OpenCloudOS-Kernel/arch/arm/mach-tegra/tegra20_clocks.c

1625 lines
40 KiB
C

/*
* arch/arm/mach-tegra/tegra20_clocks.c
*
* Copyright (C) 2010 Google, Inc.
* Copyright (c) 2010-2012 NVIDIA CORPORATION. All rights reserved.
*
* Author:
* Colin Cross <ccross@google.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clkdev.h>
#include <linux/clk.h>
#include <mach/iomap.h>
#include "clock.h"
#include "fuse.h"
#include "tegra2_emc.h"
#include "tegra_cpu_car.h"
#define RST_DEVICES 0x004
#define RST_DEVICES_SET 0x300
#define RST_DEVICES_CLR 0x304
#define RST_DEVICES_NUM 3
#define CLK_OUT_ENB 0x010
#define CLK_OUT_ENB_SET 0x320
#define CLK_OUT_ENB_CLR 0x324
#define CLK_OUT_ENB_NUM 3
#define CLK_MASK_ARM 0x44
#define MISC_CLK_ENB 0x48
#define OSC_CTRL 0x50
#define OSC_CTRL_OSC_FREQ_MASK (3<<30)
#define OSC_CTRL_OSC_FREQ_13MHZ (0<<30)
#define OSC_CTRL_OSC_FREQ_19_2MHZ (1<<30)
#define OSC_CTRL_OSC_FREQ_12MHZ (2<<30)
#define OSC_CTRL_OSC_FREQ_26MHZ (3<<30)
#define OSC_CTRL_MASK (0x3f2 | OSC_CTRL_OSC_FREQ_MASK)
#define OSC_FREQ_DET 0x58
#define OSC_FREQ_DET_TRIG (1<<31)
#define OSC_FREQ_DET_STATUS 0x5C
#define OSC_FREQ_DET_BUSY (1<<31)
#define OSC_FREQ_DET_CNT_MASK 0xFFFF
#define PERIPH_CLK_SOURCE_I2S1 0x100
#define PERIPH_CLK_SOURCE_EMC 0x19c
#define PERIPH_CLK_SOURCE_OSC 0x1fc
#define PERIPH_CLK_SOURCE_NUM \
((PERIPH_CLK_SOURCE_OSC - PERIPH_CLK_SOURCE_I2S1) / 4)
#define PERIPH_CLK_SOURCE_MASK (3<<30)
#define PERIPH_CLK_SOURCE_SHIFT 30
#define PERIPH_CLK_SOURCE_PWM_MASK (7<<28)
#define PERIPH_CLK_SOURCE_PWM_SHIFT 28
#define PERIPH_CLK_SOURCE_ENABLE (1<<28)
#define PERIPH_CLK_SOURCE_DIVU71_MASK 0xFF
#define PERIPH_CLK_SOURCE_DIVU16_MASK 0xFFFF
#define PERIPH_CLK_SOURCE_DIV_SHIFT 0
#define SDMMC_CLK_INT_FB_SEL (1 << 23)
#define SDMMC_CLK_INT_FB_DLY_SHIFT 16
#define SDMMC_CLK_INT_FB_DLY_MASK (0xF << SDMMC_CLK_INT_FB_DLY_SHIFT)
#define PLL_BASE 0x0
#define PLL_BASE_BYPASS (1<<31)
#define PLL_BASE_ENABLE (1<<30)
#define PLL_BASE_REF_ENABLE (1<<29)
#define PLL_BASE_OVERRIDE (1<<28)
#define PLL_BASE_DIVP_MASK (0x7<<20)
#define PLL_BASE_DIVP_SHIFT 20
#define PLL_BASE_DIVN_MASK (0x3FF<<8)
#define PLL_BASE_DIVN_SHIFT 8
#define PLL_BASE_DIVM_MASK (0x1F)
#define PLL_BASE_DIVM_SHIFT 0
#define PLL_OUT_RATIO_MASK (0xFF<<8)
#define PLL_OUT_RATIO_SHIFT 8
#define PLL_OUT_OVERRIDE (1<<2)
#define PLL_OUT_CLKEN (1<<1)
#define PLL_OUT_RESET_DISABLE (1<<0)
#define PLL_MISC(c) (((c)->flags & PLL_ALT_MISC_REG) ? 0x4 : 0xc)
#define PLL_MISC_DCCON_SHIFT 20
#define PLL_MISC_CPCON_SHIFT 8
#define PLL_MISC_CPCON_MASK (0xF<<PLL_MISC_CPCON_SHIFT)
#define PLL_MISC_LFCON_SHIFT 4
#define PLL_MISC_LFCON_MASK (0xF<<PLL_MISC_LFCON_SHIFT)
#define PLL_MISC_VCOCON_SHIFT 0
#define PLL_MISC_VCOCON_MASK (0xF<<PLL_MISC_VCOCON_SHIFT)
#define PLLU_BASE_POST_DIV (1<<20)
#define PLLD_MISC_CLKENABLE (1<<30)
#define PLLD_MISC_DIV_RST (1<<23)
#define PLLD_MISC_DCCON_SHIFT 12
#define PLLE_MISC_READY (1 << 15)
#define PERIPH_CLK_TO_ENB_REG(c) ((c->u.periph.clk_num / 32) * 4)
#define PERIPH_CLK_TO_ENB_SET_REG(c) ((c->u.periph.clk_num / 32) * 8)
#define PERIPH_CLK_TO_ENB_BIT(c) (1 << (c->u.periph.clk_num % 32))
#define SUPER_CLK_MUX 0x00
#define SUPER_STATE_SHIFT 28
#define SUPER_STATE_MASK (0xF << SUPER_STATE_SHIFT)
#define SUPER_STATE_STANDBY (0x0 << SUPER_STATE_SHIFT)
#define SUPER_STATE_IDLE (0x1 << SUPER_STATE_SHIFT)
#define SUPER_STATE_RUN (0x2 << SUPER_STATE_SHIFT)
#define SUPER_STATE_IRQ (0x3 << SUPER_STATE_SHIFT)
#define SUPER_STATE_FIQ (0x4 << SUPER_STATE_SHIFT)
#define SUPER_SOURCE_MASK 0xF
#define SUPER_FIQ_SOURCE_SHIFT 12
#define SUPER_IRQ_SOURCE_SHIFT 8
#define SUPER_RUN_SOURCE_SHIFT 4
#define SUPER_IDLE_SOURCE_SHIFT 0
#define SUPER_CLK_DIVIDER 0x04
#define BUS_CLK_DISABLE (1<<3)
#define BUS_CLK_DIV_MASK 0x3
#define PMC_CTRL 0x0
#define PMC_CTRL_BLINK_ENB (1 << 7)
#define PMC_DPD_PADS_ORIDE 0x1c
#define PMC_DPD_PADS_ORIDE_BLINK_ENB (1 << 20)
#define PMC_BLINK_TIMER_DATA_ON_SHIFT 0
#define PMC_BLINK_TIMER_DATA_ON_MASK 0x7fff
#define PMC_BLINK_TIMER_ENB (1 << 15)
#define PMC_BLINK_TIMER_DATA_OFF_SHIFT 16
#define PMC_BLINK_TIMER_DATA_OFF_MASK 0xffff
/* Tegra CPU clock and reset control regs */
#define TEGRA_CLK_RST_CONTROLLER_CLK_CPU_CMPLX 0x4c
#define TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_SET 0x340
#define TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_CLR 0x344
#define CPU_CLOCK(cpu) (0x1 << (8 + cpu))
#define CPU_RESET(cpu) (0x1111ul << (cpu))
static void __iomem *reg_clk_base = IO_ADDRESS(TEGRA_CLK_RESET_BASE);
static void __iomem *reg_pmc_base = IO_ADDRESS(TEGRA_PMC_BASE);
/*
* Some clocks share a register with other clocks. Any clock op that
* non-atomically modifies a register used by another clock must lock
* clock_register_lock first.
*/
static DEFINE_SPINLOCK(clock_register_lock);
/*
* Some peripheral clocks share an enable bit, so refcount the enable bits
* in registers CLK_ENABLE_L, CLK_ENABLE_H, and CLK_ENABLE_U
*/
static int tegra_periph_clk_enable_refcount[3 * 32];
#define clk_writel(value, reg) \
__raw_writel(value, reg_clk_base + (reg))
#define clk_readl(reg) \
__raw_readl(reg_clk_base + (reg))
#define pmc_writel(value, reg) \
__raw_writel(value, reg_pmc_base + (reg))
#define pmc_readl(reg) \
__raw_readl(reg_pmc_base + (reg))
static unsigned long clk_measure_input_freq(void)
{
u32 clock_autodetect;
clk_writel(OSC_FREQ_DET_TRIG | 1, OSC_FREQ_DET);
do {} while (clk_readl(OSC_FREQ_DET_STATUS) & OSC_FREQ_DET_BUSY);
clock_autodetect = clk_readl(OSC_FREQ_DET_STATUS);
if (clock_autodetect >= 732 - 3 && clock_autodetect <= 732 + 3) {
return 12000000;
} else if (clock_autodetect >= 794 - 3 && clock_autodetect <= 794 + 3) {
return 13000000;
} else if (clock_autodetect >= 1172 - 3 && clock_autodetect <= 1172 + 3) {
return 19200000;
} else if (clock_autodetect >= 1587 - 3 && clock_autodetect <= 1587 + 3) {
return 26000000;
} else {
pr_err("%s: Unexpected clock autodetect value %d",
__func__, clock_autodetect);
BUG();
return 0;
}
}
static int clk_div71_get_divider(unsigned long parent_rate, unsigned long rate)
{
s64 divider_u71 = parent_rate * 2;
divider_u71 += rate - 1;
do_div(divider_u71, rate);
if (divider_u71 - 2 < 0)
return 0;
if (divider_u71 - 2 > 255)
return -EINVAL;
return divider_u71 - 2;
}
static int clk_div16_get_divider(unsigned long parent_rate, unsigned long rate)
{
s64 divider_u16;
divider_u16 = parent_rate;
divider_u16 += rate - 1;
do_div(divider_u16, rate);
if (divider_u16 - 1 < 0)
return 0;
if (divider_u16 - 1 > 0xFFFF)
return -EINVAL;
return divider_u16 - 1;
}
static unsigned long tegra_clk_fixed_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
return to_clk_tegra(hw)->fixed_rate;
}
struct clk_ops tegra_clk_32k_ops = {
.recalc_rate = tegra_clk_fixed_recalc_rate,
};
/* clk_m functions */
static unsigned long tegra20_clk_m_recalc_rate(struct clk_hw *hw,
unsigned long prate)
{
if (!to_clk_tegra(hw)->fixed_rate)
to_clk_tegra(hw)->fixed_rate = clk_measure_input_freq();
return to_clk_tegra(hw)->fixed_rate;
}
static void tegra20_clk_m_init(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 osc_ctrl = clk_readl(OSC_CTRL);
u32 auto_clock_control = osc_ctrl & ~OSC_CTRL_OSC_FREQ_MASK;
switch (c->fixed_rate) {
case 12000000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_12MHZ;
break;
case 13000000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_13MHZ;
break;
case 19200000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_19_2MHZ;
break;
case 26000000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_26MHZ;
break;
default:
BUG();
}
clk_writel(auto_clock_control, OSC_CTRL);
}
struct clk_ops tegra_clk_m_ops = {
.init = tegra20_clk_m_init,
.recalc_rate = tegra20_clk_m_recalc_rate,
};
/* super clock functions */
/* "super clocks" on tegra have two-stage muxes and a clock skipping
* super divider. We will ignore the clock skipping divider, since we
* can't lower the voltage when using the clock skip, but we can if we
* lower the PLL frequency.
*/
static int tegra20_super_clk_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
val = clk_readl(c->reg + SUPER_CLK_MUX);
BUG_ON(((val & SUPER_STATE_MASK) != SUPER_STATE_RUN) &&
((val & SUPER_STATE_MASK) != SUPER_STATE_IDLE));
c->state = ON;
return c->state;
}
static int tegra20_super_clk_enable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
clk_writel(0, c->reg + SUPER_CLK_DIVIDER);
return 0;
}
static void tegra20_super_clk_disable(struct clk_hw *hw)
{
pr_debug("%s on clock %s\n", __func__, __clk_get_name(hw->clk));
/* oops - don't disable the CPU clock! */
BUG();
}
static u8 tegra20_super_clk_get_parent(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
int val = clk_readl(c->reg + SUPER_CLK_MUX);
int source;
int shift;
BUG_ON(((val & SUPER_STATE_MASK) != SUPER_STATE_RUN) &&
((val & SUPER_STATE_MASK) != SUPER_STATE_IDLE));
shift = ((val & SUPER_STATE_MASK) == SUPER_STATE_IDLE) ?
SUPER_IDLE_SOURCE_SHIFT : SUPER_RUN_SOURCE_SHIFT;
source = (val >> shift) & SUPER_SOURCE_MASK;
return source;
}
static int tegra20_super_clk_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg + SUPER_CLK_MUX);
int shift;
BUG_ON(((val & SUPER_STATE_MASK) != SUPER_STATE_RUN) &&
((val & SUPER_STATE_MASK) != SUPER_STATE_IDLE));
shift = ((val & SUPER_STATE_MASK) == SUPER_STATE_IDLE) ?
SUPER_IDLE_SOURCE_SHIFT : SUPER_RUN_SOURCE_SHIFT;
val &= ~(SUPER_SOURCE_MASK << shift);
val |= index << shift;
clk_writel(val, c->reg);
return 0;
}
/* FIX ME: Need to switch parents to change the source PLL rate */
static unsigned long tegra20_super_clk_recalc_rate(struct clk_hw *hw,
unsigned long prate)
{
return prate;
}
static long tegra20_super_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
return *prate;
}
static int tegra20_super_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
return 0;
}
struct clk_ops tegra_super_ops = {
.is_enabled = tegra20_super_clk_is_enabled,
.enable = tegra20_super_clk_enable,
.disable = tegra20_super_clk_disable,
.set_parent = tegra20_super_clk_set_parent,
.get_parent = tegra20_super_clk_get_parent,
.set_rate = tegra20_super_clk_set_rate,
.round_rate = tegra20_super_clk_round_rate,
.recalc_rate = tegra20_super_clk_recalc_rate,
};
static unsigned long tegra20_twd_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u64 rate = parent_rate;
if (c->mul != 0 && c->div != 0) {
rate *= c->mul;
rate += c->div - 1; /* round up */
do_div(rate, c->div);
}
return rate;
}
struct clk_ops tegra_twd_ops = {
.recalc_rate = tegra20_twd_clk_recalc_rate,
};
static u8 tegra20_cop_clk_get_parent(struct clk_hw *hw)
{
return 0;
}
struct clk_ops tegra_cop_ops = {
.get_parent = tegra20_cop_clk_get_parent,
};
/* virtual cop clock functions. Used to acquire the fake 'cop' clock to
* reset the COP block (i.e. AVP) */
void tegra2_cop_clk_reset(struct clk_hw *hw, bool assert)
{
unsigned long reg = assert ? RST_DEVICES_SET : RST_DEVICES_CLR;
pr_debug("%s %s\n", __func__, assert ? "assert" : "deassert");
clk_writel(1 << 1, reg);
}
/* bus clock functions */
static int tegra20_bus_clk_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg);
c->state = ((val >> c->reg_shift) & BUS_CLK_DISABLE) ? OFF : ON;
return c->state;
}
static int tegra20_bus_clk_enable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long flags;
u32 val;
spin_lock_irqsave(&clock_register_lock, flags);
val = clk_readl(c->reg);
val &= ~(BUS_CLK_DISABLE << c->reg_shift);
clk_writel(val, c->reg);
spin_unlock_irqrestore(&clock_register_lock, flags);
return 0;
}
static void tegra20_bus_clk_disable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long flags;
u32 val;
spin_lock_irqsave(&clock_register_lock, flags);
val = clk_readl(c->reg);
val |= BUS_CLK_DISABLE << c->reg_shift;
clk_writel(val, c->reg);
spin_unlock_irqrestore(&clock_register_lock, flags);
}
static unsigned long tegra20_bus_clk_recalc_rate(struct clk_hw *hw,
unsigned long prate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg);
u64 rate = prate;
c->div = ((val >> c->reg_shift) & BUS_CLK_DIV_MASK) + 1;
c->mul = 1;
if (c->mul != 0 && c->div != 0) {
rate *= c->mul;
rate += c->div - 1; /* round up */
do_div(rate, c->div);
}
return rate;
}
static int tegra20_bus_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
int ret = -EINVAL;
unsigned long flags;
u32 val;
int i;
spin_lock_irqsave(&clock_register_lock, flags);
val = clk_readl(c->reg);
for (i = 1; i <= 4; i++) {
if (rate == parent_rate / i) {
val &= ~(BUS_CLK_DIV_MASK << c->reg_shift);
val |= (i - 1) << c->reg_shift;
clk_writel(val, c->reg);
c->div = i;
c->mul = 1;
ret = 0;
break;
}
}
spin_unlock_irqrestore(&clock_register_lock, flags);
return ret;
}
static long tegra20_bus_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
unsigned long parent_rate = *prate;
s64 divider;
if (rate >= parent_rate)
return rate;
divider = parent_rate;
divider += rate - 1;
do_div(divider, rate);
if (divider < 0)
return divider;
if (divider > 4)
divider = 4;
do_div(parent_rate, divider);
return parent_rate;
}
struct clk_ops tegra_bus_ops = {
.is_enabled = tegra20_bus_clk_is_enabled,
.enable = tegra20_bus_clk_enable,
.disable = tegra20_bus_clk_disable,
.set_rate = tegra20_bus_clk_set_rate,
.round_rate = tegra20_bus_clk_round_rate,
.recalc_rate = tegra20_bus_clk_recalc_rate,
};
/* Blink output functions */
static int tegra20_blink_clk_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
val = pmc_readl(PMC_CTRL);
c->state = (val & PMC_CTRL_BLINK_ENB) ? ON : OFF;
return c->state;
}
static unsigned long tegra20_blink_clk_recalc_rate(struct clk_hw *hw,
unsigned long prate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u64 rate = prate;
u32 val;
c->mul = 1;
val = pmc_readl(c->reg);
if (val & PMC_BLINK_TIMER_ENB) {
unsigned int on_off;
on_off = (val >> PMC_BLINK_TIMER_DATA_ON_SHIFT) &
PMC_BLINK_TIMER_DATA_ON_MASK;
val >>= PMC_BLINK_TIMER_DATA_OFF_SHIFT;
val &= PMC_BLINK_TIMER_DATA_OFF_MASK;
on_off += val;
/* each tick in the blink timer is 4 32KHz clocks */
c->div = on_off * 4;
} else {
c->div = 1;
}
if (c->mul != 0 && c->div != 0) {
rate *= c->mul;
rate += c->div - 1; /* round up */
do_div(rate, c->div);
}
return rate;
}
static int tegra20_blink_clk_enable(struct clk_hw *hw)
{
u32 val;
val = pmc_readl(PMC_DPD_PADS_ORIDE);
pmc_writel(val | PMC_DPD_PADS_ORIDE_BLINK_ENB, PMC_DPD_PADS_ORIDE);
val = pmc_readl(PMC_CTRL);
pmc_writel(val | PMC_CTRL_BLINK_ENB, PMC_CTRL);
return 0;
}
static void tegra20_blink_clk_disable(struct clk_hw *hw)
{
u32 val;
val = pmc_readl(PMC_CTRL);
pmc_writel(val & ~PMC_CTRL_BLINK_ENB, PMC_CTRL);
val = pmc_readl(PMC_DPD_PADS_ORIDE);
pmc_writel(val & ~PMC_DPD_PADS_ORIDE_BLINK_ENB, PMC_DPD_PADS_ORIDE);
}
static int tegra20_blink_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
if (rate >= parent_rate) {
c->div = 1;
pmc_writel(0, c->reg);
} else {
unsigned int on_off;
u32 val;
on_off = DIV_ROUND_UP(parent_rate / 8, rate);
c->div = on_off * 8;
val = (on_off & PMC_BLINK_TIMER_DATA_ON_MASK) <<
PMC_BLINK_TIMER_DATA_ON_SHIFT;
on_off &= PMC_BLINK_TIMER_DATA_OFF_MASK;
on_off <<= PMC_BLINK_TIMER_DATA_OFF_SHIFT;
val |= on_off;
val |= PMC_BLINK_TIMER_ENB;
pmc_writel(val, c->reg);
}
return 0;
}
static long tegra20_blink_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
int div;
int mul;
long round_rate = *prate;
mul = 1;
if (rate >= *prate) {
div = 1;
} else {
div = DIV_ROUND_UP(*prate / 8, rate);
div *= 8;
}
round_rate *= mul;
round_rate += div - 1;
do_div(round_rate, div);
return round_rate;
}
struct clk_ops tegra_blink_clk_ops = {
.is_enabled = tegra20_blink_clk_is_enabled,
.enable = tegra20_blink_clk_enable,
.disable = tegra20_blink_clk_disable,
.set_rate = tegra20_blink_clk_set_rate,
.round_rate = tegra20_blink_clk_round_rate,
.recalc_rate = tegra20_blink_clk_recalc_rate,
};
/* PLL Functions */
static int tegra20_pll_clk_wait_for_lock(struct clk_tegra *c)
{
udelay(c->u.pll.lock_delay);
return 0;
}
static int tegra20_pll_clk_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg + PLL_BASE);
c->state = (val & PLL_BASE_ENABLE) ? ON : OFF;
return c->state;
}
static unsigned long tegra20_pll_clk_recalc_rate(struct clk_hw *hw,
unsigned long prate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg + PLL_BASE);
u64 rate = prate;
if (c->flags & PLL_FIXED && !(val & PLL_BASE_OVERRIDE)) {
const struct clk_pll_freq_table *sel;
for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
if (sel->input_rate == prate &&
sel->output_rate == c->u.pll.fixed_rate) {
c->mul = sel->n;
c->div = sel->m * sel->p;
break;
}
}
pr_err("Clock %s has unknown fixed frequency\n",
__clk_get_name(hw->clk));
BUG();
} else if (val & PLL_BASE_BYPASS) {
c->mul = 1;
c->div = 1;
} else {
c->mul = (val & PLL_BASE_DIVN_MASK) >> PLL_BASE_DIVN_SHIFT;
c->div = (val & PLL_BASE_DIVM_MASK) >> PLL_BASE_DIVM_SHIFT;
if (c->flags & PLLU)
c->div *= (val & PLLU_BASE_POST_DIV) ? 1 : 2;
else
c->div *= (val & PLL_BASE_DIVP_MASK) ? 2 : 1;
}
if (c->mul != 0 && c->div != 0) {
rate *= c->mul;
rate += c->div - 1; /* round up */
do_div(rate, c->div);
}
return rate;
}
static int tegra20_pll_clk_enable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
pr_debug("%s on clock %s\n", __func__, __clk_get_name(hw->clk));
val = clk_readl(c->reg + PLL_BASE);
val &= ~PLL_BASE_BYPASS;
val |= PLL_BASE_ENABLE;
clk_writel(val, c->reg + PLL_BASE);
tegra20_pll_clk_wait_for_lock(c);
return 0;
}
static void tegra20_pll_clk_disable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
pr_debug("%s on clock %s\n", __func__, __clk_get_name(hw->clk));
val = clk_readl(c->reg);
val &= ~(PLL_BASE_BYPASS | PLL_BASE_ENABLE);
clk_writel(val, c->reg);
}
static int tegra20_pll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long input_rate = parent_rate;
const struct clk_pll_freq_table *sel;
u32 val;
pr_debug("%s: %s %lu\n", __func__, __clk_get_name(hw->clk), rate);
if (c->flags & PLL_FIXED) {
int ret = 0;
if (rate != c->u.pll.fixed_rate) {
pr_err("%s: Can not change %s fixed rate %lu to %lu\n",
__func__, __clk_get_name(hw->clk),
c->u.pll.fixed_rate, rate);
ret = -EINVAL;
}
return ret;
}
for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
if (sel->input_rate == input_rate && sel->output_rate == rate) {
c->mul = sel->n;
c->div = sel->m * sel->p;
val = clk_readl(c->reg + PLL_BASE);
if (c->flags & PLL_FIXED)
val |= PLL_BASE_OVERRIDE;
val &= ~(PLL_BASE_DIVP_MASK | PLL_BASE_DIVN_MASK |
PLL_BASE_DIVM_MASK);
val |= (sel->m << PLL_BASE_DIVM_SHIFT) |
(sel->n << PLL_BASE_DIVN_SHIFT);
BUG_ON(sel->p < 1 || sel->p > 2);
if (c->flags & PLLU) {
if (sel->p == 1)
val |= PLLU_BASE_POST_DIV;
} else {
if (sel->p == 2)
val |= 1 << PLL_BASE_DIVP_SHIFT;
}
clk_writel(val, c->reg + PLL_BASE);
if (c->flags & PLL_HAS_CPCON) {
val = clk_readl(c->reg + PLL_MISC(c));
val &= ~PLL_MISC_CPCON_MASK;
val |= sel->cpcon << PLL_MISC_CPCON_SHIFT;
clk_writel(val, c->reg + PLL_MISC(c));
}
if (c->state == ON)
tegra20_pll_clk_enable(hw);
return 0;
}
}
return -EINVAL;
}
static long tegra20_pll_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_tegra *c = to_clk_tegra(hw);
const struct clk_pll_freq_table *sel;
unsigned long input_rate = *prate;
u64 output_rate = *prate;
int mul;
int div;
if (c->flags & PLL_FIXED)
return c->u.pll.fixed_rate;
for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++)
if (sel->input_rate == input_rate && sel->output_rate == rate) {
mul = sel->n;
div = sel->m * sel->p;
break;
}
if (sel->input_rate == 0)
return -EINVAL;
output_rate *= mul;
output_rate += div - 1; /* round up */
do_div(output_rate, div);
return output_rate;
}
struct clk_ops tegra_pll_ops = {
.is_enabled = tegra20_pll_clk_is_enabled,
.enable = tegra20_pll_clk_enable,
.disable = tegra20_pll_clk_disable,
.set_rate = tegra20_pll_clk_set_rate,
.recalc_rate = tegra20_pll_clk_recalc_rate,
.round_rate = tegra20_pll_clk_round_rate,
};
static void tegra20_pllx_clk_init(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
if (tegra_sku_id == 7)
c->max_rate = 750000000;
}
struct clk_ops tegra_pllx_ops = {
.init = tegra20_pllx_clk_init,
.is_enabled = tegra20_pll_clk_is_enabled,
.enable = tegra20_pll_clk_enable,
.disable = tegra20_pll_clk_disable,
.set_rate = tegra20_pll_clk_set_rate,
.recalc_rate = tegra20_pll_clk_recalc_rate,
.round_rate = tegra20_pll_clk_round_rate,
};
static int tegra20_plle_clk_enable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
pr_debug("%s on clock %s\n", __func__, __clk_get_name(hw->clk));
mdelay(1);
val = clk_readl(c->reg + PLL_BASE);
if (!(val & PLLE_MISC_READY))
return -EBUSY;
val = clk_readl(c->reg + PLL_BASE);
val |= PLL_BASE_ENABLE | PLL_BASE_BYPASS;
clk_writel(val, c->reg + PLL_BASE);
return 0;
}
struct clk_ops tegra_plle_ops = {
.is_enabled = tegra20_pll_clk_is_enabled,
.enable = tegra20_plle_clk_enable,
.set_rate = tegra20_pll_clk_set_rate,
.recalc_rate = tegra20_pll_clk_recalc_rate,
.round_rate = tegra20_pll_clk_round_rate,
};
/* Clock divider ops */
static int tegra20_pll_div_clk_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg);
val >>= c->reg_shift;
c->state = (val & PLL_OUT_CLKEN) ? ON : OFF;
if (!(val & PLL_OUT_RESET_DISABLE))
c->state = OFF;
return c->state;
}
static unsigned long tegra20_pll_div_clk_recalc_rate(struct clk_hw *hw,
unsigned long prate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u64 rate = prate;
u32 val = clk_readl(c->reg);
u32 divu71;
val >>= c->reg_shift;
if (c->flags & DIV_U71) {
divu71 = (val & PLL_OUT_RATIO_MASK) >> PLL_OUT_RATIO_SHIFT;
c->div = (divu71 + 2);
c->mul = 2;
} else if (c->flags & DIV_2) {
c->div = 2;
c->mul = 1;
} else {
c->div = 1;
c->mul = 1;
}
rate *= c->mul;
rate += c->div - 1; /* round up */
do_div(rate, c->div);
return rate;
}
static int tegra20_pll_div_clk_enable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long flags;
u32 new_val;
u32 val;
pr_debug("%s: %s\n", __func__, __clk_get_name(hw->clk));
if (c->flags & DIV_U71) {
spin_lock_irqsave(&clock_register_lock, flags);
val = clk_readl(c->reg);
new_val = val >> c->reg_shift;
new_val &= 0xFFFF;
new_val |= PLL_OUT_CLKEN | PLL_OUT_RESET_DISABLE;
val &= ~(0xFFFF << c->reg_shift);
val |= new_val << c->reg_shift;
clk_writel(val, c->reg);
spin_unlock_irqrestore(&clock_register_lock, flags);
return 0;
} else if (c->flags & DIV_2) {
BUG_ON(!(c->flags & PLLD));
spin_lock_irqsave(&clock_register_lock, flags);
val = clk_readl(c->reg);
val &= ~PLLD_MISC_DIV_RST;
clk_writel(val, c->reg);
spin_unlock_irqrestore(&clock_register_lock, flags);
return 0;
}
return -EINVAL;
}
static void tegra20_pll_div_clk_disable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long flags;
u32 new_val;
u32 val;
pr_debug("%s: %s\n", __func__, __clk_get_name(hw->clk));
if (c->flags & DIV_U71) {
spin_lock_irqsave(&clock_register_lock, flags);
val = clk_readl(c->reg);
new_val = val >> c->reg_shift;
new_val &= 0xFFFF;
new_val &= ~(PLL_OUT_CLKEN | PLL_OUT_RESET_DISABLE);
val &= ~(0xFFFF << c->reg_shift);
val |= new_val << c->reg_shift;
clk_writel(val, c->reg);
spin_unlock_irqrestore(&clock_register_lock, flags);
} else if (c->flags & DIV_2) {
BUG_ON(!(c->flags & PLLD));
spin_lock_irqsave(&clock_register_lock, flags);
val = clk_readl(c->reg);
val |= PLLD_MISC_DIV_RST;
clk_writel(val, c->reg);
spin_unlock_irqrestore(&clock_register_lock, flags);
}
}
static int tegra20_pll_div_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long flags;
int divider_u71;
u32 new_val;
u32 val;
pr_debug("%s: %s %lu\n", __func__, __clk_get_name(hw->clk), rate);
if (c->flags & DIV_U71) {
divider_u71 = clk_div71_get_divider(parent_rate, rate);
if (divider_u71 >= 0) {
spin_lock_irqsave(&clock_register_lock, flags);
val = clk_readl(c->reg);
new_val = val >> c->reg_shift;
new_val &= 0xFFFF;
if (c->flags & DIV_U71_FIXED)
new_val |= PLL_OUT_OVERRIDE;
new_val &= ~PLL_OUT_RATIO_MASK;
new_val |= divider_u71 << PLL_OUT_RATIO_SHIFT;
val &= ~(0xFFFF << c->reg_shift);
val |= new_val << c->reg_shift;
clk_writel(val, c->reg);
c->div = divider_u71 + 2;
c->mul = 2;
spin_unlock_irqrestore(&clock_register_lock, flags);
return 0;
}
} else if (c->flags & DIV_2) {
if (parent_rate == rate * 2)
return 0;
}
return -EINVAL;
}
static long tegra20_pll_div_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long parent_rate = *prate;
int divider;
pr_debug("%s: %s %lu\n", __func__, __clk_get_name(hw->clk), rate);
if (c->flags & DIV_U71) {
divider = clk_div71_get_divider(parent_rate, rate);
if (divider < 0)
return divider;
return DIV_ROUND_UP(parent_rate * 2, divider + 2);
} else if (c->flags & DIV_2) {
return DIV_ROUND_UP(parent_rate, 2);
}
return -EINVAL;
}
struct clk_ops tegra_pll_div_ops = {
.is_enabled = tegra20_pll_div_clk_is_enabled,
.enable = tegra20_pll_div_clk_enable,
.disable = tegra20_pll_div_clk_disable,
.set_rate = tegra20_pll_div_clk_set_rate,
.round_rate = tegra20_pll_div_clk_round_rate,
.recalc_rate = tegra20_pll_div_clk_recalc_rate,
};
/* Periph clk ops */
static int tegra20_periph_clk_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
c->state = ON;
if (!c->u.periph.clk_num)
goto out;
if (!(clk_readl(CLK_OUT_ENB + PERIPH_CLK_TO_ENB_REG(c)) &
PERIPH_CLK_TO_ENB_BIT(c)))
c->state = OFF;
if (!(c->flags & PERIPH_NO_RESET))
if (clk_readl(RST_DEVICES + PERIPH_CLK_TO_ENB_REG(c)) &
PERIPH_CLK_TO_ENB_BIT(c))
c->state = OFF;
out:
return c->state;
}
static int tegra20_periph_clk_enable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long flags;
u32 val;
pr_debug("%s on clock %s\n", __func__, __clk_get_name(hw->clk));
if (!c->u.periph.clk_num)
return 0;
tegra_periph_clk_enable_refcount[c->u.periph.clk_num]++;
if (tegra_periph_clk_enable_refcount[c->u.periph.clk_num] > 1)
return 0;
spin_lock_irqsave(&clock_register_lock, flags);
clk_writel(PERIPH_CLK_TO_ENB_BIT(c),
CLK_OUT_ENB_SET + PERIPH_CLK_TO_ENB_SET_REG(c));
if (!(c->flags & PERIPH_NO_RESET) && !(c->flags & PERIPH_MANUAL_RESET))
clk_writel(PERIPH_CLK_TO_ENB_BIT(c),
RST_DEVICES_CLR + PERIPH_CLK_TO_ENB_SET_REG(c));
if (c->flags & PERIPH_EMC_ENB) {
/* The EMC peripheral clock has 2 extra enable bits */
/* FIXME: Do they need to be disabled? */
val = clk_readl(c->reg);
val |= 0x3 << 24;
clk_writel(val, c->reg);
}
spin_unlock_irqrestore(&clock_register_lock, flags);
return 0;
}
static void tegra20_periph_clk_disable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long flags;
pr_debug("%s on clock %s\n", __func__, __clk_get_name(hw->clk));
if (!c->u.periph.clk_num)
return;
tegra_periph_clk_enable_refcount[c->u.periph.clk_num]--;
if (tegra_periph_clk_enable_refcount[c->u.periph.clk_num] > 0)
return;
spin_lock_irqsave(&clock_register_lock, flags);
clk_writel(PERIPH_CLK_TO_ENB_BIT(c),
CLK_OUT_ENB_CLR + PERIPH_CLK_TO_ENB_SET_REG(c));
spin_unlock_irqrestore(&clock_register_lock, flags);
}
void tegra2_periph_clk_reset(struct clk_hw *hw, bool assert)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long base = assert ? RST_DEVICES_SET : RST_DEVICES_CLR;
pr_debug("%s %s on clock %s\n", __func__,
assert ? "assert" : "deassert", __clk_get_name(hw->clk));
BUG_ON(!c->u.periph.clk_num);
if (!(c->flags & PERIPH_NO_RESET))
clk_writel(PERIPH_CLK_TO_ENB_BIT(c),
base + PERIPH_CLK_TO_ENB_SET_REG(c));
}
static int tegra20_periph_clk_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
u32 mask;
u32 shift;
pr_debug("%s: %s %d\n", __func__, __clk_get_name(hw->clk), index);
if (c->flags & MUX_PWM) {
shift = PERIPH_CLK_SOURCE_PWM_SHIFT;
mask = PERIPH_CLK_SOURCE_PWM_MASK;
} else {
shift = PERIPH_CLK_SOURCE_SHIFT;
mask = PERIPH_CLK_SOURCE_MASK;
}
val = clk_readl(c->reg);
val &= ~mask;
val |= (index) << shift;
clk_writel(val, c->reg);
return 0;
}
static u8 tegra20_periph_clk_get_parent(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg);
u32 mask;
u32 shift;
if (c->flags & MUX_PWM) {
shift = PERIPH_CLK_SOURCE_PWM_SHIFT;
mask = PERIPH_CLK_SOURCE_PWM_MASK;
} else {
shift = PERIPH_CLK_SOURCE_SHIFT;
mask = PERIPH_CLK_SOURCE_MASK;
}
if (c->flags & MUX)
return (val & mask) >> shift;
else
return 0;
}
static unsigned long tegra20_periph_clk_recalc_rate(struct clk_hw *hw,
unsigned long prate)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long rate = prate;
u32 val = clk_readl(c->reg);
if (c->flags & DIV_U71) {
u32 divu71 = val & PERIPH_CLK_SOURCE_DIVU71_MASK;
c->div = divu71 + 2;
c->mul = 2;
} else if (c->flags & DIV_U16) {
u32 divu16 = val & PERIPH_CLK_SOURCE_DIVU16_MASK;
c->div = divu16 + 1;
c->mul = 1;
} else {
c->div = 1;
c->mul = 1;
return rate;
}
if (c->mul != 0 && c->div != 0) {
rate *= c->mul;
rate += c->div - 1; /* round up */
do_div(rate, c->div);
}
return rate;
}
static int tegra20_periph_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
int divider;
val = clk_readl(c->reg);
if (c->flags & DIV_U71) {
divider = clk_div71_get_divider(parent_rate, rate);
if (divider >= 0) {
val = clk_readl(c->reg);
val &= ~PERIPH_CLK_SOURCE_DIVU71_MASK;
val |= divider;
clk_writel(val, c->reg);
c->div = divider + 2;
c->mul = 2;
return 0;
}
} else if (c->flags & DIV_U16) {
divider = clk_div16_get_divider(parent_rate, rate);
if (divider >= 0) {
val = clk_readl(c->reg);
val &= ~PERIPH_CLK_SOURCE_DIVU16_MASK;
val |= divider;
clk_writel(val, c->reg);
c->div = divider + 1;
c->mul = 1;
return 0;
}
} else if (parent_rate <= rate) {
c->div = 1;
c->mul = 1;
return 0;
}
return -EINVAL;
}
static long tegra20_periph_clk_round_rate(struct clk_hw *hw,
unsigned long rate, unsigned long *prate)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long parent_rate = __clk_get_rate(__clk_get_parent(hw->clk));
int divider;
pr_debug("%s: %s %lu\n", __func__, __clk_get_name(hw->clk), rate);
if (prate)
parent_rate = *prate;
if (c->flags & DIV_U71) {
divider = clk_div71_get_divider(parent_rate, rate);
if (divider < 0)
return divider;
return DIV_ROUND_UP(parent_rate * 2, divider + 2);
} else if (c->flags & DIV_U16) {
divider = clk_div16_get_divider(parent_rate, rate);
if (divider < 0)
return divider;
return DIV_ROUND_UP(parent_rate, divider + 1);
}
return -EINVAL;
}
struct clk_ops tegra_periph_clk_ops = {
.is_enabled = tegra20_periph_clk_is_enabled,
.enable = tegra20_periph_clk_enable,
.disable = tegra20_periph_clk_disable,
.set_parent = tegra20_periph_clk_set_parent,
.get_parent = tegra20_periph_clk_get_parent,
.set_rate = tegra20_periph_clk_set_rate,
.round_rate = tegra20_periph_clk_round_rate,
.recalc_rate = tegra20_periph_clk_recalc_rate,
};
/* External memory controller clock ops */
static void tegra20_emc_clk_init(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
c->max_rate = __clk_get_rate(hw->clk);
}
static long tegra20_emc_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_tegra *c = to_clk_tegra(hw);
long emc_rate;
long clk_rate;
/*
* The slowest entry in the EMC clock table that is at least as
* fast as rate.
*/
emc_rate = tegra_emc_round_rate(rate);
if (emc_rate < 0)
return c->max_rate;
/*
* The fastest rate the PLL will generate that is at most the
* requested rate.
*/
clk_rate = tegra20_periph_clk_round_rate(hw, emc_rate, NULL);
/*
* If this fails, and emc_rate > clk_rate, it's because the maximum
* rate in the EMC tables is larger than the maximum rate of the EMC
* clock. The EMC clock's max rate is the rate it was running when the
* kernel booted. Such a mismatch is probably due to using the wrong
* BCT, i.e. using a Tegra20 BCT with an EMC table written for Tegra25.
*/
WARN_ONCE(emc_rate != clk_rate,
"emc_rate %ld != clk_rate %ld",
emc_rate, clk_rate);
return emc_rate;
}
static int tegra20_emc_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
int ret;
/*
* The Tegra2 memory controller has an interlock with the clock
* block that allows memory shadowed registers to be updated,
* and then transfer them to the main registers at the same
* time as the clock update without glitches.
*/
ret = tegra_emc_set_rate(rate);
if (ret < 0)
return ret;
ret = tegra20_periph_clk_set_rate(hw, rate, parent_rate);
udelay(1);
return ret;
}
struct clk_ops tegra_emc_clk_ops = {
.init = tegra20_emc_clk_init,
.is_enabled = tegra20_periph_clk_is_enabled,
.enable = tegra20_periph_clk_enable,
.disable = tegra20_periph_clk_disable,
.set_parent = tegra20_periph_clk_set_parent,
.get_parent = tegra20_periph_clk_get_parent,
.set_rate = tegra20_emc_clk_set_rate,
.round_rate = tegra20_emc_clk_round_rate,
.recalc_rate = tegra20_periph_clk_recalc_rate,
};
/* Clock doubler ops */
static int tegra20_clk_double_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
c->state = ON;
if (!c->u.periph.clk_num)
goto out;
if (!(clk_readl(CLK_OUT_ENB + PERIPH_CLK_TO_ENB_REG(c)) &
PERIPH_CLK_TO_ENB_BIT(c)))
c->state = OFF;
out:
return c->state;
};
static unsigned long tegra20_clk_double_recalc_rate(struct clk_hw *hw,
unsigned long prate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u64 rate = prate;
c->mul = 2;
c->div = 1;
rate *= c->mul;
rate += c->div - 1; /* round up */
do_div(rate, c->div);
return rate;
}
static long tegra20_clk_double_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
unsigned long output_rate = *prate;
do_div(output_rate, 2);
return output_rate;
}
static int tegra20_clk_double_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
if (rate != 2 * parent_rate)
return -EINVAL;
return 0;
}
struct clk_ops tegra_clk_double_ops = {
.is_enabled = tegra20_clk_double_is_enabled,
.enable = tegra20_periph_clk_enable,
.disable = tegra20_periph_clk_disable,
.set_rate = tegra20_clk_double_set_rate,
.recalc_rate = tegra20_clk_double_recalc_rate,
.round_rate = tegra20_clk_double_round_rate,
};
/* Audio sync clock ops */
static int tegra20_audio_sync_clk_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg);
c->state = (val & (1<<4)) ? OFF : ON;
return c->state;
}
static int tegra20_audio_sync_clk_enable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
clk_writel(0, c->reg);
return 0;
}
static void tegra20_audio_sync_clk_disable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
clk_writel(1, c->reg);
}
static u8 tegra20_audio_sync_clk_get_parent(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg);
int source;
source = val & 0xf;
return source;
}
static int tegra20_audio_sync_clk_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
val = clk_readl(c->reg);
val &= ~0xf;
val |= index;
clk_writel(val, c->reg);
return 0;
}
struct clk_ops tegra_audio_sync_clk_ops = {
.is_enabled = tegra20_audio_sync_clk_is_enabled,
.enable = tegra20_audio_sync_clk_enable,
.disable = tegra20_audio_sync_clk_disable,
.set_parent = tegra20_audio_sync_clk_set_parent,
.get_parent = tegra20_audio_sync_clk_get_parent,
};
/* cdev1 and cdev2 (dap_mclk1 and dap_mclk2) ops */
static int tegra20_cdev_clk_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
/* We could un-tristate the cdev1 or cdev2 pingroup here; this is
* currently done in the pinmux code. */
c->state = ON;
BUG_ON(!c->u.periph.clk_num);
if (!(clk_readl(CLK_OUT_ENB + PERIPH_CLK_TO_ENB_REG(c)) &
PERIPH_CLK_TO_ENB_BIT(c)))
c->state = OFF;
return c->state;
}
static int tegra20_cdev_clk_enable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
BUG_ON(!c->u.periph.clk_num);
clk_writel(PERIPH_CLK_TO_ENB_BIT(c),
CLK_OUT_ENB_SET + PERIPH_CLK_TO_ENB_SET_REG(c));
return 0;
}
static void tegra20_cdev_clk_disable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
BUG_ON(!c->u.periph.clk_num);
clk_writel(PERIPH_CLK_TO_ENB_BIT(c),
CLK_OUT_ENB_CLR + PERIPH_CLK_TO_ENB_SET_REG(c));
}
static unsigned long tegra20_cdev_recalc_rate(struct clk_hw *hw,
unsigned long prate)
{
return to_clk_tegra(hw)->fixed_rate;
}
struct clk_ops tegra_cdev_clk_ops = {
.is_enabled = tegra20_cdev_clk_is_enabled,
.enable = tegra20_cdev_clk_enable,
.disable = tegra20_cdev_clk_disable,
.recalc_rate = tegra20_cdev_recalc_rate,
};
/* Tegra20 CPU clock and reset control functions */
static void tegra20_wait_cpu_in_reset(u32 cpu)
{
unsigned int reg;
do {
reg = readl(reg_clk_base +
TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_SET);
cpu_relax();
} while (!(reg & (1 << cpu))); /* check CPU been reset or not */
return;
}
static void tegra20_put_cpu_in_reset(u32 cpu)
{
writel(CPU_RESET(cpu),
reg_clk_base + TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_SET);
dmb();
}
static void tegra20_cpu_out_of_reset(u32 cpu)
{
writel(CPU_RESET(cpu),
reg_clk_base + TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_CLR);
wmb();
}
static void tegra20_enable_cpu_clock(u32 cpu)
{
unsigned int reg;
reg = readl(reg_clk_base + TEGRA_CLK_RST_CONTROLLER_CLK_CPU_CMPLX);
writel(reg & ~CPU_CLOCK(cpu),
reg_clk_base + TEGRA_CLK_RST_CONTROLLER_CLK_CPU_CMPLX);
barrier();
reg = readl(reg_clk_base + TEGRA_CLK_RST_CONTROLLER_CLK_CPU_CMPLX);
}
static void tegra20_disable_cpu_clock(u32 cpu)
{
unsigned int reg;
reg = readl(reg_clk_base + TEGRA_CLK_RST_CONTROLLER_CLK_CPU_CMPLX);
writel(reg | CPU_CLOCK(cpu),
reg_clk_base + TEGRA_CLK_RST_CONTROLLER_CLK_CPU_CMPLX);
}
static struct tegra_cpu_car_ops tegra20_cpu_car_ops = {
.wait_for_reset = tegra20_wait_cpu_in_reset,
.put_in_reset = tegra20_put_cpu_in_reset,
.out_of_reset = tegra20_cpu_out_of_reset,
.enable_clock = tegra20_enable_cpu_clock,
.disable_clock = tegra20_disable_cpu_clock,
};
void __init tegra20_cpu_car_ops_init(void)
{
tegra_cpu_car_ops = &tegra20_cpu_car_ops;
}