFAULT;
/*
* Check that the context is not smaller than the original
* size (with VMX but without VSX)
*/
if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
return -EINVAL;
/*
* If the new context state sets the MSR VSX bits but
* it doesn't provide VSX state.
*/
if ((ctx_size < sizeof(struct ucontext)) &&
(new_msr & MSR_VSX))
return -EINVAL;
/* Does the context have enough room to store VSX data? */
if (ctx_size >= sizeof(struct ucontext))
ctx_has_vsx_region = 1;
if (old_ctx != NULL) {
prepare_setup_sigcontext(current);
if (!user_write_access_begin(old_ctx, ctx_size))
return -EFAULT;
unsafe_setup_sigcontext(&old_ctx->uc_mcontext, current, 0, NULL,
0, ctx_has_vsx_region, efault_out);
unsafe_copy_to_user(&old_ctx->uc_sigmask, &current->blocked,
sizeof(sigset_t), efault_out);
user_write_access_end();
}
if (new_ctx == NULL)
return 0;
if (!access_ok(new_ctx, ctx_size) ||
fault_in_readable((char __user *)new_ctx, ctx_size))
return -EFAULT;
/*
* If we get a fault copying the context into the kernel's
* image of the user's registers, we can't just return -EFAULT
* because the user's registers will be corrupted. For instance
* the NIP value may have been updated but not some of the
* other registers. Given that we have done the access_ok
* and successfully read the first and last bytes of the region
* above, this should only happen in an out-of-memory situation
* or if another thread unmaps the region containing the context.
* We kill the task with a SIGSEGV in this situation.
*/
if (__get_user_sigset(&set, &new_ctx->uc_sigmask)) {
force_exit_sig(SIGSEGV);
return -EFAULT;
}
set_current_blocked(&set);
if (!user_read_access_begin(new_ctx, ctx_size))
return -EFAULT;
if (__unsafe_restore_sigcontext(current, NULL, 0, &new_ctx->uc_mcontext)) {
user_read_access_end();
force_exit_sig(SIGSEGV);
return -EFAULT;
}
user_read_access_end();
/* This returns like rt_sigreturn */
set_thread_flag(TIF_RESTOREALL);
return 0;
efault_out:
user_write_access_end();
return -EFAULT;
}
/*
* Do a signal return; undo the signal stack.
*/
SYSCALL_DEFINE0(rt_sigreturn)
{
struct pt_regs *regs = current_pt_regs();
struct ucontext __user *uc = (struct ucontext __user *)regs->gpr[1];
sigset_t set;
unsigned long msr;
/* Always make any pending restarted system calls return -EINTR */
current->restart_block.fn = do_no_restart_syscall;
if (!access_ok(uc, sizeof(*uc)))
goto badframe;
if (__get_user_sigset(&set, &uc->uc_sigmask))
goto badframe;
set_current_blocked(&set);
if (IS_ENABLED(CONFIG_PPC_TRANSACTIONAL_MEM)) {
/*
* If there is a transactional state then throw it away.
* The purpose of a sigreturn is to destroy all traces of the
* signal frame, this includes any transactional state created
* within in. We only check for suspended as we can never be
* active in the kernel, we are active, there is nothing better to
* do than go ahead and Bad Thing later.
* The cause is not important as there will never be a
* recheckpoint so it's not user visible.
*/
if (MSR_TM_SUSPENDED(mfmsr()))
tm_reclaim_current(0);
/*
* Disable MSR[TS] bit also, so, if there is an exception in the
* code below (as a page fault in copy_ckvsx_to_user()), it does
* not recheckpoint this task if there was a context switch inside
* the exception.
*
* A major page fault can indirectly call schedule(). A reschedule
* process in the middle of an exception can have a side effect
* (Changing the CPU MSR[TS] state), since schedule() is called
* with the CPU MSR[TS] disable and returns with MSR[TS]=Suspended
* (switch_to() calls tm_recheckpoint() for the 'new' process). In
* this case, the process continues to be the same in the CPU, but
* the CPU state just changed.
*
* This can cause a TM Bad Thing, since the MSR in the stack will
* have the MSR[TS]=0, and this is what will be used to RFID.
*
* Clearing MSR[TS] state here will avoid a recheckpoint if there
* is any process reschedule in kernel space. The MSR[TS] state
* does not need to be saved also, since it will be replaced with
* the MSR[TS] that came from user context later, at
* restore_tm_sigcontexts.
*/
regs_set_return_msr(regs, regs->msr & ~MSR_TS_MASK);
if (__get_user(msr, &uc->uc_mcontext.gp_regs[PT_MSR]))
goto badframe;
}
if (IS_ENABLED(CONFIG_PPC_TRANSACTIONAL_MEM) && MSR_TM_ACTIVE(msr)) {
/* We recheckpoint on return. */
struct ucontext __user *uc_transact;
/* Trying to start TM on non TM system */
if (!cpu_has_feature(CPU_FTR_TM))
goto badframe;
if (__get_user(uc_transact, &uc->uc_link))
goto badframe;
if (restore_tm_sigcontexts(current, &uc->uc_mcontext,
&uc_transact->uc_mcontext))
goto badframe;
} else {
/*
* Fall through, for non-TM restore
*
* Unset MSR[TS] on the thread regs since MSR from user
* context does not have MSR active, and recheckpoint was
* not called since restore_tm_sigcontexts() was not called
* also.
*
* If not unsetting it, the code can RFID to userspace with
* MSR[TS] set, but without CPU in the proper state,
* causing a TM bad thing.
*/
regs_set_return_msr(current->thread.regs,
current->thread.regs->msr & ~MSR_TS_MASK);
if (!user_read_access_begin(&uc->uc_mcontext, sizeof(uc->uc_mcontext)))
goto badframe;
unsafe_restore_sigcontext(current, NULL, 1, &uc->uc_mcontext,
badframe_block);
user_read_access_end();
}
if (restore_altstack(&uc->uc_stack))
goto badframe;
set_thread_flag(TIF_RESTOREALL);
return 0;
badframe_block:
user_read_access_end();
badframe:
signal_fault(current, regs, "rt_sigreturn", uc);
force_sig(SIGSEGV);
return 0;
}
int handle_rt_signal64(struct ksignal *ksig, sigset_t *set,
struct task_struct *tsk)
{
struct rt_sigframe __user *frame;
unsigned long newsp = 0;
long err = 0;
struct pt_regs *regs = tsk->thread.regs;
/* Save the thread's msr before get_tm_stackpointer() changes it */
unsigned long msr = regs->msr;
frame = get_sigframe(ksig, tsk, sizeof(*frame), 0);
/*
* This only applies when calling unsafe_setup_sigcontext() and must be
* called before opening the uaccess window.
*/
if (!MSR_TM_ACTIVE(msr))
prepare_setup_sigcontext(tsk);
if (!user_write_access_begin(frame, sizeof(*frame)))
goto badframe;
unsafe_put_user(&frame->info, &frame->pinfo, badframe_block);
unsafe_put_user(&frame->uc, &frame->puc, badframe_block);
/* Create the ucontext. */
unsafe_put_user(0, &frame->uc.uc_flags, badframe_block);
unsafe_save_altstack(&frame->uc.uc_stack, regs->gpr[1], badframe_block);
if (MSR_TM_ACTIVE(msr)) {
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
/* The ucontext_t passed to userland points to the second
* ucontext_t (for transactional state) with its uc_link ptr.
*/
unsafe_put_user(&frame->uc_transact, &frame->uc.uc_link, badframe_block);
user_write_access_end();
err |= setup_tm_sigcontexts(&frame->uc.uc_mcontext,
&frame->uc_transact.uc_mcontext,
tsk, ksig->sig, NULL,
(unsigned long)ksig->ka.sa.sa_handler,
msr);
if (!user_write_access_begin(&frame->uc.uc_sigmask,
sizeof(frame->uc.uc_sigmask)))
goto badframe;
#endif
} else {
unsafe_put_user(0, &frame->uc.uc_link, badframe_block);
unsafe_setup_sigcontext(&frame->uc.uc_mcontext, tsk, ksig->sig,
NULL, (unsigned long)ksig->ka.sa.sa_handler,
1, badframe_block);
}
unsafe_copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set), badframe_block);
user_write_access_end();
/* Save the siginfo outside of the unsafe block. */
if (copy_siginfo_to_user(&frame->info, &ksig->info))
goto badframe;
/* Make sure signal handler doesn't get spurious FP exceptions */
tsk->thread.fp_state.fpscr = 0;
/* Set up to return from userspace. */
if (tsk->mm->context.vdso) {
regs_set_return_ip(regs, VDSO64_SYMBOL(tsk->mm->context.vdso, sigtramp_rt64));
} else {
err |= setup_trampoline(__NR_rt_sigreturn, &frame->tramp[0]);
if (err)
goto badframe;
regs_set_return_ip(regs, (unsigned long) &frame->tramp[0]);
}
/* Allocate a dummy caller frame for the signal handler. */
newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
err |= put_user(regs->gpr[1], (unsigned long __user *)newsp);
/* Set up "regs" so we "return" to the signal handler. */
if (is_elf2_task()) {
regs->ctr = (unsigned long) ksig->ka.sa.sa_handler;
regs->gpr[12] = regs->ctr;
} else {
/* Handler is *really* a pointer to the function descriptor for
* the signal routine. The first entry in the function
* descriptor is the entry address of signal and the second
* entry is the TOC value we need to use.
*/
struct func_desc __user *ptr =
(struct func_desc __user *)ksig->ka.sa.sa_handler;
err |= get_user(regs->ctr, &ptr->addr);
err |= get_user(regs->gpr[2], &ptr->toc);
}
/* enter the signal handler in native-endian mode */
regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (MSR_KERNEL & MSR_LE));
regs->gpr[1] = newsp;
regs->gpr[3] = ksig->sig;
regs->result = 0;
if (ksig->ka.sa.sa_flags & SA_SIGINFO) {
regs->gpr[4] = (unsigned long)&frame->info;
regs->gpr[5] = (unsigned long)&frame->uc;
regs->gpr[6] = (unsigned long) frame;
} else {
regs->gpr[4] = (unsigned long)&frame->uc.uc_mcontext;
}
if (err)
goto badframe;
return 0;
badframe_block:
user_write_access_end();
badframe:
signal_fault(current, regs, "handle_rt_signal64", frame);
return 1;
}