OpenCloudOS-Kernel/drivers/net/wireless/ath/carl9170/main.c

1917 lines
44 KiB
C

/*
* Atheros CARL9170 driver
*
* mac80211 interaction code
*
* Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
* Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, see
* http://www.gnu.org/licenses/.
*
* This file incorporates work covered by the following copyright and
* permission notice:
* Copyright (c) 2007-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/etherdevice.h>
#include <linux/random.h>
#include <net/mac80211.h>
#include <net/cfg80211.h>
#include "hw.h"
#include "carl9170.h"
#include "cmd.h"
static int modparam_nohwcrypt;
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware crypto offload.");
int modparam_noht;
module_param_named(noht, modparam_noht, int, S_IRUGO);
MODULE_PARM_DESC(noht, "Disable MPDU aggregation.");
#define RATE(_bitrate, _hw_rate, _txpidx, _flags) { \
.bitrate = (_bitrate), \
.flags = (_flags), \
.hw_value = (_hw_rate) | (_txpidx) << 4, \
}
struct ieee80211_rate __carl9170_ratetable[] = {
RATE(10, 0, 0, 0),
RATE(20, 1, 1, IEEE80211_RATE_SHORT_PREAMBLE),
RATE(55, 2, 2, IEEE80211_RATE_SHORT_PREAMBLE),
RATE(110, 3, 3, IEEE80211_RATE_SHORT_PREAMBLE),
RATE(60, 0xb, 0, 0),
RATE(90, 0xf, 0, 0),
RATE(120, 0xa, 0, 0),
RATE(180, 0xe, 0, 0),
RATE(240, 0x9, 0, 0),
RATE(360, 0xd, 1, 0),
RATE(480, 0x8, 2, 0),
RATE(540, 0xc, 3, 0),
};
#undef RATE
#define carl9170_g_ratetable (__carl9170_ratetable + 0)
#define carl9170_g_ratetable_size 12
#define carl9170_a_ratetable (__carl9170_ratetable + 4)
#define carl9170_a_ratetable_size 8
/*
* NB: The hw_value is used as an index into the carl9170_phy_freq_params
* array in phy.c so that we don't have to do frequency lookups!
*/
#define CHAN(_freq, _idx) { \
.center_freq = (_freq), \
.hw_value = (_idx), \
.max_power = 18, /* XXX */ \
}
static struct ieee80211_channel carl9170_2ghz_chantable[] = {
CHAN(2412, 0),
CHAN(2417, 1),
CHAN(2422, 2),
CHAN(2427, 3),
CHAN(2432, 4),
CHAN(2437, 5),
CHAN(2442, 6),
CHAN(2447, 7),
CHAN(2452, 8),
CHAN(2457, 9),
CHAN(2462, 10),
CHAN(2467, 11),
CHAN(2472, 12),
CHAN(2484, 13),
};
static struct ieee80211_channel carl9170_5ghz_chantable[] = {
CHAN(4920, 14),
CHAN(4940, 15),
CHAN(4960, 16),
CHAN(4980, 17),
CHAN(5040, 18),
CHAN(5060, 19),
CHAN(5080, 20),
CHAN(5180, 21),
CHAN(5200, 22),
CHAN(5220, 23),
CHAN(5240, 24),
CHAN(5260, 25),
CHAN(5280, 26),
CHAN(5300, 27),
CHAN(5320, 28),
CHAN(5500, 29),
CHAN(5520, 30),
CHAN(5540, 31),
CHAN(5560, 32),
CHAN(5580, 33),
CHAN(5600, 34),
CHAN(5620, 35),
CHAN(5640, 36),
CHAN(5660, 37),
CHAN(5680, 38),
CHAN(5700, 39),
CHAN(5745, 40),
CHAN(5765, 41),
CHAN(5785, 42),
CHAN(5805, 43),
CHAN(5825, 44),
CHAN(5170, 45),
CHAN(5190, 46),
CHAN(5210, 47),
CHAN(5230, 48),
};
#undef CHAN
#define CARL9170_HT_CAP \
{ \
.ht_supported = true, \
.cap = IEEE80211_HT_CAP_MAX_AMSDU | \
IEEE80211_HT_CAP_SUP_WIDTH_20_40 | \
IEEE80211_HT_CAP_SGI_40 | \
IEEE80211_HT_CAP_DSSSCCK40 | \
IEEE80211_HT_CAP_SM_PS, \
.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K, \
.ampdu_density = IEEE80211_HT_MPDU_DENSITY_8, \
.mcs = { \
.rx_mask = { 0xff, 0xff, 0, 0, 0x1, 0, 0, 0, 0, 0, }, \
.rx_highest = cpu_to_le16(300), \
.tx_params = IEEE80211_HT_MCS_TX_DEFINED, \
}, \
}
static struct ieee80211_supported_band carl9170_band_2GHz = {
.channels = carl9170_2ghz_chantable,
.n_channels = ARRAY_SIZE(carl9170_2ghz_chantable),
.bitrates = carl9170_g_ratetable,
.n_bitrates = carl9170_g_ratetable_size,
.ht_cap = CARL9170_HT_CAP,
};
static struct ieee80211_supported_band carl9170_band_5GHz = {
.channels = carl9170_5ghz_chantable,
.n_channels = ARRAY_SIZE(carl9170_5ghz_chantable),
.bitrates = carl9170_a_ratetable,
.n_bitrates = carl9170_a_ratetable_size,
.ht_cap = CARL9170_HT_CAP,
};
static void carl9170_ampdu_gc(struct ar9170 *ar)
{
struct carl9170_sta_tid *tid_info;
LIST_HEAD(tid_gc);
rcu_read_lock();
list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) {
spin_lock_bh(&ar->tx_ampdu_list_lock);
if (tid_info->state == CARL9170_TID_STATE_SHUTDOWN) {
tid_info->state = CARL9170_TID_STATE_KILLED;
list_del_rcu(&tid_info->list);
ar->tx_ampdu_list_len--;
list_add_tail(&tid_info->tmp_list, &tid_gc);
}
spin_unlock_bh(&ar->tx_ampdu_list_lock);
}
rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
rcu_read_unlock();
synchronize_rcu();
while (!list_empty(&tid_gc)) {
struct sk_buff *skb;
tid_info = list_first_entry(&tid_gc, struct carl9170_sta_tid,
tmp_list);
while ((skb = __skb_dequeue(&tid_info->queue)))
carl9170_tx_status(ar, skb, false);
list_del_init(&tid_info->tmp_list);
kfree(tid_info);
}
}
static void carl9170_flush(struct ar9170 *ar, bool drop_queued)
{
if (drop_queued) {
int i;
/*
* We can only drop frames which have not been uploaded
* to the device yet.
*/
for (i = 0; i < ar->hw->queues; i++) {
struct sk_buff *skb;
while ((skb = skb_dequeue(&ar->tx_pending[i]))) {
struct ieee80211_tx_info *info;
info = IEEE80211_SKB_CB(skb);
if (info->flags & IEEE80211_TX_CTL_AMPDU)
atomic_dec(&ar->tx_ampdu_upload);
carl9170_tx_status(ar, skb, false);
}
}
}
/* Wait for all other outstanding frames to timeout. */
if (atomic_read(&ar->tx_total_queued))
WARN_ON(wait_for_completion_timeout(&ar->tx_flush, HZ) == 0);
}
static void carl9170_flush_ba(struct ar9170 *ar)
{
struct sk_buff_head free;
struct carl9170_sta_tid *tid_info;
struct sk_buff *skb;
__skb_queue_head_init(&free);
rcu_read_lock();
spin_lock_bh(&ar->tx_ampdu_list_lock);
list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) {
if (tid_info->state > CARL9170_TID_STATE_SUSPEND) {
tid_info->state = CARL9170_TID_STATE_SUSPEND;
spin_lock(&tid_info->lock);
while ((skb = __skb_dequeue(&tid_info->queue)))
__skb_queue_tail(&free, skb);
spin_unlock(&tid_info->lock);
}
}
spin_unlock_bh(&ar->tx_ampdu_list_lock);
rcu_read_unlock();
while ((skb = __skb_dequeue(&free)))
carl9170_tx_status(ar, skb, false);
}
static void carl9170_zap_queues(struct ar9170 *ar)
{
struct carl9170_vif_info *cvif;
unsigned int i;
carl9170_ampdu_gc(ar);
carl9170_flush_ba(ar);
carl9170_flush(ar, true);
for (i = 0; i < ar->hw->queues; i++) {
spin_lock_bh(&ar->tx_status[i].lock);
while (!skb_queue_empty(&ar->tx_status[i])) {
struct sk_buff *skb;
skb = skb_peek(&ar->tx_status[i]);
carl9170_tx_get_skb(skb);
spin_unlock_bh(&ar->tx_status[i].lock);
carl9170_tx_drop(ar, skb);
spin_lock_bh(&ar->tx_status[i].lock);
carl9170_tx_put_skb(skb);
}
spin_unlock_bh(&ar->tx_status[i].lock);
}
BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_SOFT < 1);
BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD < CARL9170_NUM_TX_LIMIT_SOFT);
BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD >= CARL9170_BAW_BITS);
/* reinitialize queues statistics */
memset(&ar->tx_stats, 0, sizeof(ar->tx_stats));
for (i = 0; i < ar->hw->queues; i++)
ar->tx_stats[i].limit = CARL9170_NUM_TX_LIMIT_HARD;
for (i = 0; i < DIV_ROUND_UP(ar->fw.mem_blocks, BITS_PER_LONG); i++)
ar->mem_bitmap[i] = 0;
rcu_read_lock();
list_for_each_entry_rcu(cvif, &ar->vif_list, list) {
spin_lock_bh(&ar->beacon_lock);
dev_kfree_skb_any(cvif->beacon);
cvif->beacon = NULL;
spin_unlock_bh(&ar->beacon_lock);
}
rcu_read_unlock();
atomic_set(&ar->tx_ampdu_upload, 0);
atomic_set(&ar->tx_ampdu_scheduler, 0);
atomic_set(&ar->tx_total_pending, 0);
atomic_set(&ar->tx_total_queued, 0);
atomic_set(&ar->mem_free_blocks, ar->fw.mem_blocks);
}
#define CARL9170_FILL_QUEUE(queue, ai_fs, cwmin, cwmax, _txop) \
do { \
queue.aifs = ai_fs; \
queue.cw_min = cwmin; \
queue.cw_max = cwmax; \
queue.txop = _txop; \
} while (0)
static int carl9170_op_start(struct ieee80211_hw *hw)
{
struct ar9170 *ar = hw->priv;
int err, i;
mutex_lock(&ar->mutex);
carl9170_zap_queues(ar);
/* reset QoS defaults */
CARL9170_FILL_QUEUE(ar->edcf[0], 3, 15, 1023, 0); /* BEST EFFORT */
CARL9170_FILL_QUEUE(ar->edcf[1], 2, 7, 15, 94); /* VIDEO */
CARL9170_FILL_QUEUE(ar->edcf[2], 2, 3, 7, 47); /* VOICE */
CARL9170_FILL_QUEUE(ar->edcf[3], 7, 15, 1023, 0); /* BACKGROUND */
CARL9170_FILL_QUEUE(ar->edcf[4], 2, 3, 7, 0); /* SPECIAL */
ar->current_factor = ar->current_density = -1;
/* "The first key is unique." */
ar->usedkeys = 1;
ar->filter_state = 0;
ar->ps.last_action = jiffies;
ar->ps.last_slept = jiffies;
ar->erp_mode = CARL9170_ERP_AUTO;
ar->rx_software_decryption = false;
ar->disable_offload = false;
for (i = 0; i < ar->hw->queues; i++) {
ar->queue_stop_timeout[i] = jiffies;
ar->max_queue_stop_timeout[i] = 0;
}
atomic_set(&ar->mem_allocs, 0);
err = carl9170_usb_open(ar);
if (err)
goto out;
err = carl9170_init_mac(ar);
if (err)
goto out;
err = carl9170_set_qos(ar);
if (err)
goto out;
if (ar->fw.rx_filter) {
err = carl9170_rx_filter(ar, CARL9170_RX_FILTER_OTHER_RA |
CARL9170_RX_FILTER_CTL_OTHER | CARL9170_RX_FILTER_BAD);
if (err)
goto out;
}
err = carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER,
AR9170_DMA_TRIGGER_RXQ);
if (err)
goto out;
/* Clear key-cache */
for (i = 0; i < AR9170_CAM_MAX_USER + 4; i++) {
err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE,
0, NULL, 0);
if (err)
goto out;
err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE,
1, NULL, 0);
if (err)
goto out;
if (i < AR9170_CAM_MAX_USER) {
err = carl9170_disable_key(ar, i);
if (err)
goto out;
}
}
carl9170_set_state_when(ar, CARL9170_IDLE, CARL9170_STARTED);
ieee80211_wake_queues(ar->hw);
err = 0;
out:
mutex_unlock(&ar->mutex);
return err;
}
static void carl9170_cancel_worker(struct ar9170 *ar)
{
cancel_delayed_work_sync(&ar->tx_janitor);
#ifdef CONFIG_CARL9170_LEDS
cancel_delayed_work_sync(&ar->led_work);
#endif /* CONFIG_CARL9170_LEDS */
cancel_work_sync(&ar->ps_work);
cancel_work_sync(&ar->ping_work);
cancel_work_sync(&ar->ampdu_work);
}
static void carl9170_op_stop(struct ieee80211_hw *hw)
{
struct ar9170 *ar = hw->priv;
carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE);
ieee80211_stop_queues(ar->hw);
mutex_lock(&ar->mutex);
if (IS_ACCEPTING_CMD(ar)) {
rcu_assign_pointer(ar->beacon_iter, NULL);
carl9170_led_set_state(ar, 0);
/* stop DMA */
carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER, 0);
carl9170_usb_stop(ar);
}
carl9170_zap_queues(ar);
mutex_unlock(&ar->mutex);
carl9170_cancel_worker(ar);
}
static void carl9170_restart_work(struct work_struct *work)
{
struct ar9170 *ar = container_of(work, struct ar9170,
restart_work);
int err;
ar->usedkeys = 0;
ar->filter_state = 0;
carl9170_cancel_worker(ar);
mutex_lock(&ar->mutex);
err = carl9170_usb_restart(ar);
if (net_ratelimit()) {
if (err) {
dev_err(&ar->udev->dev, "Failed to restart device "
" (%d).\n", err);
} else {
dev_info(&ar->udev->dev, "device restarted "
"successfully.\n");
}
}
carl9170_zap_queues(ar);
mutex_unlock(&ar->mutex);
if (!err) {
ar->restart_counter++;
atomic_set(&ar->pending_restarts, 0);
ieee80211_restart_hw(ar->hw);
} else {
/*
* The reset was unsuccessful and the device seems to
* be dead. But there's still one option: a low-level
* usb subsystem reset...
*/
carl9170_usb_reset(ar);
}
}
void carl9170_restart(struct ar9170 *ar, const enum carl9170_restart_reasons r)
{
carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE);
/*
* Sometimes, an error can trigger several different reset events.
* By ignoring these *surplus* reset events, the device won't be
* killed again, right after it has recovered.
*/
if (atomic_inc_return(&ar->pending_restarts) > 1) {
dev_dbg(&ar->udev->dev, "ignoring restart (%d)\n", r);
return;
}
ieee80211_stop_queues(ar->hw);
dev_err(&ar->udev->dev, "restart device (%d)\n", r);
if (!WARN_ON(r == CARL9170_RR_NO_REASON) ||
!WARN_ON(r >= __CARL9170_RR_LAST))
ar->last_reason = r;
if (!ar->registered)
return;
if (IS_ACCEPTING_CMD(ar) && !ar->needs_full_reset)
ieee80211_queue_work(ar->hw, &ar->restart_work);
else
carl9170_usb_reset(ar);
/*
* At this point, the device instance might have vanished/disabled.
* So, don't put any code which access the ar9170 struct
* without proper protection.
*/
}
static void carl9170_ping_work(struct work_struct *work)
{
struct ar9170 *ar = container_of(work, struct ar9170, ping_work);
int err;
if (!IS_STARTED(ar))
return;
mutex_lock(&ar->mutex);
err = carl9170_echo_test(ar, 0xdeadbeef);
if (err)
carl9170_restart(ar, CARL9170_RR_UNRESPONSIVE_DEVICE);
mutex_unlock(&ar->mutex);
}
static int carl9170_init_interface(struct ar9170 *ar,
struct ieee80211_vif *vif)
{
struct ath_common *common = &ar->common;
int err;
if (!vif) {
WARN_ON_ONCE(IS_STARTED(ar));
return 0;
}
memcpy(common->macaddr, vif->addr, ETH_ALEN);
if (modparam_nohwcrypt ||
((vif->type != NL80211_IFTYPE_STATION) &&
(vif->type != NL80211_IFTYPE_AP))) {
ar->rx_software_decryption = true;
ar->disable_offload = true;
}
err = carl9170_set_operating_mode(ar);
return err;
}
static int carl9170_op_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv;
struct ieee80211_vif *main_vif;
struct ar9170 *ar = hw->priv;
int vif_id = -1, err = 0;
mutex_lock(&ar->mutex);
rcu_read_lock();
if (vif_priv->active) {
/*
* Skip the interface structure initialization,
* if the vif survived the _restart call.
*/
vif_id = vif_priv->id;
vif_priv->enable_beacon = false;
spin_lock_bh(&ar->beacon_lock);
dev_kfree_skb_any(vif_priv->beacon);
vif_priv->beacon = NULL;
spin_unlock_bh(&ar->beacon_lock);
goto init;
}
main_vif = carl9170_get_main_vif(ar);
if (main_vif) {
switch (main_vif->type) {
case NL80211_IFTYPE_STATION:
if (vif->type == NL80211_IFTYPE_STATION)
break;
err = -EBUSY;
rcu_read_unlock();
goto unlock;
case NL80211_IFTYPE_AP:
if ((vif->type == NL80211_IFTYPE_STATION) ||
(vif->type == NL80211_IFTYPE_WDS) ||
(vif->type == NL80211_IFTYPE_AP))
break;
err = -EBUSY;
rcu_read_unlock();
goto unlock;
default:
rcu_read_unlock();
goto unlock;
}
}
vif_id = bitmap_find_free_region(&ar->vif_bitmap, ar->fw.vif_num, 0);
if (vif_id < 0) {
rcu_read_unlock();
err = -ENOSPC;
goto unlock;
}
BUG_ON(ar->vif_priv[vif_id].id != vif_id);
vif_priv->active = true;
vif_priv->id = vif_id;
vif_priv->enable_beacon = false;
ar->vifs++;
list_add_tail_rcu(&vif_priv->list, &ar->vif_list);
rcu_assign_pointer(ar->vif_priv[vif_id].vif, vif);
init:
if (carl9170_get_main_vif(ar) == vif) {
rcu_assign_pointer(ar->beacon_iter, vif_priv);
rcu_read_unlock();
err = carl9170_init_interface(ar, vif);
if (err)
goto unlock;
} else {
rcu_read_unlock();
err = carl9170_mod_virtual_mac(ar, vif_id, vif->addr);
if (err)
goto unlock;
}
if (ar->fw.tx_seq_table) {
err = carl9170_write_reg(ar, ar->fw.tx_seq_table + vif_id * 4,
0);
if (err)
goto unlock;
}
unlock:
if (err && (vif_id >= 0)) {
vif_priv->active = false;
bitmap_release_region(&ar->vif_bitmap, vif_id, 0);
ar->vifs--;
rcu_assign_pointer(ar->vif_priv[vif_id].vif, NULL);
list_del_rcu(&vif_priv->list);
mutex_unlock(&ar->mutex);
synchronize_rcu();
} else {
if (ar->vifs > 1)
ar->ps.off_override |= PS_OFF_VIF;
mutex_unlock(&ar->mutex);
}
return err;
}
static void carl9170_op_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv;
struct ieee80211_vif *main_vif;
struct ar9170 *ar = hw->priv;
unsigned int id;
mutex_lock(&ar->mutex);
if (WARN_ON_ONCE(!vif_priv->active))
goto unlock;
ar->vifs--;
rcu_read_lock();
main_vif = carl9170_get_main_vif(ar);
id = vif_priv->id;
vif_priv->active = false;
WARN_ON(vif_priv->enable_beacon);
vif_priv->enable_beacon = false;
list_del_rcu(&vif_priv->list);
rcu_assign_pointer(ar->vif_priv[id].vif, NULL);
if (vif == main_vif) {
rcu_read_unlock();
if (ar->vifs) {
WARN_ON(carl9170_init_interface(ar,
carl9170_get_main_vif(ar)));
} else {
carl9170_set_operating_mode(ar);
}
} else {
rcu_read_unlock();
WARN_ON(carl9170_mod_virtual_mac(ar, id, NULL));
}
carl9170_update_beacon(ar, false);
carl9170_flush_cab(ar, id);
spin_lock_bh(&ar->beacon_lock);
dev_kfree_skb_any(vif_priv->beacon);
vif_priv->beacon = NULL;
spin_unlock_bh(&ar->beacon_lock);
bitmap_release_region(&ar->vif_bitmap, id, 0);
carl9170_set_beacon_timers(ar);
if (ar->vifs == 1)
ar->ps.off_override &= ~PS_OFF_VIF;
unlock:
mutex_unlock(&ar->mutex);
synchronize_rcu();
}
void carl9170_ps_check(struct ar9170 *ar)
{
ieee80211_queue_work(ar->hw, &ar->ps_work);
}
/* caller must hold ar->mutex */
static int carl9170_ps_update(struct ar9170 *ar)
{
bool ps = false;
int err = 0;
if (!ar->ps.off_override)
ps = (ar->hw->conf.flags & IEEE80211_CONF_PS);
if (ps != ar->ps.state) {
err = carl9170_powersave(ar, ps);
if (err)
return err;
if (ar->ps.state && !ps) {
ar->ps.sleep_ms = jiffies_to_msecs(jiffies -
ar->ps.last_action);
}
if (ps)
ar->ps.last_slept = jiffies;
ar->ps.last_action = jiffies;
ar->ps.state = ps;
}
return 0;
}
static void carl9170_ps_work(struct work_struct *work)
{
struct ar9170 *ar = container_of(work, struct ar9170,
ps_work);
mutex_lock(&ar->mutex);
if (IS_STARTED(ar))
WARN_ON_ONCE(carl9170_ps_update(ar) != 0);
mutex_unlock(&ar->mutex);
}
static int carl9170_op_config(struct ieee80211_hw *hw, u32 changed)
{
struct ar9170 *ar = hw->priv;
int err = 0;
mutex_lock(&ar->mutex);
if (changed & IEEE80211_CONF_CHANGE_LISTEN_INTERVAL) {
/* TODO */
err = 0;
}
if (changed & IEEE80211_CONF_CHANGE_PS) {
err = carl9170_ps_update(ar);
if (err)
goto out;
}
if (changed & IEEE80211_CONF_CHANGE_POWER) {
/* TODO */
err = 0;
}
if (changed & IEEE80211_CONF_CHANGE_SMPS) {
/* TODO */
err = 0;
}
if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
/* adjust slot time for 5 GHz */
err = carl9170_set_slot_time(ar);
if (err)
goto out;
err = carl9170_set_channel(ar, hw->conf.channel,
hw->conf.channel_type, CARL9170_RFI_NONE);
if (err)
goto out;
err = carl9170_set_dyn_sifs_ack(ar);
if (err)
goto out;
err = carl9170_set_rts_cts_rate(ar);
if (err)
goto out;
}
out:
mutex_unlock(&ar->mutex);
return err;
}
static u64 carl9170_op_prepare_multicast(struct ieee80211_hw *hw,
struct netdev_hw_addr_list *mc_list)
{
struct netdev_hw_addr *ha;
u64 mchash;
/* always get broadcast frames */
mchash = 1ULL << (0xff >> 2);
netdev_hw_addr_list_for_each(ha, mc_list)
mchash |= 1ULL << (ha->addr[5] >> 2);
return mchash;
}
static void carl9170_op_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *new_flags,
u64 multicast)
{
struct ar9170 *ar = hw->priv;
/* mask supported flags */
*new_flags &= FIF_ALLMULTI | ar->rx_filter_caps;
if (!IS_ACCEPTING_CMD(ar))
return;
mutex_lock(&ar->mutex);
ar->filter_state = *new_flags;
/*
* We can support more by setting the sniffer bit and
* then checking the error flags, later.
*/
if (changed_flags & FIF_ALLMULTI && *new_flags & FIF_ALLMULTI)
multicast = ~0ULL;
if (multicast != ar->cur_mc_hash)
WARN_ON(carl9170_update_multicast(ar, multicast));
if (changed_flags & (FIF_OTHER_BSS | FIF_PROMISC_IN_BSS)) {
ar->sniffer_enabled = !!(*new_flags &
(FIF_OTHER_BSS | FIF_PROMISC_IN_BSS));
WARN_ON(carl9170_set_operating_mode(ar));
}
if (ar->fw.rx_filter && changed_flags & ar->rx_filter_caps) {
u32 rx_filter = 0;
if (!(*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL)))
rx_filter |= CARL9170_RX_FILTER_BAD;
if (!(*new_flags & FIF_CONTROL))
rx_filter |= CARL9170_RX_FILTER_CTL_OTHER;
if (!(*new_flags & FIF_PSPOLL))
rx_filter |= CARL9170_RX_FILTER_CTL_PSPOLL;
if (!(*new_flags & (FIF_OTHER_BSS | FIF_PROMISC_IN_BSS))) {
rx_filter |= CARL9170_RX_FILTER_OTHER_RA;
rx_filter |= CARL9170_RX_FILTER_DECRY_FAIL;
}
WARN_ON(carl9170_rx_filter(ar, rx_filter));
}
mutex_unlock(&ar->mutex);
}
static void carl9170_op_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf,
u32 changed)
{
struct ar9170 *ar = hw->priv;
struct ath_common *common = &ar->common;
int err = 0;
struct carl9170_vif_info *vif_priv;
struct ieee80211_vif *main_vif;
mutex_lock(&ar->mutex);
vif_priv = (void *) vif->drv_priv;
main_vif = carl9170_get_main_vif(ar);
if (WARN_ON(!main_vif))
goto out;
if (changed & BSS_CHANGED_BEACON_ENABLED) {
struct carl9170_vif_info *iter;
int i = 0;
vif_priv->enable_beacon = bss_conf->enable_beacon;
rcu_read_lock();
list_for_each_entry_rcu(iter, &ar->vif_list, list) {
if (iter->active && iter->enable_beacon)
i++;
}
rcu_read_unlock();
ar->beacon_enabled = i;
}
if (changed & BSS_CHANGED_BEACON) {
err = carl9170_update_beacon(ar, false);
if (err)
goto out;
}
if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON |
BSS_CHANGED_BEACON_INT)) {
if (main_vif != vif) {
bss_conf->beacon_int = main_vif->bss_conf.beacon_int;
bss_conf->dtim_period = main_vif->bss_conf.dtim_period;
}
/*
* Therefore a hard limit for the broadcast traffic should
* prevent false alarms.
*/
if (vif->type != NL80211_IFTYPE_STATION &&
(bss_conf->beacon_int * bss_conf->dtim_period >=
(CARL9170_QUEUE_STUCK_TIMEOUT / 2))) {
err = -EINVAL;
goto out;
}
err = carl9170_set_beacon_timers(ar);
if (err)
goto out;
}
if (changed & BSS_CHANGED_HT) {
/* TODO */
err = 0;
if (err)
goto out;
}
if (main_vif != vif)
goto out;
/*
* The following settings can only be changed by the
* master interface.
*/
if (changed & BSS_CHANGED_BSSID) {
memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
err = carl9170_set_operating_mode(ar);
if (err)
goto out;
}
if (changed & BSS_CHANGED_ASSOC) {
ar->common.curaid = bss_conf->aid;
err = carl9170_set_beacon_timers(ar);
if (err)
goto out;
}
if (changed & BSS_CHANGED_ERP_SLOT) {
err = carl9170_set_slot_time(ar);
if (err)
goto out;
}
if (changed & BSS_CHANGED_BASIC_RATES) {
err = carl9170_set_mac_rates(ar);
if (err)
goto out;
}
out:
WARN_ON_ONCE(err && IS_STARTED(ar));
mutex_unlock(&ar->mutex);
}
static u64 carl9170_op_get_tsf(struct ieee80211_hw *hw)
{
struct ar9170 *ar = hw->priv;
struct carl9170_tsf_rsp tsf;
int err;
mutex_lock(&ar->mutex);
err = carl9170_exec_cmd(ar, CARL9170_CMD_READ_TSF,
0, NULL, sizeof(tsf), &tsf);
mutex_unlock(&ar->mutex);
if (WARN_ON(err))
return 0;
return le64_to_cpu(tsf.tsf_64);
}
static int carl9170_op_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct ar9170 *ar = hw->priv;
int err = 0, i;
u8 ktype;
if (ar->disable_offload || !vif)
return -EOPNOTSUPP;
/*
* We have to fall back to software encryption, whenever
* the user choose to participates in an IBSS or is connected
* to more than one network.
*
* This is very unfortunate, because some machines cannot handle
* the high througput speed in 802.11n networks.
*/
if (!is_main_vif(ar, vif))
goto err_softw;
/*
* While the hardware supports *catch-all* key, for offloading
* group-key en-/de-cryption. The way of how the hardware
* decides which keyId maps to which key, remains a mystery...
*/
if ((vif->type != NL80211_IFTYPE_STATION &&
vif->type != NL80211_IFTYPE_ADHOC) &&
!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
return -EOPNOTSUPP;
switch (key->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
ktype = AR9170_ENC_ALG_WEP64;
break;
case WLAN_CIPHER_SUITE_WEP104:
ktype = AR9170_ENC_ALG_WEP128;
break;
case WLAN_CIPHER_SUITE_TKIP:
ktype = AR9170_ENC_ALG_TKIP;
break;
case WLAN_CIPHER_SUITE_CCMP:
ktype = AR9170_ENC_ALG_AESCCMP;
break;
default:
return -EOPNOTSUPP;
}
mutex_lock(&ar->mutex);
if (cmd == SET_KEY) {
if (!IS_STARTED(ar)) {
err = -EOPNOTSUPP;
goto out;
}
if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
sta = NULL;
i = 64 + key->keyidx;
} else {
for (i = 0; i < 64; i++)
if (!(ar->usedkeys & BIT(i)))
break;
if (i == 64)
goto err_softw;
}
key->hw_key_idx = i;
err = carl9170_upload_key(ar, i, sta ? sta->addr : NULL,
ktype, 0, key->key,
min_t(u8, 16, key->keylen));
if (err)
goto out;
if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
err = carl9170_upload_key(ar, i, sta ? sta->addr :
NULL, ktype, 1,
key->key + 16, 16);
if (err)
goto out;
/*
* hardware is not capable generating MMIC
* of fragmented frames!
*/
key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
}
if (i < 64)
ar->usedkeys |= BIT(i);
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
} else {
if (!IS_STARTED(ar)) {
/* The device is gone... together with the key ;-) */
err = 0;
goto out;
}
if (key->hw_key_idx < 64) {
ar->usedkeys &= ~BIT(key->hw_key_idx);
} else {
err = carl9170_upload_key(ar, key->hw_key_idx, NULL,
AR9170_ENC_ALG_NONE, 0,
NULL, 0);
if (err)
goto out;
if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
err = carl9170_upload_key(ar, key->hw_key_idx,
NULL,
AR9170_ENC_ALG_NONE,
1, NULL, 0);
if (err)
goto out;
}
}
err = carl9170_disable_key(ar, key->hw_key_idx);
if (err)
goto out;
}
out:
mutex_unlock(&ar->mutex);
return err;
err_softw:
if (!ar->rx_software_decryption) {
ar->rx_software_decryption = true;
carl9170_set_operating_mode(ar);
}
mutex_unlock(&ar->mutex);
return -ENOSPC;
}
static int carl9170_op_sta_add(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
unsigned int i;
if (sta->ht_cap.ht_supported) {
if (sta->ht_cap.ampdu_density > 6) {
/*
* HW does support 16us AMPDU density.
* No HT-Xmit for station.
*/
return 0;
}
for (i = 0; i < CARL9170_NUM_TID; i++)
rcu_assign_pointer(sta_info->agg[i], NULL);
sta_info->ampdu_max_len = 1 << (3 + sta->ht_cap.ampdu_factor);
sta_info->ht_sta = true;
}
return 0;
}
static int carl9170_op_sta_remove(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct ar9170 *ar = hw->priv;
struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
unsigned int i;
bool cleanup = false;
if (sta->ht_cap.ht_supported) {
sta_info->ht_sta = false;
rcu_read_lock();
for (i = 0; i < CARL9170_NUM_TID; i++) {
struct carl9170_sta_tid *tid_info;
tid_info = rcu_dereference(sta_info->agg[i]);
rcu_assign_pointer(sta_info->agg[i], NULL);
if (!tid_info)
continue;
spin_lock_bh(&ar->tx_ampdu_list_lock);
if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN)
tid_info->state = CARL9170_TID_STATE_SHUTDOWN;
spin_unlock_bh(&ar->tx_ampdu_list_lock);
cleanup = true;
}
rcu_read_unlock();
if (cleanup)
carl9170_ampdu_gc(ar);
}
return 0;
}
static int carl9170_op_conf_tx(struct ieee80211_hw *hw, u16 queue,
const struct ieee80211_tx_queue_params *param)
{
struct ar9170 *ar = hw->priv;
int ret;
mutex_lock(&ar->mutex);
if (queue < ar->hw->queues) {
memcpy(&ar->edcf[ar9170_qmap[queue]], param, sizeof(*param));
ret = carl9170_set_qos(ar);
} else {
ret = -EINVAL;
}
mutex_unlock(&ar->mutex);
return ret;
}
static void carl9170_ampdu_work(struct work_struct *work)
{
struct ar9170 *ar = container_of(work, struct ar9170,
ampdu_work);
if (!IS_STARTED(ar))
return;
mutex_lock(&ar->mutex);
carl9170_ampdu_gc(ar);
mutex_unlock(&ar->mutex);
}
static int carl9170_op_ampdu_action(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum ieee80211_ampdu_mlme_action action,
struct ieee80211_sta *sta,
u16 tid, u16 *ssn, u8 buf_size)
{
struct ar9170 *ar = hw->priv;
struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
struct carl9170_sta_tid *tid_info;
if (modparam_noht)
return -EOPNOTSUPP;
switch (action) {
case IEEE80211_AMPDU_TX_START:
if (!sta_info->ht_sta)
return -EOPNOTSUPP;
rcu_read_lock();
if (rcu_dereference(sta_info->agg[tid])) {
rcu_read_unlock();
return -EBUSY;
}
tid_info = kzalloc(sizeof(struct carl9170_sta_tid),
GFP_ATOMIC);
if (!tid_info) {
rcu_read_unlock();
return -ENOMEM;
}
tid_info->hsn = tid_info->bsn = tid_info->snx = (*ssn);
tid_info->state = CARL9170_TID_STATE_PROGRESS;
tid_info->tid = tid;
tid_info->max = sta_info->ampdu_max_len;
INIT_LIST_HEAD(&tid_info->list);
INIT_LIST_HEAD(&tid_info->tmp_list);
skb_queue_head_init(&tid_info->queue);
spin_lock_init(&tid_info->lock);
spin_lock_bh(&ar->tx_ampdu_list_lock);
ar->tx_ampdu_list_len++;
list_add_tail_rcu(&tid_info->list, &ar->tx_ampdu_list);
rcu_assign_pointer(sta_info->agg[tid], tid_info);
spin_unlock_bh(&ar->tx_ampdu_list_lock);
rcu_read_unlock();
ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_STOP:
rcu_read_lock();
tid_info = rcu_dereference(sta_info->agg[tid]);
if (tid_info) {
spin_lock_bh(&ar->tx_ampdu_list_lock);
if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN)
tid_info->state = CARL9170_TID_STATE_SHUTDOWN;
spin_unlock_bh(&ar->tx_ampdu_list_lock);
}
rcu_assign_pointer(sta_info->agg[tid], NULL);
rcu_read_unlock();
ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
ieee80211_queue_work(ar->hw, &ar->ampdu_work);
break;
case IEEE80211_AMPDU_TX_OPERATIONAL:
rcu_read_lock();
tid_info = rcu_dereference(sta_info->agg[tid]);
sta_info->stats[tid].clear = true;
if (tid_info) {
bitmap_zero(tid_info->bitmap, CARL9170_BAW_SIZE);
tid_info->state = CARL9170_TID_STATE_IDLE;
}
rcu_read_unlock();
if (WARN_ON_ONCE(!tid_info))
return -EFAULT;
break;
case IEEE80211_AMPDU_RX_START:
case IEEE80211_AMPDU_RX_STOP:
/* Handled by hardware */
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
#ifdef CONFIG_CARL9170_WPC
static int carl9170_register_wps_button(struct ar9170 *ar)
{
struct input_dev *input;
int err;
if (!(ar->features & CARL9170_WPS_BUTTON))
return 0;
input = input_allocate_device();
if (!input)
return -ENOMEM;
snprintf(ar->wps.name, sizeof(ar->wps.name), "%s WPS Button",
wiphy_name(ar->hw->wiphy));
snprintf(ar->wps.phys, sizeof(ar->wps.phys),
"ieee80211/%s/input0", wiphy_name(ar->hw->wiphy));
input->name = ar->wps.name;
input->phys = ar->wps.phys;
input->id.bustype = BUS_USB;
input->dev.parent = &ar->hw->wiphy->dev;
input_set_capability(input, EV_KEY, KEY_WPS_BUTTON);
err = input_register_device(input);
if (err) {
input_free_device(input);
return err;
}
ar->wps.pbc = input;
return 0;
}
#endif /* CONFIG_CARL9170_WPC */
static int carl9170_op_get_survey(struct ieee80211_hw *hw, int idx,
struct survey_info *survey)
{
struct ar9170 *ar = hw->priv;
int err;
if (idx != 0)
return -ENOENT;
mutex_lock(&ar->mutex);
err = carl9170_get_noisefloor(ar);
mutex_unlock(&ar->mutex);
if (err)
return err;
survey->channel = ar->channel;
survey->filled = SURVEY_INFO_NOISE_DBM;
survey->noise = ar->noise[0];
return 0;
}
static void carl9170_op_flush(struct ieee80211_hw *hw, bool drop)
{
struct ar9170 *ar = hw->priv;
unsigned int vid;
mutex_lock(&ar->mutex);
for_each_set_bit(vid, &ar->vif_bitmap, ar->fw.vif_num)
carl9170_flush_cab(ar, vid);
carl9170_flush(ar, drop);
mutex_unlock(&ar->mutex);
}
static int carl9170_op_get_stats(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats)
{
struct ar9170 *ar = hw->priv;
memset(stats, 0, sizeof(*stats));
stats->dot11ACKFailureCount = ar->tx_ack_failures;
stats->dot11FCSErrorCount = ar->tx_fcs_errors;
return 0;
}
static void carl9170_op_sta_notify(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum sta_notify_cmd cmd,
struct ieee80211_sta *sta)
{
struct ar9170 *ar = hw->priv;
struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
struct sk_buff *skb, *tmp;
struct sk_buff_head free;
int i;
switch (cmd) {
case STA_NOTIFY_SLEEP:
/*
* Since the peer is no longer listening, we have to return
* as many SKBs as possible back to the mac80211 stack.
* It will deal with the retry procedure, once the peer
* has become available again.
*
* NB: Ideally, the driver should return the all frames in
* the correct, ascending order. However, I think that this
* functionality should be implemented in the stack and not
* here...
*/
__skb_queue_head_init(&free);
if (sta->ht_cap.ht_supported) {
rcu_read_lock();
for (i = 0; i < CARL9170_NUM_TID; i++) {
struct carl9170_sta_tid *tid_info;
tid_info = rcu_dereference(sta_info->agg[i]);
if (!tid_info)
continue;
spin_lock_bh(&ar->tx_ampdu_list_lock);
if (tid_info->state >
CARL9170_TID_STATE_SUSPEND)
tid_info->state =
CARL9170_TID_STATE_SUSPEND;
spin_unlock_bh(&ar->tx_ampdu_list_lock);
spin_lock_bh(&tid_info->lock);
while ((skb = __skb_dequeue(&tid_info->queue)))
__skb_queue_tail(&free, skb);
spin_unlock_bh(&tid_info->lock);
}
rcu_read_unlock();
}
for (i = 0; i < ar->hw->queues; i++) {
spin_lock_bh(&ar->tx_pending[i].lock);
skb_queue_walk_safe(&ar->tx_pending[i], skb, tmp) {
struct _carl9170_tx_superframe *super;
struct ieee80211_hdr *hdr;
struct ieee80211_tx_info *info;
super = (void *) skb->data;
hdr = (void *) super->frame_data;
if (compare_ether_addr(hdr->addr1, sta->addr))
continue;
__skb_unlink(skb, &ar->tx_pending[i]);
info = IEEE80211_SKB_CB(skb);
if (info->flags & IEEE80211_TX_CTL_AMPDU)
atomic_dec(&ar->tx_ampdu_upload);
carl9170_tx_status(ar, skb, false);
}
spin_unlock_bh(&ar->tx_pending[i].lock);
}
while ((skb = __skb_dequeue(&free)))
carl9170_tx_status(ar, skb, false);
break;
case STA_NOTIFY_AWAKE:
if (!sta->ht_cap.ht_supported)
return;
rcu_read_lock();
for (i = 0; i < CARL9170_NUM_TID; i++) {
struct carl9170_sta_tid *tid_info;
tid_info = rcu_dereference(sta_info->agg[i]);
if (!tid_info)
continue;
if ((tid_info->state == CARL9170_TID_STATE_SUSPEND))
tid_info->state = CARL9170_TID_STATE_IDLE;
}
rcu_read_unlock();
break;
}
}
static const struct ieee80211_ops carl9170_ops = {
.start = carl9170_op_start,
.stop = carl9170_op_stop,
.tx = carl9170_op_tx,
.flush = carl9170_op_flush,
.add_interface = carl9170_op_add_interface,
.remove_interface = carl9170_op_remove_interface,
.config = carl9170_op_config,
.prepare_multicast = carl9170_op_prepare_multicast,
.configure_filter = carl9170_op_configure_filter,
.conf_tx = carl9170_op_conf_tx,
.bss_info_changed = carl9170_op_bss_info_changed,
.get_tsf = carl9170_op_get_tsf,
.set_key = carl9170_op_set_key,
.sta_add = carl9170_op_sta_add,
.sta_remove = carl9170_op_sta_remove,
.sta_notify = carl9170_op_sta_notify,
.get_survey = carl9170_op_get_survey,
.get_stats = carl9170_op_get_stats,
.ampdu_action = carl9170_op_ampdu_action,
};
void *carl9170_alloc(size_t priv_size)
{
struct ieee80211_hw *hw;
struct ar9170 *ar;
struct sk_buff *skb;
int i;
/*
* this buffer is used for rx stream reconstruction.
* Under heavy load this device (or the transport layer?)
* tends to split the streams into separate rx descriptors.
*/
skb = __dev_alloc_skb(AR9170_RX_STREAM_MAX_SIZE, GFP_KERNEL);
if (!skb)
goto err_nomem;
hw = ieee80211_alloc_hw(priv_size, &carl9170_ops);
if (!hw)
goto err_nomem;
ar = hw->priv;
ar->hw = hw;
ar->rx_failover = skb;
memset(&ar->rx_plcp, 0, sizeof(struct ar9170_rx_head));
ar->rx_has_plcp = false;
/*
* Here's a hidden pitfall!
*
* All 4 AC queues work perfectly well under _legacy_ operation.
* However as soon as aggregation is enabled, the traffic flow
* gets very bumpy. Therefore we have to _switch_ to a
* software AC with a single HW queue.
*/
hw->queues = __AR9170_NUM_TXQ;
mutex_init(&ar->mutex);
spin_lock_init(&ar->beacon_lock);
spin_lock_init(&ar->cmd_lock);
spin_lock_init(&ar->tx_stats_lock);
spin_lock_init(&ar->tx_ampdu_list_lock);
spin_lock_init(&ar->mem_lock);
spin_lock_init(&ar->state_lock);
atomic_set(&ar->pending_restarts, 0);
ar->vifs = 0;
for (i = 0; i < ar->hw->queues; i++) {
skb_queue_head_init(&ar->tx_status[i]);
skb_queue_head_init(&ar->tx_pending[i]);
}
INIT_WORK(&ar->ps_work, carl9170_ps_work);
INIT_WORK(&ar->ping_work, carl9170_ping_work);
INIT_WORK(&ar->restart_work, carl9170_restart_work);
INIT_WORK(&ar->ampdu_work, carl9170_ampdu_work);
INIT_DELAYED_WORK(&ar->tx_janitor, carl9170_tx_janitor);
INIT_LIST_HEAD(&ar->tx_ampdu_list);
rcu_assign_pointer(ar->tx_ampdu_iter,
(struct carl9170_sta_tid *) &ar->tx_ampdu_list);
bitmap_zero(&ar->vif_bitmap, ar->fw.vif_num);
INIT_LIST_HEAD(&ar->vif_list);
init_completion(&ar->tx_flush);
/*
* Note:
* IBSS/ADHOC and AP mode are only enabled, if the firmware
* supports these modes. The code which will add the
* additional interface_modes is in fw.c.
*/
hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_P2P_CLIENT);
hw->flags |= IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_REPORTS_TX_ACK_STATUS |
IEEE80211_HW_SUPPORTS_PS |
IEEE80211_HW_PS_NULLFUNC_STACK |
IEEE80211_HW_SIGNAL_DBM;
if (!modparam_noht) {
/*
* see the comment above, why we allow the user
* to disable HT by a module parameter.
*/
hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
}
hw->extra_tx_headroom = sizeof(struct _carl9170_tx_superframe);
hw->sta_data_size = sizeof(struct carl9170_sta_info);
hw->vif_data_size = sizeof(struct carl9170_vif_info);
hw->max_rates = CARL9170_TX_MAX_RATES;
hw->max_rate_tries = CARL9170_TX_USER_RATE_TRIES;
for (i = 0; i < ARRAY_SIZE(ar->noise); i++)
ar->noise[i] = -95; /* ATH_DEFAULT_NOISE_FLOOR */
hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
return ar;
err_nomem:
kfree_skb(skb);
return ERR_PTR(-ENOMEM);
}
static int carl9170_read_eeprom(struct ar9170 *ar)
{
#define RW 8 /* number of words to read at once */
#define RB (sizeof(u32) * RW)
u8 *eeprom = (void *)&ar->eeprom;
__le32 offsets[RW];
int i, j, err;
BUILD_BUG_ON(sizeof(ar->eeprom) & 3);
BUILD_BUG_ON(RB > CARL9170_MAX_CMD_LEN - 4);
#ifndef __CHECKER__
/* don't want to handle trailing remains */
BUILD_BUG_ON(sizeof(ar->eeprom) % RB);
#endif
for (i = 0; i < sizeof(ar->eeprom)/RB; i++) {
for (j = 0; j < RW; j++)
offsets[j] = cpu_to_le32(AR9170_EEPROM_START +
RB * i + 4 * j);
err = carl9170_exec_cmd(ar, CARL9170_CMD_RREG,
RB, (u8 *) &offsets,
RB, eeprom + RB * i);
if (err)
return err;
}
#undef RW
#undef RB
return 0;
}
static int carl9170_parse_eeprom(struct ar9170 *ar)
{
struct ath_regulatory *regulatory = &ar->common.regulatory;
unsigned int rx_streams, tx_streams, tx_params = 0;
int bands = 0;
if (ar->eeprom.length == cpu_to_le16(0xffff))
return -ENODATA;
rx_streams = hweight8(ar->eeprom.rx_mask);
tx_streams = hweight8(ar->eeprom.tx_mask);
if (rx_streams != tx_streams) {
tx_params = IEEE80211_HT_MCS_TX_RX_DIFF;
WARN_ON(!(tx_streams >= 1 && tx_streams <=
IEEE80211_HT_MCS_TX_MAX_STREAMS));
tx_params = (tx_streams - 1) <<
IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
carl9170_band_2GHz.ht_cap.mcs.tx_params |= tx_params;
carl9170_band_5GHz.ht_cap.mcs.tx_params |= tx_params;
}
if (ar->eeprom.operating_flags & AR9170_OPFLAG_2GHZ) {
ar->hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
&carl9170_band_2GHz;
bands++;
}
if (ar->eeprom.operating_flags & AR9170_OPFLAG_5GHZ) {
ar->hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
&carl9170_band_5GHz;
bands++;
}
/*
* I measured this, a bandswitch takes roughly
* 135 ms and a frequency switch about 80.
*
* FIXME: measure these values again once EEPROM settings
* are used, that will influence them!
*/
if (bands == 2)
ar->hw->channel_change_time = 135 * 1000;
else
ar->hw->channel_change_time = 80 * 1000;
regulatory->current_rd = le16_to_cpu(ar->eeprom.reg_domain[0]);
regulatory->current_rd_ext = le16_to_cpu(ar->eeprom.reg_domain[1]);
/* second part of wiphy init */
SET_IEEE80211_PERM_ADDR(ar->hw, ar->eeprom.mac_address);
return bands ? 0 : -EINVAL;
}
static int carl9170_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ar9170 *ar = hw->priv;
return ath_reg_notifier_apply(wiphy, request, &ar->common.regulatory);
}
int carl9170_register(struct ar9170 *ar)
{
struct ath_regulatory *regulatory = &ar->common.regulatory;
int err = 0, i;
if (WARN_ON(ar->mem_bitmap))
return -EINVAL;
ar->mem_bitmap = kzalloc(roundup(ar->fw.mem_blocks, BITS_PER_LONG) *
sizeof(unsigned long), GFP_KERNEL);
if (!ar->mem_bitmap)
return -ENOMEM;
/* try to read EEPROM, init MAC addr */
err = carl9170_read_eeprom(ar);
if (err)
return err;
err = carl9170_fw_fix_eeprom(ar);
if (err)
return err;
err = carl9170_parse_eeprom(ar);
if (err)
return err;
err = ath_regd_init(regulatory, ar->hw->wiphy,
carl9170_reg_notifier);
if (err)
return err;
if (modparam_noht) {
carl9170_band_2GHz.ht_cap.ht_supported = false;
carl9170_band_5GHz.ht_cap.ht_supported = false;
}
for (i = 0; i < ar->fw.vif_num; i++) {
ar->vif_priv[i].id = i;
ar->vif_priv[i].vif = NULL;
}
err = ieee80211_register_hw(ar->hw);
if (err)
return err;
/* mac80211 interface is now registered */
ar->registered = true;
if (!ath_is_world_regd(regulatory))
regulatory_hint(ar->hw->wiphy, regulatory->alpha2);
#ifdef CONFIG_CARL9170_DEBUGFS
carl9170_debugfs_register(ar);
#endif /* CONFIG_CARL9170_DEBUGFS */
err = carl9170_led_init(ar);
if (err)
goto err_unreg;
#ifdef CONFIG_CARL9170_LEDS
err = carl9170_led_register(ar);
if (err)
goto err_unreg;
#endif /* CONFIG_CARL9170_LEDS */
#ifdef CONFIG_CARL9170_WPC
err = carl9170_register_wps_button(ar);
if (err)
goto err_unreg;
#endif /* CONFIG_CARL9170_WPC */
dev_info(&ar->udev->dev, "Atheros AR9170 is registered as '%s'\n",
wiphy_name(ar->hw->wiphy));
return 0;
err_unreg:
carl9170_unregister(ar);
return err;
}
void carl9170_unregister(struct ar9170 *ar)
{
if (!ar->registered)
return;
ar->registered = false;
#ifdef CONFIG_CARL9170_LEDS
carl9170_led_unregister(ar);
#endif /* CONFIG_CARL9170_LEDS */
#ifdef CONFIG_CARL9170_DEBUGFS
carl9170_debugfs_unregister(ar);
#endif /* CONFIG_CARL9170_DEBUGFS */
#ifdef CONFIG_CARL9170_WPC
if (ar->wps.pbc) {
input_unregister_device(ar->wps.pbc);
ar->wps.pbc = NULL;
}
#endif /* CONFIG_CARL9170_WPC */
carl9170_cancel_worker(ar);
cancel_work_sync(&ar->restart_work);
ieee80211_unregister_hw(ar->hw);
}
void carl9170_free(struct ar9170 *ar)
{
WARN_ON(ar->registered);
WARN_ON(IS_INITIALIZED(ar));
kfree_skb(ar->rx_failover);
ar->rx_failover = NULL;
kfree(ar->mem_bitmap);
ar->mem_bitmap = NULL;
mutex_destroy(&ar->mutex);
ieee80211_free_hw(ar->hw);
}