1857 lines
52 KiB
C
1857 lines
52 KiB
C
/*
|
|
* Copyright (c) 2010 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include "hw.h"
|
|
#include "ar9003_phy.h"
|
|
#include "ar9003_eeprom.h"
|
|
|
|
#define COMP_HDR_LEN 4
|
|
#define COMP_CKSUM_LEN 2
|
|
|
|
#define AR_CH0_TOP (0x00016288)
|
|
#define AR_CH0_TOP_XPABIASLVL (0x3)
|
|
#define AR_CH0_TOP_XPABIASLVL_S (8)
|
|
|
|
#define AR_CH0_THERM (0x00016290)
|
|
#define AR_CH0_THERM_SPARE (0x3f)
|
|
#define AR_CH0_THERM_SPARE_S (0)
|
|
|
|
#define AR_SWITCH_TABLE_COM_ALL (0xffff)
|
|
#define AR_SWITCH_TABLE_COM_ALL_S (0)
|
|
|
|
#define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
|
|
#define AR_SWITCH_TABLE_COM2_ALL_S (0)
|
|
|
|
#define AR_SWITCH_TABLE_ALL (0xfff)
|
|
#define AR_SWITCH_TABLE_ALL_S (0)
|
|
|
|
static const struct ar9300_eeprom ar9300_default = {
|
|
.eepromVersion = 2,
|
|
.templateVersion = 2,
|
|
.macAddr = {1, 2, 3, 4, 5, 6},
|
|
.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
|
.baseEepHeader = {
|
|
.regDmn = {0, 0x1f},
|
|
.txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
|
|
.opCapFlags = {
|
|
.opFlags = AR9300_OPFLAGS_11G | AR9300_OPFLAGS_11A,
|
|
.eepMisc = 0,
|
|
},
|
|
.rfSilent = 0,
|
|
.blueToothOptions = 0,
|
|
.deviceCap = 0,
|
|
.deviceType = 5, /* takes lower byte in eeprom location */
|
|
.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
|
|
.params_for_tuning_caps = {0, 0},
|
|
.featureEnable = 0x0c,
|
|
/*
|
|
* bit0 - enable tx temp comp - disabled
|
|
* bit1 - enable tx volt comp - disabled
|
|
* bit2 - enable fastClock - enabled
|
|
* bit3 - enable doubling - enabled
|
|
* bit4 - enable internal regulator - disabled
|
|
*/
|
|
.miscConfiguration = 0, /* bit0 - turn down drivestrength */
|
|
.eepromWriteEnableGpio = 3,
|
|
.wlanDisableGpio = 0,
|
|
.wlanLedGpio = 8,
|
|
.rxBandSelectGpio = 0xff,
|
|
.txrxgain = 0,
|
|
.swreg = 0,
|
|
},
|
|
.modalHeader2G = {
|
|
/* ar9300_modal_eep_header 2g */
|
|
/* 4 idle,t1,t2,b(4 bits per setting) */
|
|
.antCtrlCommon = 0x110,
|
|
/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
|
|
.antCtrlCommon2 = 0x22222,
|
|
|
|
/*
|
|
* antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
|
|
* rx1, rx12, b (2 bits each)
|
|
*/
|
|
.antCtrlChain = {0x150, 0x150, 0x150},
|
|
|
|
/*
|
|
* xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
|
|
* for ar9280 (0xa20c/b20c 5:0)
|
|
*/
|
|
.xatten1DB = {0, 0, 0},
|
|
|
|
/*
|
|
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
|
|
* for ar9280 (0xa20c/b20c 16:12
|
|
*/
|
|
.xatten1Margin = {0, 0, 0},
|
|
.tempSlope = 36,
|
|
.voltSlope = 0,
|
|
|
|
/*
|
|
* spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
|
|
* channels in usual fbin coding format
|
|
*/
|
|
.spurChans = {0, 0, 0, 0, 0},
|
|
|
|
/*
|
|
* noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
|
|
* if the register is per chain
|
|
*/
|
|
.noiseFloorThreshCh = {-1, 0, 0},
|
|
.ob = {1, 1, 1},/* 3 chain */
|
|
.db_stage2 = {1, 1, 1}, /* 3 chain */
|
|
.db_stage3 = {0, 0, 0},
|
|
.db_stage4 = {0, 0, 0},
|
|
.xpaBiasLvl = 0,
|
|
.txFrameToDataStart = 0x0e,
|
|
.txFrameToPaOn = 0x0e,
|
|
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
|
|
.antennaGain = 0,
|
|
.switchSettling = 0x2c,
|
|
.adcDesiredSize = -30,
|
|
.txEndToXpaOff = 0,
|
|
.txEndToRxOn = 0x2,
|
|
.txFrameToXpaOn = 0xe,
|
|
.thresh62 = 28,
|
|
.futureModal = { /* [32] */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
},
|
|
},
|
|
.calFreqPier2G = {
|
|
FREQ2FBIN(2412, 1),
|
|
FREQ2FBIN(2437, 1),
|
|
FREQ2FBIN(2472, 1),
|
|
},
|
|
/* ar9300_cal_data_per_freq_op_loop 2g */
|
|
.calPierData2G = {
|
|
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
|
|
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
|
|
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
|
|
},
|
|
.calTarget_freqbin_Cck = {
|
|
FREQ2FBIN(2412, 1),
|
|
FREQ2FBIN(2484, 1),
|
|
},
|
|
.calTarget_freqbin_2G = {
|
|
FREQ2FBIN(2412, 1),
|
|
FREQ2FBIN(2437, 1),
|
|
FREQ2FBIN(2472, 1)
|
|
},
|
|
.calTarget_freqbin_2GHT20 = {
|
|
FREQ2FBIN(2412, 1),
|
|
FREQ2FBIN(2437, 1),
|
|
FREQ2FBIN(2472, 1)
|
|
},
|
|
.calTarget_freqbin_2GHT40 = {
|
|
FREQ2FBIN(2412, 1),
|
|
FREQ2FBIN(2437, 1),
|
|
FREQ2FBIN(2472, 1)
|
|
},
|
|
.calTargetPowerCck = {
|
|
/* 1L-5L,5S,11L,11S */
|
|
{ {36, 36, 36, 36} },
|
|
{ {36, 36, 36, 36} },
|
|
},
|
|
.calTargetPower2G = {
|
|
/* 6-24,36,48,54 */
|
|
{ {32, 32, 28, 24} },
|
|
{ {32, 32, 28, 24} },
|
|
{ {32, 32, 28, 24} },
|
|
},
|
|
.calTargetPower2GHT20 = {
|
|
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
|
|
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
|
|
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
|
|
},
|
|
.calTargetPower2GHT40 = {
|
|
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
|
|
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
|
|
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
|
|
},
|
|
.ctlIndex_2G = {
|
|
0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
|
|
0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
|
|
},
|
|
.ctl_freqbin_2G = {
|
|
{
|
|
FREQ2FBIN(2412, 1),
|
|
FREQ2FBIN(2417, 1),
|
|
FREQ2FBIN(2457, 1),
|
|
FREQ2FBIN(2462, 1)
|
|
},
|
|
{
|
|
FREQ2FBIN(2412, 1),
|
|
FREQ2FBIN(2417, 1),
|
|
FREQ2FBIN(2462, 1),
|
|
0xFF,
|
|
},
|
|
|
|
{
|
|
FREQ2FBIN(2412, 1),
|
|
FREQ2FBIN(2417, 1),
|
|
FREQ2FBIN(2462, 1),
|
|
0xFF,
|
|
},
|
|
{
|
|
FREQ2FBIN(2422, 1),
|
|
FREQ2FBIN(2427, 1),
|
|
FREQ2FBIN(2447, 1),
|
|
FREQ2FBIN(2452, 1)
|
|
},
|
|
|
|
{
|
|
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
|
|
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
|
|
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
|
|
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
|
|
},
|
|
|
|
{
|
|
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
|
|
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
|
|
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
|
|
0,
|
|
},
|
|
|
|
{
|
|
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
|
|
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
|
|
FREQ2FBIN(2472, 1),
|
|
0,
|
|
},
|
|
|
|
{
|
|
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
|
|
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
|
|
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
|
|
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
|
|
},
|
|
|
|
{
|
|
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
|
|
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
|
|
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
|
|
},
|
|
|
|
{
|
|
/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
|
|
/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
|
|
/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
|
|
0
|
|
},
|
|
|
|
{
|
|
/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
|
|
/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
|
|
/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
|
|
0
|
|
},
|
|
|
|
{
|
|
/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
|
|
/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
|
|
/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
|
|
/* Data[11].ctlEdges[3].bChannel */
|
|
FREQ2FBIN(2462, 1),
|
|
}
|
|
},
|
|
.ctlPowerData_2G = {
|
|
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
|
|
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
|
|
{ { {60, 1}, {60, 0}, {60, 0}, {60, 1} } },
|
|
|
|
{ { {60, 1}, {60, 0}, {0, 0}, {0, 0} } },
|
|
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
|
|
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
|
|
|
|
{ { {60, 0}, {60, 1}, {60, 1}, {60, 0} } },
|
|
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
|
|
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
|
|
|
|
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
|
|
{ { {60, 0}, {60, 1}, {60, 1}, {60, 1} } },
|
|
},
|
|
.modalHeader5G = {
|
|
/* 4 idle,t1,t2,b (4 bits per setting) */
|
|
.antCtrlCommon = 0x110,
|
|
/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
|
|
.antCtrlCommon2 = 0x22222,
|
|
/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
|
|
.antCtrlChain = {
|
|
0x000, 0x000, 0x000,
|
|
},
|
|
/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
|
|
.xatten1DB = {0, 0, 0},
|
|
|
|
/*
|
|
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
|
|
* for merlin (0xa20c/b20c 16:12
|
|
*/
|
|
.xatten1Margin = {0, 0, 0},
|
|
.tempSlope = 68,
|
|
.voltSlope = 0,
|
|
/* spurChans spur channels in usual fbin coding format */
|
|
.spurChans = {0, 0, 0, 0, 0},
|
|
/* noiseFloorThreshCh Check if the register is per chain */
|
|
.noiseFloorThreshCh = {-1, 0, 0},
|
|
.ob = {3, 3, 3}, /* 3 chain */
|
|
.db_stage2 = {3, 3, 3}, /* 3 chain */
|
|
.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
|
|
.db_stage4 = {3, 3, 3}, /* don't exist for 2G */
|
|
.xpaBiasLvl = 0,
|
|
.txFrameToDataStart = 0x0e,
|
|
.txFrameToPaOn = 0x0e,
|
|
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
|
|
.antennaGain = 0,
|
|
.switchSettling = 0x2d,
|
|
.adcDesiredSize = -30,
|
|
.txEndToXpaOff = 0,
|
|
.txEndToRxOn = 0x2,
|
|
.txFrameToXpaOn = 0xe,
|
|
.thresh62 = 28,
|
|
.futureModal = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
},
|
|
},
|
|
.calFreqPier5G = {
|
|
FREQ2FBIN(5180, 0),
|
|
FREQ2FBIN(5220, 0),
|
|
FREQ2FBIN(5320, 0),
|
|
FREQ2FBIN(5400, 0),
|
|
FREQ2FBIN(5500, 0),
|
|
FREQ2FBIN(5600, 0),
|
|
FREQ2FBIN(5725, 0),
|
|
FREQ2FBIN(5825, 0)
|
|
},
|
|
.calPierData5G = {
|
|
{
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
},
|
|
{
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
},
|
|
{
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
},
|
|
|
|
},
|
|
.calTarget_freqbin_5G = {
|
|
FREQ2FBIN(5180, 0),
|
|
FREQ2FBIN(5220, 0),
|
|
FREQ2FBIN(5320, 0),
|
|
FREQ2FBIN(5400, 0),
|
|
FREQ2FBIN(5500, 0),
|
|
FREQ2FBIN(5600, 0),
|
|
FREQ2FBIN(5725, 0),
|
|
FREQ2FBIN(5825, 0)
|
|
},
|
|
.calTarget_freqbin_5GHT20 = {
|
|
FREQ2FBIN(5180, 0),
|
|
FREQ2FBIN(5240, 0),
|
|
FREQ2FBIN(5320, 0),
|
|
FREQ2FBIN(5500, 0),
|
|
FREQ2FBIN(5700, 0),
|
|
FREQ2FBIN(5745, 0),
|
|
FREQ2FBIN(5725, 0),
|
|
FREQ2FBIN(5825, 0)
|
|
},
|
|
.calTarget_freqbin_5GHT40 = {
|
|
FREQ2FBIN(5180, 0),
|
|
FREQ2FBIN(5240, 0),
|
|
FREQ2FBIN(5320, 0),
|
|
FREQ2FBIN(5500, 0),
|
|
FREQ2FBIN(5700, 0),
|
|
FREQ2FBIN(5745, 0),
|
|
FREQ2FBIN(5725, 0),
|
|
FREQ2FBIN(5825, 0)
|
|
},
|
|
.calTargetPower5G = {
|
|
/* 6-24,36,48,54 */
|
|
{ {20, 20, 20, 10} },
|
|
{ {20, 20, 20, 10} },
|
|
{ {20, 20, 20, 10} },
|
|
{ {20, 20, 20, 10} },
|
|
{ {20, 20, 20, 10} },
|
|
{ {20, 20, 20, 10} },
|
|
{ {20, 20, 20, 10} },
|
|
{ {20, 20, 20, 10} },
|
|
},
|
|
.calTargetPower5GHT20 = {
|
|
/*
|
|
* 0_8_16,1-3_9-11_17-19,
|
|
* 4,5,6,7,12,13,14,15,20,21,22,23
|
|
*/
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
},
|
|
.calTargetPower5GHT40 = {
|
|
/*
|
|
* 0_8_16,1-3_9-11_17-19,
|
|
* 4,5,6,7,12,13,14,15,20,21,22,23
|
|
*/
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
},
|
|
.ctlIndex_5G = {
|
|
0x10, 0x16, 0x18, 0x40, 0x46,
|
|
0x48, 0x30, 0x36, 0x38
|
|
},
|
|
.ctl_freqbin_5G = {
|
|
{
|
|
/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
|
|
/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
|
|
/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
|
|
/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
|
|
/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
|
|
/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
|
|
/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
|
|
/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
|
|
},
|
|
{
|
|
/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
|
|
/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
|
|
/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
|
|
/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
|
|
/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
|
|
/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
|
|
/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
|
|
/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
|
|
},
|
|
|
|
{
|
|
/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
|
|
/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
|
|
/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
|
|
/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
|
|
/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
|
|
/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
|
|
/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
|
|
/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
|
|
},
|
|
|
|
{
|
|
/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
|
|
/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
|
|
/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
|
|
/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
|
|
/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
|
|
/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
|
|
/* Data[3].ctlEdges[6].bChannel */ 0xFF,
|
|
/* Data[3].ctlEdges[7].bChannel */ 0xFF,
|
|
},
|
|
|
|
{
|
|
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
|
|
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
|
|
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
|
|
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
|
|
/* Data[4].ctlEdges[4].bChannel */ 0xFF,
|
|
/* Data[4].ctlEdges[5].bChannel */ 0xFF,
|
|
/* Data[4].ctlEdges[6].bChannel */ 0xFF,
|
|
/* Data[4].ctlEdges[7].bChannel */ 0xFF,
|
|
},
|
|
|
|
{
|
|
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
|
|
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
|
|
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
|
|
/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
|
|
/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
|
|
/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
|
|
/* Data[5].ctlEdges[6].bChannel */ 0xFF,
|
|
/* Data[5].ctlEdges[7].bChannel */ 0xFF
|
|
},
|
|
|
|
{
|
|
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
|
|
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
|
|
/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
|
|
/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
|
|
/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
|
|
/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
|
|
/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
|
|
/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
|
|
},
|
|
|
|
{
|
|
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
|
|
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
|
|
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
|
|
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
|
|
/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
|
|
/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
|
|
/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
|
|
/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
|
|
},
|
|
|
|
{
|
|
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
|
|
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
|
|
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
|
|
/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
|
|
/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
|
|
/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
|
|
/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
|
|
/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
|
|
}
|
|
},
|
|
.ctlPowerData_5G = {
|
|
{
|
|
{
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 1},
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 0},
|
|
}
|
|
},
|
|
{
|
|
{
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 1},
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 0},
|
|
}
|
|
},
|
|
{
|
|
{
|
|
{60, 0}, {60, 1}, {60, 0}, {60, 1},
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 1},
|
|
}
|
|
},
|
|
{
|
|
{
|
|
{60, 0}, {60, 1}, {60, 1}, {60, 0},
|
|
{60, 1}, {60, 0}, {60, 0}, {60, 0},
|
|
}
|
|
},
|
|
{
|
|
{
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 0},
|
|
{60, 0}, {60, 0}, {60, 0}, {60, 0},
|
|
}
|
|
},
|
|
{
|
|
{
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 1},
|
|
{60, 1}, {60, 0}, {60, 0}, {60, 0},
|
|
}
|
|
},
|
|
{
|
|
{
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 1},
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 1},
|
|
}
|
|
},
|
|
{
|
|
{
|
|
{60, 1}, {60, 1}, {60, 0}, {60, 1},
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 0},
|
|
}
|
|
},
|
|
{
|
|
{
|
|
{60, 1}, {60, 0}, {60, 1}, {60, 1},
|
|
{60, 1}, {60, 1}, {60, 0}, {60, 1},
|
|
}
|
|
},
|
|
}
|
|
};
|
|
|
|
static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
|
|
enum eeprom_param param)
|
|
{
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
|
|
|
|
switch (param) {
|
|
case EEP_MAC_LSW:
|
|
return eep->macAddr[0] << 8 | eep->macAddr[1];
|
|
case EEP_MAC_MID:
|
|
return eep->macAddr[2] << 8 | eep->macAddr[3];
|
|
case EEP_MAC_MSW:
|
|
return eep->macAddr[4] << 8 | eep->macAddr[5];
|
|
case EEP_REG_0:
|
|
return pBase->regDmn[0];
|
|
case EEP_REG_1:
|
|
return pBase->regDmn[1];
|
|
case EEP_OP_CAP:
|
|
return pBase->deviceCap;
|
|
case EEP_OP_MODE:
|
|
return pBase->opCapFlags.opFlags;
|
|
case EEP_RF_SILENT:
|
|
return pBase->rfSilent;
|
|
case EEP_TX_MASK:
|
|
return (pBase->txrxMask >> 4) & 0xf;
|
|
case EEP_RX_MASK:
|
|
return pBase->txrxMask & 0xf;
|
|
case EEP_DRIVE_STRENGTH:
|
|
#define AR9300_EEP_BASE_DRIV_STRENGTH 0x1
|
|
return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH;
|
|
case EEP_INTERNAL_REGULATOR:
|
|
/* Bit 4 is internal regulator flag */
|
|
return (pBase->featureEnable & 0x10) >> 4;
|
|
case EEP_SWREG:
|
|
return pBase->swreg;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#ifdef __BIG_ENDIAN
|
|
static void ar9300_swap_eeprom(struct ar9300_eeprom *eep)
|
|
{
|
|
u32 dword;
|
|
u16 word;
|
|
int i;
|
|
|
|
word = swab16(eep->baseEepHeader.regDmn[0]);
|
|
eep->baseEepHeader.regDmn[0] = word;
|
|
|
|
word = swab16(eep->baseEepHeader.regDmn[1]);
|
|
eep->baseEepHeader.regDmn[1] = word;
|
|
|
|
dword = swab32(eep->modalHeader2G.antCtrlCommon);
|
|
eep->modalHeader2G.antCtrlCommon = dword;
|
|
|
|
dword = swab32(eep->modalHeader2G.antCtrlCommon2);
|
|
eep->modalHeader2G.antCtrlCommon2 = dword;
|
|
|
|
dword = swab32(eep->modalHeader5G.antCtrlCommon);
|
|
eep->modalHeader5G.antCtrlCommon = dword;
|
|
|
|
dword = swab32(eep->modalHeader5G.antCtrlCommon2);
|
|
eep->modalHeader5G.antCtrlCommon2 = dword;
|
|
|
|
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
|
|
word = swab16(eep->modalHeader2G.antCtrlChain[i]);
|
|
eep->modalHeader2G.antCtrlChain[i] = word;
|
|
|
|
word = swab16(eep->modalHeader5G.antCtrlChain[i]);
|
|
eep->modalHeader5G.antCtrlChain[i] = word;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static bool ar9300_hw_read_eeprom(struct ath_hw *ah,
|
|
long address, u8 *buffer, int many)
|
|
{
|
|
int i;
|
|
u8 value[2];
|
|
unsigned long eepAddr;
|
|
unsigned long byteAddr;
|
|
u16 *svalue;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
if ((address < 0) || ((address + many) > AR9300_EEPROM_SIZE - 1)) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"eeprom address not in range\n");
|
|
return false;
|
|
}
|
|
|
|
for (i = 0; i < many; i++) {
|
|
eepAddr = (u16) (address + i) / 2;
|
|
byteAddr = (u16) (address + i) % 2;
|
|
svalue = (u16 *) value;
|
|
if (!ath9k_hw_nvram_read(common, eepAddr, svalue)) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"unable to read eeprom region\n");
|
|
return false;
|
|
}
|
|
*svalue = le16_to_cpu(*svalue);
|
|
buffer[i] = value[byteAddr];
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ar9300_read_eeprom(struct ath_hw *ah,
|
|
int address, u8 *buffer, int many)
|
|
{
|
|
int it;
|
|
|
|
for (it = 0; it < many; it++)
|
|
if (!ar9300_hw_read_eeprom(ah,
|
|
(address - it),
|
|
(buffer + it), 1))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
|
|
int *length, int *major, int *minor)
|
|
{
|
|
unsigned long value[4];
|
|
|
|
value[0] = best[0];
|
|
value[1] = best[1];
|
|
value[2] = best[2];
|
|
value[3] = best[3];
|
|
*code = ((value[0] >> 5) & 0x0007);
|
|
*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
|
|
*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
|
|
*major = (value[2] & 0x000f);
|
|
*minor = (value[3] & 0x00ff);
|
|
}
|
|
|
|
static u16 ar9300_comp_cksum(u8 *data, int dsize)
|
|
{
|
|
int it, checksum = 0;
|
|
|
|
for (it = 0; it < dsize; it++) {
|
|
checksum += data[it];
|
|
checksum &= 0xffff;
|
|
}
|
|
|
|
return checksum;
|
|
}
|
|
|
|
static bool ar9300_uncompress_block(struct ath_hw *ah,
|
|
u8 *mptr,
|
|
int mdataSize,
|
|
u8 *block,
|
|
int size)
|
|
{
|
|
int it;
|
|
int spot;
|
|
int offset;
|
|
int length;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
spot = 0;
|
|
|
|
for (it = 0; it < size; it += (length+2)) {
|
|
offset = block[it];
|
|
offset &= 0xff;
|
|
spot += offset;
|
|
length = block[it+1];
|
|
length &= 0xff;
|
|
|
|
if (length > 0 && spot >= 0 && spot+length < mdataSize) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Restore at %d: spot=%d "
|
|
"offset=%d length=%d\n",
|
|
it, spot, offset, length);
|
|
memcpy(&mptr[spot], &block[it+2], length);
|
|
spot += length;
|
|
} else if (length > 0) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Bad restore at %d: spot=%d "
|
|
"offset=%d length=%d\n",
|
|
it, spot, offset, length);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int ar9300_compress_decision(struct ath_hw *ah,
|
|
int it,
|
|
int code,
|
|
int reference,
|
|
u8 *mptr,
|
|
u8 *word, int length, int mdata_size)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
u8 *dptr;
|
|
|
|
switch (code) {
|
|
case _CompressNone:
|
|
if (length != mdata_size) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"EEPROM structure size mismatch"
|
|
"memory=%d eeprom=%d\n", mdata_size, length);
|
|
return -1;
|
|
}
|
|
memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length);
|
|
ath_print(common, ATH_DBG_EEPROM, "restored eeprom %d:"
|
|
" uncompressed, length %d\n", it, length);
|
|
break;
|
|
case _CompressBlock:
|
|
if (reference == 0) {
|
|
dptr = mptr;
|
|
} else {
|
|
if (reference != 2) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"cant find reference eeprom"
|
|
"struct %d\n", reference);
|
|
return -1;
|
|
}
|
|
memcpy(mptr, &ar9300_default, mdata_size);
|
|
}
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"restore eeprom %d: block, reference %d,"
|
|
" length %d\n", it, reference, length);
|
|
ar9300_uncompress_block(ah, mptr, mdata_size,
|
|
(u8 *) (word + COMP_HDR_LEN), length);
|
|
break;
|
|
default:
|
|
ath_print(common, ATH_DBG_EEPROM, "unknown compression"
|
|
" code %d\n", code);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read the configuration data from the eeprom.
|
|
* The data can be put in any specified memory buffer.
|
|
*
|
|
* Returns -1 on error.
|
|
* Returns address of next memory location on success.
|
|
*/
|
|
static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
|
|
u8 *mptr, int mdata_size)
|
|
{
|
|
#define MDEFAULT 15
|
|
#define MSTATE 100
|
|
int cptr;
|
|
u8 *word;
|
|
int code;
|
|
int reference, length, major, minor;
|
|
int osize;
|
|
int it;
|
|
u16 checksum, mchecksum;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
word = kzalloc(2048, GFP_KERNEL);
|
|
if (!word)
|
|
return -1;
|
|
|
|
memcpy(mptr, &ar9300_default, mdata_size);
|
|
|
|
cptr = AR9300_BASE_ADDR;
|
|
for (it = 0; it < MSTATE; it++) {
|
|
if (!ar9300_read_eeprom(ah, cptr, word, COMP_HDR_LEN))
|
|
goto fail;
|
|
|
|
if ((word[0] == 0 && word[1] == 0 && word[2] == 0 &&
|
|
word[3] == 0) || (word[0] == 0xff && word[1] == 0xff
|
|
&& word[2] == 0xff && word[3] == 0xff))
|
|
break;
|
|
|
|
ar9300_comp_hdr_unpack(word, &code, &reference,
|
|
&length, &major, &minor);
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Found block at %x: code=%d ref=%d"
|
|
"length=%d major=%d minor=%d\n", cptr, code,
|
|
reference, length, major, minor);
|
|
if (length >= 1024) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Skipping bad header\n");
|
|
cptr -= COMP_HDR_LEN;
|
|
continue;
|
|
}
|
|
|
|
osize = length;
|
|
ar9300_read_eeprom(ah, cptr, word,
|
|
COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
|
|
checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
|
|
mchecksum = word[COMP_HDR_LEN + osize] |
|
|
(word[COMP_HDR_LEN + osize + 1] << 8);
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"checksum %x %x\n", checksum, mchecksum);
|
|
if (checksum == mchecksum) {
|
|
ar9300_compress_decision(ah, it, code, reference, mptr,
|
|
word, length, mdata_size);
|
|
} else {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"skipping block with bad checksum\n");
|
|
}
|
|
cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
|
|
}
|
|
|
|
kfree(word);
|
|
return cptr;
|
|
|
|
fail:
|
|
kfree(word);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Restore the configuration structure by reading the eeprom.
|
|
* This function destroys any existing in-memory structure
|
|
* content.
|
|
*/
|
|
static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
|
|
{
|
|
u8 *mptr = NULL;
|
|
int mdata_size;
|
|
|
|
mptr = (u8 *) &ah->eeprom.ar9300_eep;
|
|
mdata_size = sizeof(struct ar9300_eeprom);
|
|
|
|
if (mptr && mdata_size > 0) {
|
|
/* At this point, mptr points to the eeprom data structure
|
|
* in it's "default" state. If this is big endian, swap the
|
|
* data structures back to "little endian"
|
|
*/
|
|
/* First swap, default to Little Endian */
|
|
#ifdef __BIG_ENDIAN
|
|
ar9300_swap_eeprom((struct ar9300_eeprom *)mptr);
|
|
#endif
|
|
if (ar9300_eeprom_restore_internal(ah, mptr, mdata_size) >= 0)
|
|
return true;
|
|
|
|
/* Second Swap, back to Big Endian */
|
|
#ifdef __BIG_ENDIAN
|
|
ar9300_swap_eeprom((struct ar9300_eeprom *)mptr);
|
|
#endif
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* XXX: review hardware docs */
|
|
static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
|
|
{
|
|
return ah->eeprom.ar9300_eep.eepromVersion;
|
|
}
|
|
|
|
/* XXX: could be read from the eepromVersion, not sure yet */
|
|
static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static u8 ath9k_hw_ar9300_get_num_ant_config(struct ath_hw *ah,
|
|
enum ieee80211_band freq_band)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static u16 ath9k_hw_ar9300_get_eeprom_antenna_cfg(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz)
|
|
{
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
|
|
if (is2ghz)
|
|
return eep->modalHeader2G.xpaBiasLvl;
|
|
else
|
|
return eep->modalHeader5G.xpaBiasLvl;
|
|
}
|
|
|
|
static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
|
|
{
|
|
int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz);
|
|
REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, (bias & 0x3));
|
|
REG_RMW_FIELD(ah, AR_CH0_THERM, AR_CH0_THERM_SPARE,
|
|
((bias >> 2) & 0x3));
|
|
}
|
|
|
|
static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
|
|
{
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
|
|
if (is2ghz)
|
|
return eep->modalHeader2G.antCtrlCommon;
|
|
else
|
|
return eep->modalHeader5G.antCtrlCommon;
|
|
}
|
|
|
|
static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
|
|
{
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
|
|
if (is2ghz)
|
|
return eep->modalHeader2G.antCtrlCommon2;
|
|
else
|
|
return eep->modalHeader5G.antCtrlCommon2;
|
|
}
|
|
|
|
static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah,
|
|
int chain,
|
|
bool is2ghz)
|
|
{
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
|
|
if (chain >= 0 && chain < AR9300_MAX_CHAINS) {
|
|
if (is2ghz)
|
|
return eep->modalHeader2G.antCtrlChain[chain];
|
|
else
|
|
return eep->modalHeader5G.antCtrlChain[chain];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
|
|
{
|
|
u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
|
|
REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_ALL, value);
|
|
|
|
value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
|
|
REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
|
|
|
|
value = ar9003_hw_ant_ctrl_chain_get(ah, 0, is2ghz);
|
|
REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_0, AR_SWITCH_TABLE_ALL, value);
|
|
|
|
value = ar9003_hw_ant_ctrl_chain_get(ah, 1, is2ghz);
|
|
REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_1, AR_SWITCH_TABLE_ALL, value);
|
|
|
|
value = ar9003_hw_ant_ctrl_chain_get(ah, 2, is2ghz);
|
|
REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_2, AR_SWITCH_TABLE_ALL, value);
|
|
}
|
|
|
|
static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
|
|
{
|
|
int drive_strength;
|
|
unsigned long reg;
|
|
|
|
drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH);
|
|
|
|
if (!drive_strength)
|
|
return;
|
|
|
|
reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
|
|
reg &= ~0x00ffffc0;
|
|
reg |= 0x5 << 21;
|
|
reg |= 0x5 << 18;
|
|
reg |= 0x5 << 15;
|
|
reg |= 0x5 << 12;
|
|
reg |= 0x5 << 9;
|
|
reg |= 0x5 << 6;
|
|
REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
|
|
|
|
reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
|
|
reg &= ~0xffffffe0;
|
|
reg |= 0x5 << 29;
|
|
reg |= 0x5 << 26;
|
|
reg |= 0x5 << 23;
|
|
reg |= 0x5 << 20;
|
|
reg |= 0x5 << 17;
|
|
reg |= 0x5 << 14;
|
|
reg |= 0x5 << 11;
|
|
reg |= 0x5 << 8;
|
|
reg |= 0x5 << 5;
|
|
REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
|
|
|
|
reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
|
|
reg &= ~0xff800000;
|
|
reg |= 0x5 << 29;
|
|
reg |= 0x5 << 26;
|
|
reg |= 0x5 << 23;
|
|
REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
|
|
}
|
|
|
|
static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
|
|
{
|
|
int internal_regulator =
|
|
ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR);
|
|
|
|
if (internal_regulator) {
|
|
/* Internal regulator is ON. Write swreg register. */
|
|
int swreg = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
|
|
REG_WRITE(ah, AR_RTC_REG_CONTROL1,
|
|
REG_READ(ah, AR_RTC_REG_CONTROL1) &
|
|
(~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
|
|
REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg);
|
|
/* Set REG_CONTROL1.SWREG_PROGRAM */
|
|
REG_WRITE(ah, AR_RTC_REG_CONTROL1,
|
|
REG_READ(ah,
|
|
AR_RTC_REG_CONTROL1) |
|
|
AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
|
|
} else {
|
|
REG_WRITE(ah, AR_RTC_SLEEP_CLK,
|
|
(REG_READ(ah,
|
|
AR_RTC_SLEEP_CLK) |
|
|
AR_RTC_FORCE_SWREG_PRD));
|
|
}
|
|
}
|
|
|
|
static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
|
|
ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
|
|
ar9003_hw_drive_strength_apply(ah);
|
|
ar9003_hw_internal_regulator_apply(ah);
|
|
}
|
|
|
|
static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Returns the interpolated y value corresponding to the specified x value
|
|
* from the np ordered pairs of data (px,py).
|
|
* The pairs do not have to be in any order.
|
|
* If the specified x value is less than any of the px,
|
|
* the returned y value is equal to the py for the lowest px.
|
|
* If the specified x value is greater than any of the px,
|
|
* the returned y value is equal to the py for the highest px.
|
|
*/
|
|
static int ar9003_hw_power_interpolate(int32_t x,
|
|
int32_t *px, int32_t *py, u_int16_t np)
|
|
{
|
|
int ip = 0;
|
|
int lx = 0, ly = 0, lhave = 0;
|
|
int hx = 0, hy = 0, hhave = 0;
|
|
int dx = 0;
|
|
int y = 0;
|
|
|
|
lhave = 0;
|
|
hhave = 0;
|
|
|
|
/* identify best lower and higher x calibration measurement */
|
|
for (ip = 0; ip < np; ip++) {
|
|
dx = x - px[ip];
|
|
|
|
/* this measurement is higher than our desired x */
|
|
if (dx <= 0) {
|
|
if (!hhave || dx > (x - hx)) {
|
|
/* new best higher x measurement */
|
|
hx = px[ip];
|
|
hy = py[ip];
|
|
hhave = 1;
|
|
}
|
|
}
|
|
/* this measurement is lower than our desired x */
|
|
if (dx >= 0) {
|
|
if (!lhave || dx < (x - lx)) {
|
|
/* new best lower x measurement */
|
|
lx = px[ip];
|
|
ly = py[ip];
|
|
lhave = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* the low x is good */
|
|
if (lhave) {
|
|
/* so is the high x */
|
|
if (hhave) {
|
|
/* they're the same, so just pick one */
|
|
if (hx == lx)
|
|
y = ly;
|
|
else /* interpolate */
|
|
y = ly + (((x - lx) * (hy - ly)) / (hx - lx));
|
|
} else /* only low is good, use it */
|
|
y = ly;
|
|
} else if (hhave) /* only high is good, use it */
|
|
y = hy;
|
|
else /* nothing is good,this should never happen unless np=0, ???? */
|
|
y = -(1 << 30);
|
|
return y;
|
|
}
|
|
|
|
static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
|
|
u16 rateIndex, u16 freq, bool is2GHz)
|
|
{
|
|
u16 numPiers, i;
|
|
s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
|
|
s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
struct cal_tgt_pow_legacy *pEepromTargetPwr;
|
|
u8 *pFreqBin;
|
|
|
|
if (is2GHz) {
|
|
numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
|
|
pEepromTargetPwr = eep->calTargetPower2G;
|
|
pFreqBin = eep->calTarget_freqbin_2G;
|
|
} else {
|
|
numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
|
|
pEepromTargetPwr = eep->calTargetPower5G;
|
|
pFreqBin = eep->calTarget_freqbin_5G;
|
|
}
|
|
|
|
/*
|
|
* create array of channels and targetpower from
|
|
* targetpower piers stored on eeprom
|
|
*/
|
|
for (i = 0; i < numPiers; i++) {
|
|
freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
|
|
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
|
|
}
|
|
|
|
/* interpolate to get target power for given frequency */
|
|
return (u8) ar9003_hw_power_interpolate((s32) freq,
|
|
freqArray,
|
|
targetPowerArray, numPiers);
|
|
}
|
|
|
|
static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
|
|
u16 rateIndex,
|
|
u16 freq, bool is2GHz)
|
|
{
|
|
u16 numPiers, i;
|
|
s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
|
|
s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
struct cal_tgt_pow_ht *pEepromTargetPwr;
|
|
u8 *pFreqBin;
|
|
|
|
if (is2GHz) {
|
|
numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
|
|
pEepromTargetPwr = eep->calTargetPower2GHT20;
|
|
pFreqBin = eep->calTarget_freqbin_2GHT20;
|
|
} else {
|
|
numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
|
|
pEepromTargetPwr = eep->calTargetPower5GHT20;
|
|
pFreqBin = eep->calTarget_freqbin_5GHT20;
|
|
}
|
|
|
|
/*
|
|
* create array of channels and targetpower
|
|
* from targetpower piers stored on eeprom
|
|
*/
|
|
for (i = 0; i < numPiers; i++) {
|
|
freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
|
|
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
|
|
}
|
|
|
|
/* interpolate to get target power for given frequency */
|
|
return (u8) ar9003_hw_power_interpolate((s32) freq,
|
|
freqArray,
|
|
targetPowerArray, numPiers);
|
|
}
|
|
|
|
static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
|
|
u16 rateIndex,
|
|
u16 freq, bool is2GHz)
|
|
{
|
|
u16 numPiers, i;
|
|
s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
|
|
s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
struct cal_tgt_pow_ht *pEepromTargetPwr;
|
|
u8 *pFreqBin;
|
|
|
|
if (is2GHz) {
|
|
numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
|
|
pEepromTargetPwr = eep->calTargetPower2GHT40;
|
|
pFreqBin = eep->calTarget_freqbin_2GHT40;
|
|
} else {
|
|
numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
|
|
pEepromTargetPwr = eep->calTargetPower5GHT40;
|
|
pFreqBin = eep->calTarget_freqbin_5GHT40;
|
|
}
|
|
|
|
/*
|
|
* create array of channels and targetpower from
|
|
* targetpower piers stored on eeprom
|
|
*/
|
|
for (i = 0; i < numPiers; i++) {
|
|
freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
|
|
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
|
|
}
|
|
|
|
/* interpolate to get target power for given frequency */
|
|
return (u8) ar9003_hw_power_interpolate((s32) freq,
|
|
freqArray,
|
|
targetPowerArray, numPiers);
|
|
}
|
|
|
|
static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
|
|
u16 rateIndex, u16 freq)
|
|
{
|
|
u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
|
|
s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
|
|
s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
|
|
u8 *pFreqBin = eep->calTarget_freqbin_Cck;
|
|
|
|
/*
|
|
* create array of channels and targetpower from
|
|
* targetpower piers stored on eeprom
|
|
*/
|
|
for (i = 0; i < numPiers; i++) {
|
|
freqArray[i] = FBIN2FREQ(pFreqBin[i], 1);
|
|
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
|
|
}
|
|
|
|
/* interpolate to get target power for given frequency */
|
|
return (u8) ar9003_hw_power_interpolate((s32) freq,
|
|
freqArray,
|
|
targetPowerArray, numPiers);
|
|
}
|
|
|
|
/* Set tx power registers to array of values passed in */
|
|
static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
|
|
{
|
|
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
|
|
/* make sure forced gain is not set */
|
|
REG_WRITE(ah, 0xa458, 0);
|
|
|
|
/* Write the OFDM power per rate set */
|
|
|
|
/* 6 (LSB), 9, 12, 18 (MSB) */
|
|
REG_WRITE(ah, 0xa3c0,
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
|
|
|
|
/* 24 (LSB), 36, 48, 54 (MSB) */
|
|
REG_WRITE(ah, 0xa3c4,
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
|
|
|
|
/* Write the CCK power per rate set */
|
|
|
|
/* 1L (LSB), reserved, 2L, 2S (MSB) */
|
|
REG_WRITE(ah, 0xa3c8,
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
|
|
/* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
|
|
|
|
/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
|
|
REG_WRITE(ah, 0xa3cc,
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
|
|
);
|
|
|
|
/* Write the HT20 power per rate set */
|
|
|
|
/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
|
|
REG_WRITE(ah, 0xa3d0,
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
|
|
);
|
|
|
|
/* 6 (LSB), 7, 12, 13 (MSB) */
|
|
REG_WRITE(ah, 0xa3d4,
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
|
|
);
|
|
|
|
/* 14 (LSB), 15, 20, 21 */
|
|
REG_WRITE(ah, 0xa3e4,
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
|
|
);
|
|
|
|
/* Mixed HT20 and HT40 rates */
|
|
|
|
/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
|
|
REG_WRITE(ah, 0xa3e8,
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
|
|
);
|
|
|
|
/*
|
|
* Write the HT40 power per rate set
|
|
* correct PAR difference between HT40 and HT20/LEGACY
|
|
* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
|
|
*/
|
|
REG_WRITE(ah, 0xa3d8,
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
|
|
);
|
|
|
|
/* 6 (LSB), 7, 12, 13 (MSB) */
|
|
REG_WRITE(ah, 0xa3dc,
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
|
|
);
|
|
|
|
/* 14 (LSB), 15, 20, 21 */
|
|
REG_WRITE(ah, 0xa3ec,
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
|
|
);
|
|
|
|
return 0;
|
|
#undef POW_SM
|
|
}
|
|
|
|
static void ar9003_hw_set_target_power_eeprom(struct ath_hw *ah, u16 freq)
|
|
{
|
|
u8 targetPowerValT2[ar9300RateSize];
|
|
/* XXX: hard code for now, need to get from eeprom struct */
|
|
u8 ht40PowerIncForPdadc = 0;
|
|
bool is2GHz = false;
|
|
unsigned int i = 0;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
if (freq < 4000)
|
|
is2GHz = true;
|
|
|
|
targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
|
|
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_LEGACY_36] =
|
|
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_LEGACY_48] =
|
|
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_LEGACY_54] =
|
|
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
|
|
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
|
|
freq);
|
|
targetPowerValT2[ALL_TARGET_LEGACY_5S] =
|
|
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
|
|
targetPowerValT2[ALL_TARGET_LEGACY_11L] =
|
|
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
|
|
targetPowerValT2[ALL_TARGET_LEGACY_11S] =
|
|
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
|
|
targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
|
|
freq, is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_4] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_5] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_6] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_7] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_12] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_13] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_14] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_15] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_20] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_21] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_22] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_23] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
|
|
freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_4] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_5] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_6] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_7] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_12] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_13] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_14] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_15] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_20] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_21] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_22] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_23] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
|
|
while (i < ar9300RateSize) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
|
|
i++;
|
|
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
|
|
i++;
|
|
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
|
|
i++;
|
|
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
|
|
i++;
|
|
}
|
|
|
|
/* Write target power array to registers */
|
|
ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
|
|
}
|
|
|
|
static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
|
|
int mode,
|
|
int ipier,
|
|
int ichain,
|
|
int *pfrequency,
|
|
int *pcorrection,
|
|
int *ptemperature, int *pvoltage)
|
|
{
|
|
u8 *pCalPier;
|
|
struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
|
|
int is2GHz;
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
if (ichain >= AR9300_MAX_CHAINS) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Invalid chain index, must be less than %d\n",
|
|
AR9300_MAX_CHAINS);
|
|
return -1;
|
|
}
|
|
|
|
if (mode) { /* 5GHz */
|
|
if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Invalid 5GHz cal pier index, must "
|
|
"be less than %d\n",
|
|
AR9300_NUM_5G_CAL_PIERS);
|
|
return -1;
|
|
}
|
|
pCalPier = &(eep->calFreqPier5G[ipier]);
|
|
pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
|
|
is2GHz = 0;
|
|
} else {
|
|
if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Invalid 2GHz cal pier index, must "
|
|
"be less than %d\n", AR9300_NUM_2G_CAL_PIERS);
|
|
return -1;
|
|
}
|
|
|
|
pCalPier = &(eep->calFreqPier2G[ipier]);
|
|
pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
|
|
is2GHz = 1;
|
|
}
|
|
|
|
*pfrequency = FBIN2FREQ(*pCalPier, is2GHz);
|
|
*pcorrection = pCalPierStruct->refPower;
|
|
*ptemperature = pCalPierStruct->tempMeas;
|
|
*pvoltage = pCalPierStruct->voltMeas;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ar9003_hw_power_control_override(struct ath_hw *ah,
|
|
int frequency,
|
|
int *correction,
|
|
int *voltage, int *temperature)
|
|
{
|
|
int tempSlope = 0;
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
|
|
REG_RMW(ah, AR_PHY_TPC_11_B0,
|
|
(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
|
|
AR_PHY_TPC_OLPC_GAIN_DELTA);
|
|
REG_RMW(ah, AR_PHY_TPC_11_B1,
|
|
(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
|
|
AR_PHY_TPC_OLPC_GAIN_DELTA);
|
|
REG_RMW(ah, AR_PHY_TPC_11_B2,
|
|
(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
|
|
AR_PHY_TPC_OLPC_GAIN_DELTA);
|
|
|
|
/* enable open loop power control on chip */
|
|
REG_RMW(ah, AR_PHY_TPC_6_B0,
|
|
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
|
|
AR_PHY_TPC_6_ERROR_EST_MODE);
|
|
REG_RMW(ah, AR_PHY_TPC_6_B1,
|
|
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
|
|
AR_PHY_TPC_6_ERROR_EST_MODE);
|
|
REG_RMW(ah, AR_PHY_TPC_6_B2,
|
|
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
|
|
AR_PHY_TPC_6_ERROR_EST_MODE);
|
|
|
|
/*
|
|
* enable temperature compensation
|
|
* Need to use register names
|
|
*/
|
|
if (frequency < 4000)
|
|
tempSlope = eep->modalHeader2G.tempSlope;
|
|
else
|
|
tempSlope = eep->modalHeader5G.tempSlope;
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
|
|
REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
|
|
temperature[0]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Apply the recorded correction values. */
|
|
static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
|
|
{
|
|
int ichain, ipier, npier;
|
|
int mode;
|
|
int lfrequency[AR9300_MAX_CHAINS],
|
|
lcorrection[AR9300_MAX_CHAINS],
|
|
ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
|
|
int hfrequency[AR9300_MAX_CHAINS],
|
|
hcorrection[AR9300_MAX_CHAINS],
|
|
htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
|
|
int fdiff;
|
|
int correction[AR9300_MAX_CHAINS],
|
|
voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
|
|
int pfrequency, pcorrection, ptemperature, pvoltage;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
mode = (frequency >= 4000);
|
|
if (mode)
|
|
npier = AR9300_NUM_5G_CAL_PIERS;
|
|
else
|
|
npier = AR9300_NUM_2G_CAL_PIERS;
|
|
|
|
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
|
|
lfrequency[ichain] = 0;
|
|
hfrequency[ichain] = 100000;
|
|
}
|
|
/* identify best lower and higher frequency calibration measurement */
|
|
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
|
|
for (ipier = 0; ipier < npier; ipier++) {
|
|
if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
|
|
&pfrequency, &pcorrection,
|
|
&ptemperature, &pvoltage)) {
|
|
fdiff = frequency - pfrequency;
|
|
|
|
/*
|
|
* this measurement is higher than
|
|
* our desired frequency
|
|
*/
|
|
if (fdiff <= 0) {
|
|
if (hfrequency[ichain] <= 0 ||
|
|
hfrequency[ichain] >= 100000 ||
|
|
fdiff >
|
|
(frequency - hfrequency[ichain])) {
|
|
/*
|
|
* new best higher
|
|
* frequency measurement
|
|
*/
|
|
hfrequency[ichain] = pfrequency;
|
|
hcorrection[ichain] =
|
|
pcorrection;
|
|
htemperature[ichain] =
|
|
ptemperature;
|
|
hvoltage[ichain] = pvoltage;
|
|
}
|
|
}
|
|
if (fdiff >= 0) {
|
|
if (lfrequency[ichain] <= 0
|
|
|| fdiff <
|
|
(frequency - lfrequency[ichain])) {
|
|
/*
|
|
* new best lower
|
|
* frequency measurement
|
|
*/
|
|
lfrequency[ichain] = pfrequency;
|
|
lcorrection[ichain] =
|
|
pcorrection;
|
|
ltemperature[ichain] =
|
|
ptemperature;
|
|
lvoltage[ichain] = pvoltage;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* interpolate */
|
|
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"ch=%d f=%d low=%d %d h=%d %d\n",
|
|
ichain, frequency, lfrequency[ichain],
|
|
lcorrection[ichain], hfrequency[ichain],
|
|
hcorrection[ichain]);
|
|
/* they're the same, so just pick one */
|
|
if (hfrequency[ichain] == lfrequency[ichain]) {
|
|
correction[ichain] = lcorrection[ichain];
|
|
voltage[ichain] = lvoltage[ichain];
|
|
temperature[ichain] = ltemperature[ichain];
|
|
}
|
|
/* the low frequency is good */
|
|
else if (frequency - lfrequency[ichain] < 1000) {
|
|
/* so is the high frequency, interpolate */
|
|
if (hfrequency[ichain] - frequency < 1000) {
|
|
|
|
correction[ichain] = lcorrection[ichain] +
|
|
(((frequency - lfrequency[ichain]) *
|
|
(hcorrection[ichain] -
|
|
lcorrection[ichain])) /
|
|
(hfrequency[ichain] - lfrequency[ichain]));
|
|
|
|
temperature[ichain] = ltemperature[ichain] +
|
|
(((frequency - lfrequency[ichain]) *
|
|
(htemperature[ichain] -
|
|
ltemperature[ichain])) /
|
|
(hfrequency[ichain] - lfrequency[ichain]));
|
|
|
|
voltage[ichain] =
|
|
lvoltage[ichain] +
|
|
(((frequency -
|
|
lfrequency[ichain]) * (hvoltage[ichain] -
|
|
lvoltage[ichain]))
|
|
/ (hfrequency[ichain] -
|
|
lfrequency[ichain]));
|
|
}
|
|
/* only low is good, use it */
|
|
else {
|
|
correction[ichain] = lcorrection[ichain];
|
|
temperature[ichain] = ltemperature[ichain];
|
|
voltage[ichain] = lvoltage[ichain];
|
|
}
|
|
}
|
|
/* only high is good, use it */
|
|
else if (hfrequency[ichain] - frequency < 1000) {
|
|
correction[ichain] = hcorrection[ichain];
|
|
temperature[ichain] = htemperature[ichain];
|
|
voltage[ichain] = hvoltage[ichain];
|
|
} else { /* nothing is good, presume 0???? */
|
|
correction[ichain] = 0;
|
|
temperature[ichain] = 0;
|
|
voltage[ichain] = 0;
|
|
}
|
|
}
|
|
|
|
ar9003_hw_power_control_override(ah, frequency, correction, voltage,
|
|
temperature);
|
|
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"for frequency=%d, calibration correction = %d %d %d\n",
|
|
frequency, correction[0], correction[1], correction[2]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
|
|
struct ath9k_channel *chan, u16 cfgCtl,
|
|
u8 twiceAntennaReduction,
|
|
u8 twiceMaxRegulatoryPower,
|
|
u8 powerLimit)
|
|
{
|
|
ar9003_hw_set_target_power_eeprom(ah, chan->channel);
|
|
ar9003_hw_calibration_apply(ah, chan->channel);
|
|
}
|
|
|
|
static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
|
|
u16 i, bool is2GHz)
|
|
{
|
|
return AR_NO_SPUR;
|
|
}
|
|
|
|
s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
|
|
{
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
|
|
return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
|
|
}
|
|
|
|
s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
|
|
{
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
|
|
return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
|
|
}
|
|
|
|
const struct eeprom_ops eep_ar9300_ops = {
|
|
.check_eeprom = ath9k_hw_ar9300_check_eeprom,
|
|
.get_eeprom = ath9k_hw_ar9300_get_eeprom,
|
|
.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
|
|
.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
|
|
.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
|
|
.get_num_ant_config = ath9k_hw_ar9300_get_num_ant_config,
|
|
.get_eeprom_antenna_cfg = ath9k_hw_ar9300_get_eeprom_antenna_cfg,
|
|
.set_board_values = ath9k_hw_ar9300_set_board_values,
|
|
.set_addac = ath9k_hw_ar9300_set_addac,
|
|
.set_txpower = ath9k_hw_ar9300_set_txpower,
|
|
.get_spur_channel = ath9k_hw_ar9300_get_spur_channel
|
|
};
|