OpenCloudOS-Kernel/sound/soc/fsl/fsl_asrc.c

1381 lines
38 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// Freescale ASRC ALSA SoC Digital Audio Interface (DAI) driver
//
// Copyright (C) 2014 Freescale Semiconductor, Inc.
//
// Author: Nicolin Chen <nicoleotsuka@gmail.com>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/dma/imx-dma.h>
#include <linux/pm_runtime.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include "fsl_asrc.h"
#define IDEAL_RATIO_DECIMAL_DEPTH 26
#define DIVIDER_NUM 64
#define pair_err(fmt, ...) \
dev_err(&asrc->pdev->dev, "Pair %c: " fmt, 'A' + index, ##__VA_ARGS__)
#define pair_dbg(fmt, ...) \
dev_dbg(&asrc->pdev->dev, "Pair %c: " fmt, 'A' + index, ##__VA_ARGS__)
/* Corresponding to process_option */
static unsigned int supported_asrc_rate[] = {
5512, 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000,
64000, 88200, 96000, 128000, 176400, 192000,
};
static struct snd_pcm_hw_constraint_list fsl_asrc_rate_constraints = {
.count = ARRAY_SIZE(supported_asrc_rate),
.list = supported_asrc_rate,
};
/*
* The following tables map the relationship between asrc_inclk/asrc_outclk in
* fsl_asrc.h and the registers of ASRCSR
*/
static unsigned char input_clk_map_imx35[ASRC_CLK_MAP_LEN] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
};
static unsigned char output_clk_map_imx35[ASRC_CLK_MAP_LEN] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
};
/* i.MX53 uses the same map for input and output */
static unsigned char input_clk_map_imx53[ASRC_CLK_MAP_LEN] = {
/* 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf */
0x0, 0x1, 0x2, 0x7, 0x4, 0x5, 0x6, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xf, 0xe, 0xd,
0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7,
0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7,
};
static unsigned char output_clk_map_imx53[ASRC_CLK_MAP_LEN] = {
/* 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf */
0x8, 0x9, 0xa, 0x7, 0xc, 0x5, 0x6, 0xb, 0x0, 0x1, 0x2, 0x3, 0x4, 0xf, 0xe, 0xd,
0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7,
0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7,
};
/*
* i.MX8QM/i.MX8QXP uses the same map for input and output.
* clk_map_imx8qm[0] is for i.MX8QM asrc0
* clk_map_imx8qm[1] is for i.MX8QM asrc1
* clk_map_imx8qxp[0] is for i.MX8QXP asrc0
* clk_map_imx8qxp[1] is for i.MX8QXP asrc1
*/
static unsigned char clk_map_imx8qm[2][ASRC_CLK_MAP_LEN] = {
{
0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x0,
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf,
},
{
0xf, 0xf, 0xf, 0xf, 0xf, 0x7, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x0,
0x0, 0x1, 0x2, 0x3, 0xb, 0xc, 0xf, 0xf, 0xd, 0xe, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf,
0x4, 0x5, 0x6, 0xf, 0x8, 0x9, 0xa, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf,
},
};
static unsigned char clk_map_imx8qxp[2][ASRC_CLK_MAP_LEN] = {
{
0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x0,
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0xf, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xf, 0xf,
0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf,
},
{
0xf, 0xf, 0xf, 0xf, 0xf, 0x7, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x0,
0x0, 0x1, 0x2, 0x3, 0x7, 0x8, 0xf, 0xf, 0x9, 0xa, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf,
0xf, 0xf, 0x6, 0xf, 0xf, 0xf, 0xa, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf,
},
};
/*
* According to RM, the divider range is 1 ~ 8,
* prescaler is power of 2 from 1 ~ 128.
*/
static int asrc_clk_divider[DIVIDER_NUM] = {
1, 2, 4, 8, 16, 32, 64, 128, /* divider = 1 */
2, 4, 8, 16, 32, 64, 128, 256, /* divider = 2 */
3, 6, 12, 24, 48, 96, 192, 384, /* divider = 3 */
4, 8, 16, 32, 64, 128, 256, 512, /* divider = 4 */
5, 10, 20, 40, 80, 160, 320, 640, /* divider = 5 */
6, 12, 24, 48, 96, 192, 384, 768, /* divider = 6 */
7, 14, 28, 56, 112, 224, 448, 896, /* divider = 7 */
8, 16, 32, 64, 128, 256, 512, 1024, /* divider = 8 */
};
/*
* Check if the divider is available for internal ratio mode
*/
static bool fsl_asrc_divider_avail(int clk_rate, int rate, int *div)
{
u32 rem, i;
u64 n;
if (div)
*div = 0;
if (clk_rate == 0 || rate == 0)
return false;
n = clk_rate;
rem = do_div(n, rate);
if (div)
*div = n;
if (rem != 0)
return false;
for (i = 0; i < DIVIDER_NUM; i++) {
if (n == asrc_clk_divider[i])
break;
}
if (i == DIVIDER_NUM)
return false;
return true;
}
/**
* fsl_asrc_sel_proc - Select the pre-processing and post-processing options
* @inrate: input sample rate
* @outrate: output sample rate
* @pre_proc: return value for pre-processing option
* @post_proc: return value for post-processing option
*
* Make sure to exclude following unsupported cases before
* calling this function:
* 1) inrate > 8.125 * outrate
* 2) inrate > 16.125 * outrate
*
*/
static void fsl_asrc_sel_proc(int inrate, int outrate,
int *pre_proc, int *post_proc)
{
bool post_proc_cond2;
bool post_proc_cond0;
/* select pre_proc between [0, 2] */
if (inrate * 8 > 33 * outrate)
*pre_proc = 2;
else if (inrate * 8 > 15 * outrate) {
if (inrate > 152000)
*pre_proc = 2;
else
*pre_proc = 1;
} else if (inrate < 76000)
*pre_proc = 0;
else if (inrate > 152000)
*pre_proc = 2;
else
*pre_proc = 1;
/* Condition for selection of post-processing */
post_proc_cond2 = (inrate * 15 > outrate * 16 && outrate < 56000) ||
(inrate > 56000 && outrate < 56000);
post_proc_cond0 = inrate * 23 < outrate * 8;
if (post_proc_cond2)
*post_proc = 2;
else if (post_proc_cond0)
*post_proc = 0;
else
*post_proc = 1;
}
/**
* fsl_asrc_request_pair - Request ASRC pair
* @channels: number of channels
* @pair: pointer to pair
*
* It assigns pair by the order of A->C->B because allocation of pair B,
* within range [ANCA, ANCA+ANCB-1], depends on the channels of pair A
* while pair A and pair C are comparatively independent.
*/
static int fsl_asrc_request_pair(int channels, struct fsl_asrc_pair *pair)
{
enum asrc_pair_index index = ASRC_INVALID_PAIR;
struct fsl_asrc *asrc = pair->asrc;
struct device *dev = &asrc->pdev->dev;
unsigned long lock_flags;
int i, ret = 0;
spin_lock_irqsave(&asrc->lock, lock_flags);
for (i = ASRC_PAIR_A; i < ASRC_PAIR_MAX_NUM; i++) {
if (asrc->pair[i] != NULL)
continue;
index = i;
if (i != ASRC_PAIR_B)
break;
}
if (index == ASRC_INVALID_PAIR) {
dev_err(dev, "all pairs are busy now\n");
ret = -EBUSY;
} else if (asrc->channel_avail < channels) {
dev_err(dev, "can't afford required channels: %d\n", channels);
ret = -EINVAL;
} else {
asrc->channel_avail -= channels;
asrc->pair[index] = pair;
pair->channels = channels;
pair->index = index;
}
spin_unlock_irqrestore(&asrc->lock, lock_flags);
return ret;
}
/**
* fsl_asrc_release_pair - Release ASRC pair
* @pair: pair to release
*
* It clears the resource from asrc and releases the occupied channels.
*/
static void fsl_asrc_release_pair(struct fsl_asrc_pair *pair)
{
struct fsl_asrc *asrc = pair->asrc;
enum asrc_pair_index index = pair->index;
unsigned long lock_flags;
/* Make sure the pair is disabled */
regmap_update_bits(asrc->regmap, REG_ASRCTR,
ASRCTR_ASRCEi_MASK(index), 0);
spin_lock_irqsave(&asrc->lock, lock_flags);
asrc->channel_avail += pair->channels;
asrc->pair[index] = NULL;
pair->error = 0;
spin_unlock_irqrestore(&asrc->lock, lock_flags);
}
/**
* fsl_asrc_set_watermarks- configure input and output thresholds
* @pair: pointer to pair
* @in: input threshold
* @out: output threshold
*/
static void fsl_asrc_set_watermarks(struct fsl_asrc_pair *pair, u32 in, u32 out)
{
struct fsl_asrc *asrc = pair->asrc;
enum asrc_pair_index index = pair->index;
regmap_update_bits(asrc->regmap, REG_ASRMCR(index),
ASRMCRi_EXTTHRSHi_MASK |
ASRMCRi_INFIFO_THRESHOLD_MASK |
ASRMCRi_OUTFIFO_THRESHOLD_MASK,
ASRMCRi_EXTTHRSHi |
ASRMCRi_INFIFO_THRESHOLD(in) |
ASRMCRi_OUTFIFO_THRESHOLD(out));
}
/**
* fsl_asrc_cal_asrck_divisor - Calculate the total divisor between asrck clock rate and sample rate
* @pair: pointer to pair
* @div: divider
*
* It follows the formula clk_rate = samplerate * (2 ^ prescaler) * divider
*/
static u32 fsl_asrc_cal_asrck_divisor(struct fsl_asrc_pair *pair, u32 div)
{
u32 ps;
/* Calculate the divisors: prescaler [2^0, 2^7], divder [1, 8] */
for (ps = 0; div > 8; ps++)
div >>= 1;
return ((div - 1) << ASRCDRi_AxCPi_WIDTH) | ps;
}
/**
* fsl_asrc_set_ideal_ratio - Calculate and set the ratio for Ideal Ratio mode only
* @pair: pointer to pair
* @inrate: input rate
* @outrate: output rate
*
* The ratio is a 32-bit fixed point value with 26 fractional bits.
*/
static int fsl_asrc_set_ideal_ratio(struct fsl_asrc_pair *pair,
int inrate, int outrate)
{
struct fsl_asrc *asrc = pair->asrc;
enum asrc_pair_index index = pair->index;
unsigned long ratio;
int i;
if (!outrate) {
pair_err("output rate should not be zero\n");
return -EINVAL;
}
/* Calculate the intergal part of the ratio */
ratio = (inrate / outrate) << IDEAL_RATIO_DECIMAL_DEPTH;
/* ... and then the 26 depth decimal part */
inrate %= outrate;
for (i = 1; i <= IDEAL_RATIO_DECIMAL_DEPTH; i++) {
inrate <<= 1;
if (inrate < outrate)
continue;
ratio |= 1 << (IDEAL_RATIO_DECIMAL_DEPTH - i);
inrate -= outrate;
if (!inrate)
break;
}
regmap_write(asrc->regmap, REG_ASRIDRL(index), ratio);
regmap_write(asrc->regmap, REG_ASRIDRH(index), ratio >> 24);
return 0;
}
/**
* fsl_asrc_config_pair - Configure the assigned ASRC pair
* @pair: pointer to pair
* @use_ideal_rate: boolean configuration
*
* It configures those ASRC registers according to a configuration instance
* of struct asrc_config which includes in/output sample rate, width, channel
* and clock settings.
*
* Note:
* The ideal ratio configuration can work with a flexible clock rate setting.
* Using IDEAL_RATIO_RATE gives a faster converting speed but overloads ASRC.
* For a regular audio playback, the clock rate should not be slower than an
* clock rate aligning with the output sample rate; For a use case requiring
* faster conversion, set use_ideal_rate to have the faster speed.
*/
static int fsl_asrc_config_pair(struct fsl_asrc_pair *pair, bool use_ideal_rate)
{
struct fsl_asrc_pair_priv *pair_priv = pair->private;
struct asrc_config *config = pair_priv->config;
struct fsl_asrc *asrc = pair->asrc;
struct fsl_asrc_priv *asrc_priv = asrc->private;
enum asrc_pair_index index = pair->index;
enum asrc_word_width input_word_width;
enum asrc_word_width output_word_width;
u32 inrate, outrate, indiv, outdiv;
u32 clk_index[2], div[2];
u64 clk_rate;
int in, out, channels;
int pre_proc, post_proc;
struct clk *clk;
bool ideal, div_avail;
if (!config) {
pair_err("invalid pair config\n");
return -EINVAL;
}
/* Validate channels */
if (config->channel_num < 1 || config->channel_num > 10) {
pair_err("does not support %d channels\n", config->channel_num);
return -EINVAL;
}
switch (snd_pcm_format_width(config->input_format)) {
case 8:
input_word_width = ASRC_WIDTH_8_BIT;
break;
case 16:
input_word_width = ASRC_WIDTH_16_BIT;
break;
case 24:
input_word_width = ASRC_WIDTH_24_BIT;
break;
default:
pair_err("does not support this input format, %d\n",
config->input_format);
return -EINVAL;
}
switch (snd_pcm_format_width(config->output_format)) {
case 16:
output_word_width = ASRC_WIDTH_16_BIT;
break;
case 24:
output_word_width = ASRC_WIDTH_24_BIT;
break;
default:
pair_err("does not support this output format, %d\n",
config->output_format);
return -EINVAL;
}
inrate = config->input_sample_rate;
outrate = config->output_sample_rate;
ideal = config->inclk == INCLK_NONE;
/* Validate input and output sample rates */
for (in = 0; in < ARRAY_SIZE(supported_asrc_rate); in++)
if (inrate == supported_asrc_rate[in])
break;
if (in == ARRAY_SIZE(supported_asrc_rate)) {
pair_err("unsupported input sample rate: %dHz\n", inrate);
return -EINVAL;
}
for (out = 0; out < ARRAY_SIZE(supported_asrc_rate); out++)
if (outrate == supported_asrc_rate[out])
break;
if (out == ARRAY_SIZE(supported_asrc_rate)) {
pair_err("unsupported output sample rate: %dHz\n", outrate);
return -EINVAL;
}
if ((outrate >= 5512 && outrate <= 30000) &&
(outrate > 24 * inrate || inrate > 8 * outrate)) {
pair_err("exceed supported ratio range [1/24, 8] for \
inrate/outrate: %d/%d\n", inrate, outrate);
return -EINVAL;
}
/* Validate input and output clock sources */
clk_index[IN] = asrc_priv->clk_map[IN][config->inclk];
clk_index[OUT] = asrc_priv->clk_map[OUT][config->outclk];
/* We only have output clock for ideal ratio mode */
clk = asrc_priv->asrck_clk[clk_index[ideal ? OUT : IN]];
clk_rate = clk_get_rate(clk);
div_avail = fsl_asrc_divider_avail(clk_rate, inrate, &div[IN]);
/*
* The divider range is [1, 1024], defined by the hardware. For non-
* ideal ratio configuration, clock rate has to be strictly aligned
* with the sample rate. For ideal ratio configuration, clock rates
* only result in different converting speeds. So remainder does not
* matter, as long as we keep the divider within its valid range.
*/
if (div[IN] == 0 || (!ideal && !div_avail)) {
pair_err("failed to support input sample rate %dHz by asrck_%x\n",
inrate, clk_index[ideal ? OUT : IN]);
return -EINVAL;
}
div[IN] = min_t(u32, 1024, div[IN]);
clk = asrc_priv->asrck_clk[clk_index[OUT]];
clk_rate = clk_get_rate(clk);
if (ideal && use_ideal_rate)
div_avail = fsl_asrc_divider_avail(clk_rate, IDEAL_RATIO_RATE, &div[OUT]);
else
div_avail = fsl_asrc_divider_avail(clk_rate, outrate, &div[OUT]);
/* Output divider has the same limitation as the input one */
if (div[OUT] == 0 || (!ideal && !div_avail)) {
pair_err("failed to support output sample rate %dHz by asrck_%x\n",
outrate, clk_index[OUT]);
return -EINVAL;
}
div[OUT] = min_t(u32, 1024, div[OUT]);
/* Set the channel number */
channels = config->channel_num;
if (asrc_priv->soc->channel_bits < 4)
channels /= 2;
/* Update channels for current pair */
regmap_update_bits(asrc->regmap, REG_ASRCNCR,
ASRCNCR_ANCi_MASK(index, asrc_priv->soc->channel_bits),
ASRCNCR_ANCi(index, channels, asrc_priv->soc->channel_bits));
/* Default setting: Automatic selection for processing mode */
regmap_update_bits(asrc->regmap, REG_ASRCTR,
ASRCTR_ATSi_MASK(index), ASRCTR_ATS(index));
regmap_update_bits(asrc->regmap, REG_ASRCTR,
ASRCTR_USRi_MASK(index), 0);
/* Set the input and output clock sources */
regmap_update_bits(asrc->regmap, REG_ASRCSR,
ASRCSR_AICSi_MASK(index) | ASRCSR_AOCSi_MASK(index),
ASRCSR_AICS(index, clk_index[IN]) |
ASRCSR_AOCS(index, clk_index[OUT]));
/* Calculate the input clock divisors */
indiv = fsl_asrc_cal_asrck_divisor(pair, div[IN]);
outdiv = fsl_asrc_cal_asrck_divisor(pair, div[OUT]);
/* Suppose indiv and outdiv includes prescaler, so add its MASK too */
regmap_update_bits(asrc->regmap, REG_ASRCDR(index),
ASRCDRi_AOCPi_MASK(index) | ASRCDRi_AICPi_MASK(index) |
ASRCDRi_AOCDi_MASK(index) | ASRCDRi_AICDi_MASK(index),
ASRCDRi_AOCP(index, outdiv) | ASRCDRi_AICP(index, indiv));
/* Implement word_width configurations */
regmap_update_bits(asrc->regmap, REG_ASRMCR1(index),
ASRMCR1i_OW16_MASK | ASRMCR1i_IWD_MASK,
ASRMCR1i_OW16(output_word_width) |
ASRMCR1i_IWD(input_word_width));
/* Enable BUFFER STALL */
regmap_update_bits(asrc->regmap, REG_ASRMCR(index),
ASRMCRi_BUFSTALLi_MASK, ASRMCRi_BUFSTALLi);
/* Set default thresholds for input and output FIFO */
fsl_asrc_set_watermarks(pair, ASRC_INPUTFIFO_THRESHOLD,
ASRC_INPUTFIFO_THRESHOLD);
/* Configure the following only for Ideal Ratio mode */
if (!ideal)
return 0;
/* Clear ASTSx bit to use Ideal Ratio mode */
regmap_update_bits(asrc->regmap, REG_ASRCTR,
ASRCTR_ATSi_MASK(index), 0);
/* Enable Ideal Ratio mode */
regmap_update_bits(asrc->regmap, REG_ASRCTR,
ASRCTR_IDRi_MASK(index) | ASRCTR_USRi_MASK(index),
ASRCTR_IDR(index) | ASRCTR_USR(index));
fsl_asrc_sel_proc(inrate, outrate, &pre_proc, &post_proc);
/* Apply configurations for pre- and post-processing */
regmap_update_bits(asrc->regmap, REG_ASRCFG,
ASRCFG_PREMODi_MASK(index) | ASRCFG_POSTMODi_MASK(index),
ASRCFG_PREMOD(index, pre_proc) |
ASRCFG_POSTMOD(index, post_proc));
return fsl_asrc_set_ideal_ratio(pair, inrate, outrate);
}
/**
* fsl_asrc_start_pair - Start the assigned ASRC pair
* @pair: pointer to pair
*
* It enables the assigned pair and makes it stopped at the stall level.
*/
static void fsl_asrc_start_pair(struct fsl_asrc_pair *pair)
{
struct fsl_asrc *asrc = pair->asrc;
enum asrc_pair_index index = pair->index;
int reg, retry = 10, i;
/* Enable the current pair */
regmap_update_bits(asrc->regmap, REG_ASRCTR,
ASRCTR_ASRCEi_MASK(index), ASRCTR_ASRCE(index));
/* Wait for status of initialization */
do {
udelay(5);
regmap_read(asrc->regmap, REG_ASRCFG, &reg);
reg &= ASRCFG_INIRQi_MASK(index);
} while (!reg && --retry);
/* Make the input fifo to ASRC STALL level */
regmap_read(asrc->regmap, REG_ASRCNCR, &reg);
for (i = 0; i < pair->channels * 4; i++)
regmap_write(asrc->regmap, REG_ASRDI(index), 0);
/* Enable overload interrupt */
regmap_write(asrc->regmap, REG_ASRIER, ASRIER_AOLIE);
}
/**
* fsl_asrc_stop_pair - Stop the assigned ASRC pair
* @pair: pointer to pair
*/
static void fsl_asrc_stop_pair(struct fsl_asrc_pair *pair)
{
struct fsl_asrc *asrc = pair->asrc;
enum asrc_pair_index index = pair->index;
/* Stop the current pair */
regmap_update_bits(asrc->regmap, REG_ASRCTR,
ASRCTR_ASRCEi_MASK(index), 0);
}
/**
* fsl_asrc_get_dma_channel- Get DMA channel according to the pair and direction.
* @pair: pointer to pair
* @dir: DMA direction
*/
static struct dma_chan *fsl_asrc_get_dma_channel(struct fsl_asrc_pair *pair,
bool dir)
{
struct fsl_asrc *asrc = pair->asrc;
enum asrc_pair_index index = pair->index;
char name[4];
sprintf(name, "%cx%c", dir == IN ? 'r' : 't', index + 'a');
return dma_request_slave_channel(&asrc->pdev->dev, name);
}
static int fsl_asrc_dai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct fsl_asrc *asrc = snd_soc_dai_get_drvdata(dai);
struct fsl_asrc_priv *asrc_priv = asrc->private;
/* Odd channel number is not valid for older ASRC (channel_bits==3) */
if (asrc_priv->soc->channel_bits == 3)
snd_pcm_hw_constraint_step(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_CHANNELS, 2);
return snd_pcm_hw_constraint_list(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_RATE, &fsl_asrc_rate_constraints);
}
/* Select proper clock source for internal ratio mode */
static void fsl_asrc_select_clk(struct fsl_asrc_priv *asrc_priv,
struct fsl_asrc_pair *pair,
int in_rate,
int out_rate)
{
struct fsl_asrc_pair_priv *pair_priv = pair->private;
struct asrc_config *config = pair_priv->config;
int rate[2], select_clk[2]; /* Array size 2 means IN and OUT */
int clk_rate, clk_index;
int i, j;
rate[IN] = in_rate;
rate[OUT] = out_rate;
/* Select proper clock source for internal ratio mode */
for (j = 0; j < 2; j++) {
for (i = 0; i < ASRC_CLK_MAP_LEN; i++) {
clk_index = asrc_priv->clk_map[j][i];
clk_rate = clk_get_rate(asrc_priv->asrck_clk[clk_index]);
/* Only match a perfect clock source with no remainder */
if (fsl_asrc_divider_avail(clk_rate, rate[j], NULL))
break;
}
select_clk[j] = i;
}
/* Switch to ideal ratio mode if there is no proper clock source */
if (select_clk[IN] == ASRC_CLK_MAP_LEN || select_clk[OUT] == ASRC_CLK_MAP_LEN) {
select_clk[IN] = INCLK_NONE;
select_clk[OUT] = OUTCLK_ASRCK1_CLK;
}
config->inclk = select_clk[IN];
config->outclk = select_clk[OUT];
}
static int fsl_asrc_dai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct fsl_asrc *asrc = snd_soc_dai_get_drvdata(dai);
struct fsl_asrc_priv *asrc_priv = asrc->private;
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
struct fsl_asrc_pair_priv *pair_priv = pair->private;
unsigned int channels = params_channels(params);
unsigned int rate = params_rate(params);
struct asrc_config config;
int ret;
ret = fsl_asrc_request_pair(channels, pair);
if (ret) {
dev_err(dai->dev, "fail to request asrc pair\n");
return ret;
}
pair_priv->config = &config;
config.pair = pair->index;
config.channel_num = channels;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
config.input_format = params_format(params);
config.output_format = asrc->asrc_format;
config.input_sample_rate = rate;
config.output_sample_rate = asrc->asrc_rate;
} else {
config.input_format = asrc->asrc_format;
config.output_format = params_format(params);
config.input_sample_rate = asrc->asrc_rate;
config.output_sample_rate = rate;
}
fsl_asrc_select_clk(asrc_priv, pair,
config.input_sample_rate,
config.output_sample_rate);
ret = fsl_asrc_config_pair(pair, false);
if (ret) {
dev_err(dai->dev, "fail to config asrc pair\n");
return ret;
}
return 0;
}
static int fsl_asrc_dai_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
if (pair)
fsl_asrc_release_pair(pair);
return 0;
}
static int fsl_asrc_dai_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
fsl_asrc_start_pair(pair);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
fsl_asrc_stop_pair(pair);
break;
default:
return -EINVAL;
}
return 0;
}
static const struct snd_soc_dai_ops fsl_asrc_dai_ops = {
.startup = fsl_asrc_dai_startup,
.hw_params = fsl_asrc_dai_hw_params,
.hw_free = fsl_asrc_dai_hw_free,
.trigger = fsl_asrc_dai_trigger,
};
static int fsl_asrc_dai_probe(struct snd_soc_dai *dai)
{
struct fsl_asrc *asrc = snd_soc_dai_get_drvdata(dai);
snd_soc_dai_init_dma_data(dai, &asrc->dma_params_tx,
&asrc->dma_params_rx);
return 0;
}
#define FSL_ASRC_FORMATS (SNDRV_PCM_FMTBIT_S24_LE | \
SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_S24_3LE)
static struct snd_soc_dai_driver fsl_asrc_dai = {
.probe = fsl_asrc_dai_probe,
.playback = {
.stream_name = "ASRC-Playback",
.channels_min = 1,
.channels_max = 10,
.rate_min = 5512,
.rate_max = 192000,
.rates = SNDRV_PCM_RATE_KNOT,
.formats = FSL_ASRC_FORMATS |
SNDRV_PCM_FMTBIT_S8,
},
.capture = {
.stream_name = "ASRC-Capture",
.channels_min = 1,
.channels_max = 10,
.rate_min = 5512,
.rate_max = 192000,
.rates = SNDRV_PCM_RATE_KNOT,
.formats = FSL_ASRC_FORMATS,
},
.ops = &fsl_asrc_dai_ops,
};
static bool fsl_asrc_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_ASRCTR:
case REG_ASRIER:
case REG_ASRCNCR:
case REG_ASRCFG:
case REG_ASRCSR:
case REG_ASRCDR1:
case REG_ASRCDR2:
case REG_ASRSTR:
case REG_ASRPM1:
case REG_ASRPM2:
case REG_ASRPM3:
case REG_ASRPM4:
case REG_ASRPM5:
case REG_ASRTFR1:
case REG_ASRCCR:
case REG_ASRDOA:
case REG_ASRDOB:
case REG_ASRDOC:
case REG_ASRIDRHA:
case REG_ASRIDRLA:
case REG_ASRIDRHB:
case REG_ASRIDRLB:
case REG_ASRIDRHC:
case REG_ASRIDRLC:
case REG_ASR76K:
case REG_ASR56K:
case REG_ASRMCRA:
case REG_ASRFSTA:
case REG_ASRMCRB:
case REG_ASRFSTB:
case REG_ASRMCRC:
case REG_ASRFSTC:
case REG_ASRMCR1A:
case REG_ASRMCR1B:
case REG_ASRMCR1C:
return true;
default:
return false;
}
}
static bool fsl_asrc_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_ASRSTR:
case REG_ASRDIA:
case REG_ASRDIB:
case REG_ASRDIC:
case REG_ASRDOA:
case REG_ASRDOB:
case REG_ASRDOC:
case REG_ASRFSTA:
case REG_ASRFSTB:
case REG_ASRFSTC:
case REG_ASRCFG:
return true;
default:
return false;
}
}
static bool fsl_asrc_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_ASRCTR:
case REG_ASRIER:
case REG_ASRCNCR:
case REG_ASRCFG:
case REG_ASRCSR:
case REG_ASRCDR1:
case REG_ASRCDR2:
case REG_ASRSTR:
case REG_ASRPM1:
case REG_ASRPM2:
case REG_ASRPM3:
case REG_ASRPM4:
case REG_ASRPM5:
case REG_ASRTFR1:
case REG_ASRCCR:
case REG_ASRDIA:
case REG_ASRDIB:
case REG_ASRDIC:
case REG_ASRIDRHA:
case REG_ASRIDRLA:
case REG_ASRIDRHB:
case REG_ASRIDRLB:
case REG_ASRIDRHC:
case REG_ASRIDRLC:
case REG_ASR76K:
case REG_ASR56K:
case REG_ASRMCRA:
case REG_ASRMCRB:
case REG_ASRMCRC:
case REG_ASRMCR1A:
case REG_ASRMCR1B:
case REG_ASRMCR1C:
return true;
default:
return false;
}
}
static struct reg_default fsl_asrc_reg[] = {
{ REG_ASRCTR, 0x0000 }, { REG_ASRIER, 0x0000 },
{ REG_ASRCNCR, 0x0000 }, { REG_ASRCFG, 0x0000 },
{ REG_ASRCSR, 0x0000 }, { REG_ASRCDR1, 0x0000 },
{ REG_ASRCDR2, 0x0000 }, { REG_ASRSTR, 0x0000 },
{ REG_ASRRA, 0x0000 }, { REG_ASRRB, 0x0000 },
{ REG_ASRRC, 0x0000 }, { REG_ASRPM1, 0x0000 },
{ REG_ASRPM2, 0x0000 }, { REG_ASRPM3, 0x0000 },
{ REG_ASRPM4, 0x0000 }, { REG_ASRPM5, 0x0000 },
{ REG_ASRTFR1, 0x0000 }, { REG_ASRCCR, 0x0000 },
{ REG_ASRDIA, 0x0000 }, { REG_ASRDOA, 0x0000 },
{ REG_ASRDIB, 0x0000 }, { REG_ASRDOB, 0x0000 },
{ REG_ASRDIC, 0x0000 }, { REG_ASRDOC, 0x0000 },
{ REG_ASRIDRHA, 0x0000 }, { REG_ASRIDRLA, 0x0000 },
{ REG_ASRIDRHB, 0x0000 }, { REG_ASRIDRLB, 0x0000 },
{ REG_ASRIDRHC, 0x0000 }, { REG_ASRIDRLC, 0x0000 },
{ REG_ASR76K, 0x0A47 }, { REG_ASR56K, 0x0DF3 },
{ REG_ASRMCRA, 0x0000 }, { REG_ASRFSTA, 0x0000 },
{ REG_ASRMCRB, 0x0000 }, { REG_ASRFSTB, 0x0000 },
{ REG_ASRMCRC, 0x0000 }, { REG_ASRFSTC, 0x0000 },
{ REG_ASRMCR1A, 0x0000 }, { REG_ASRMCR1B, 0x0000 },
{ REG_ASRMCR1C, 0x0000 },
};
static const struct regmap_config fsl_asrc_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = REG_ASRMCR1C,
.reg_defaults = fsl_asrc_reg,
.num_reg_defaults = ARRAY_SIZE(fsl_asrc_reg),
.readable_reg = fsl_asrc_readable_reg,
.volatile_reg = fsl_asrc_volatile_reg,
.writeable_reg = fsl_asrc_writeable_reg,
.cache_type = REGCACHE_FLAT,
};
/**
* fsl_asrc_init - Initialize ASRC registers with a default configuration
* @asrc: ASRC context
*/
static int fsl_asrc_init(struct fsl_asrc *asrc)
{
unsigned long ipg_rate;
/* Halt ASRC internal FP when input FIFO needs data for pair A, B, C */
regmap_write(asrc->regmap, REG_ASRCTR, ASRCTR_ASRCEN);
/* Disable interrupt by default */
regmap_write(asrc->regmap, REG_ASRIER, 0x0);
/* Apply recommended settings for parameters from Reference Manual */
regmap_write(asrc->regmap, REG_ASRPM1, 0x7fffff);
regmap_write(asrc->regmap, REG_ASRPM2, 0x255555);
regmap_write(asrc->regmap, REG_ASRPM3, 0xff7280);
regmap_write(asrc->regmap, REG_ASRPM4, 0xff7280);
regmap_write(asrc->regmap, REG_ASRPM5, 0xff7280);
/* Base address for task queue FIFO. Set to 0x7C */
regmap_update_bits(asrc->regmap, REG_ASRTFR1,
ASRTFR1_TF_BASE_MASK, ASRTFR1_TF_BASE(0xfc));
/*
* Set the period of the 76KHz and 56KHz sampling clocks based on
* the ASRC processing clock.
* On iMX6, ipg_clk = 133MHz, REG_ASR76K = 0x06D6, REG_ASR56K = 0x0947
*/
ipg_rate = clk_get_rate(asrc->ipg_clk);
regmap_write(asrc->regmap, REG_ASR76K, ipg_rate / 76000);
return regmap_write(asrc->regmap, REG_ASR56K, ipg_rate / 56000);
}
/**
* fsl_asrc_isr- Interrupt handler for ASRC
* @irq: irq number
* @dev_id: ASRC context
*/
static irqreturn_t fsl_asrc_isr(int irq, void *dev_id)
{
struct fsl_asrc *asrc = (struct fsl_asrc *)dev_id;
struct device *dev = &asrc->pdev->dev;
enum asrc_pair_index index;
u32 status;
regmap_read(asrc->regmap, REG_ASRSTR, &status);
/* Clean overload error */
regmap_write(asrc->regmap, REG_ASRSTR, ASRSTR_AOLE);
/*
* We here use dev_dbg() for all exceptions because ASRC itself does
* not care if FIFO overflowed or underrun while a warning in the
* interrupt would result a ridged conversion.
*/
for (index = ASRC_PAIR_A; index < ASRC_PAIR_MAX_NUM; index++) {
if (!asrc->pair[index])
continue;
if (status & ASRSTR_ATQOL) {
asrc->pair[index]->error |= ASRC_TASK_Q_OVERLOAD;
dev_dbg(dev, "ASRC Task Queue FIFO overload\n");
}
if (status & ASRSTR_AOOL(index)) {
asrc->pair[index]->error |= ASRC_OUTPUT_TASK_OVERLOAD;
pair_dbg("Output Task Overload\n");
}
if (status & ASRSTR_AIOL(index)) {
asrc->pair[index]->error |= ASRC_INPUT_TASK_OVERLOAD;
pair_dbg("Input Task Overload\n");
}
if (status & ASRSTR_AODO(index)) {
asrc->pair[index]->error |= ASRC_OUTPUT_BUFFER_OVERFLOW;
pair_dbg("Output Data Buffer has overflowed\n");
}
if (status & ASRSTR_AIDU(index)) {
asrc->pair[index]->error |= ASRC_INPUT_BUFFER_UNDERRUN;
pair_dbg("Input Data Buffer has underflowed\n");
}
}
return IRQ_HANDLED;
}
static int fsl_asrc_get_fifo_addr(u8 dir, enum asrc_pair_index index)
{
return REG_ASRDx(dir, index);
}
static int fsl_asrc_runtime_resume(struct device *dev);
static int fsl_asrc_runtime_suspend(struct device *dev);
static int fsl_asrc_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct fsl_asrc_priv *asrc_priv;
struct fsl_asrc *asrc;
struct resource *res;
void __iomem *regs;
int irq, ret, i;
u32 map_idx;
char tmp[16];
u32 width;
asrc = devm_kzalloc(&pdev->dev, sizeof(*asrc), GFP_KERNEL);
if (!asrc)
return -ENOMEM;
asrc_priv = devm_kzalloc(&pdev->dev, sizeof(*asrc_priv), GFP_KERNEL);
if (!asrc_priv)
return -ENOMEM;
asrc->pdev = pdev;
asrc->private = asrc_priv;
/* Get the addresses and IRQ */
regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(regs))
return PTR_ERR(regs);
asrc->paddr = res->start;
asrc->regmap = devm_regmap_init_mmio(&pdev->dev, regs, &fsl_asrc_regmap_config);
if (IS_ERR(asrc->regmap)) {
dev_err(&pdev->dev, "failed to init regmap\n");
return PTR_ERR(asrc->regmap);
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_irq(&pdev->dev, irq, fsl_asrc_isr, 0,
dev_name(&pdev->dev), asrc);
if (ret) {
dev_err(&pdev->dev, "failed to claim irq %u: %d\n", irq, ret);
return ret;
}
asrc->mem_clk = devm_clk_get(&pdev->dev, "mem");
if (IS_ERR(asrc->mem_clk)) {
dev_err(&pdev->dev, "failed to get mem clock\n");
return PTR_ERR(asrc->mem_clk);
}
asrc->ipg_clk = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(asrc->ipg_clk)) {
dev_err(&pdev->dev, "failed to get ipg clock\n");
return PTR_ERR(asrc->ipg_clk);
}
asrc->spba_clk = devm_clk_get(&pdev->dev, "spba");
if (IS_ERR(asrc->spba_clk))
dev_warn(&pdev->dev, "failed to get spba clock\n");
for (i = 0; i < ASRC_CLK_MAX_NUM; i++) {
sprintf(tmp, "asrck_%x", i);
asrc_priv->asrck_clk[i] = devm_clk_get(&pdev->dev, tmp);
if (IS_ERR(asrc_priv->asrck_clk[i])) {
dev_err(&pdev->dev, "failed to get %s clock\n", tmp);
return PTR_ERR(asrc_priv->asrck_clk[i]);
}
}
asrc_priv->soc = of_device_get_match_data(&pdev->dev);
asrc->use_edma = asrc_priv->soc->use_edma;
asrc->get_dma_channel = fsl_asrc_get_dma_channel;
asrc->request_pair = fsl_asrc_request_pair;
asrc->release_pair = fsl_asrc_release_pair;
asrc->get_fifo_addr = fsl_asrc_get_fifo_addr;
asrc->pair_priv_size = sizeof(struct fsl_asrc_pair_priv);
if (of_device_is_compatible(np, "fsl,imx35-asrc")) {
asrc_priv->clk_map[IN] = input_clk_map_imx35;
asrc_priv->clk_map[OUT] = output_clk_map_imx35;
} else if (of_device_is_compatible(np, "fsl,imx53-asrc")) {
asrc_priv->clk_map[IN] = input_clk_map_imx53;
asrc_priv->clk_map[OUT] = output_clk_map_imx53;
} else if (of_device_is_compatible(np, "fsl,imx8qm-asrc") ||
of_device_is_compatible(np, "fsl,imx8qxp-asrc")) {
ret = of_property_read_u32(np, "fsl,asrc-clk-map", &map_idx);
if (ret) {
dev_err(&pdev->dev, "failed to get clk map index\n");
return ret;
}
if (map_idx > 1) {
dev_err(&pdev->dev, "unsupported clk map index\n");
return -EINVAL;
}
if (of_device_is_compatible(np, "fsl,imx8qm-asrc")) {
asrc_priv->clk_map[IN] = clk_map_imx8qm[map_idx];
asrc_priv->clk_map[OUT] = clk_map_imx8qm[map_idx];
} else {
asrc_priv->clk_map[IN] = clk_map_imx8qxp[map_idx];
asrc_priv->clk_map[OUT] = clk_map_imx8qxp[map_idx];
}
}
asrc->channel_avail = 10;
ret = of_property_read_u32(np, "fsl,asrc-rate",
&asrc->asrc_rate);
if (ret) {
dev_err(&pdev->dev, "failed to get output rate\n");
return ret;
}
ret = of_property_read_u32(np, "fsl,asrc-format", &asrc->asrc_format);
if (ret) {
ret = of_property_read_u32(np, "fsl,asrc-width", &width);
if (ret) {
dev_err(&pdev->dev, "failed to decide output format\n");
return ret;
}
switch (width) {
case 16:
asrc->asrc_format = SNDRV_PCM_FORMAT_S16_LE;
break;
case 24:
asrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE;
break;
default:
dev_warn(&pdev->dev,
"unsupported width, use default S24_LE\n");
asrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE;
break;
}
}
if (!(FSL_ASRC_FORMATS & (1ULL << asrc->asrc_format))) {
dev_warn(&pdev->dev, "unsupported width, use default S24_LE\n");
asrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE;
}
platform_set_drvdata(pdev, asrc);
spin_lock_init(&asrc->lock);
pm_runtime_enable(&pdev->dev);
if (!pm_runtime_enabled(&pdev->dev)) {
ret = fsl_asrc_runtime_resume(&pdev->dev);
if (ret)
goto err_pm_disable;
}
ret = pm_runtime_resume_and_get(&pdev->dev);
if (ret < 0)
goto err_pm_get_sync;
ret = fsl_asrc_init(asrc);
if (ret) {
dev_err(&pdev->dev, "failed to init asrc %d\n", ret);
goto err_pm_get_sync;
}
ret = pm_runtime_put_sync(&pdev->dev);
if (ret < 0)
goto err_pm_get_sync;
ret = devm_snd_soc_register_component(&pdev->dev, &fsl_asrc_component,
&fsl_asrc_dai, 1);
if (ret) {
dev_err(&pdev->dev, "failed to register ASoC DAI\n");
goto err_pm_get_sync;
}
return 0;
err_pm_get_sync:
if (!pm_runtime_status_suspended(&pdev->dev))
fsl_asrc_runtime_suspend(&pdev->dev);
err_pm_disable:
pm_runtime_disable(&pdev->dev);
return ret;
}
static int fsl_asrc_remove(struct platform_device *pdev)
{
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev))
fsl_asrc_runtime_suspend(&pdev->dev);
return 0;
}
static int fsl_asrc_runtime_resume(struct device *dev)
{
struct fsl_asrc *asrc = dev_get_drvdata(dev);
struct fsl_asrc_priv *asrc_priv = asrc->private;
int i, ret;
u32 asrctr;
ret = clk_prepare_enable(asrc->mem_clk);
if (ret)
return ret;
ret = clk_prepare_enable(asrc->ipg_clk);
if (ret)
goto disable_mem_clk;
if (!IS_ERR(asrc->spba_clk)) {
ret = clk_prepare_enable(asrc->spba_clk);
if (ret)
goto disable_ipg_clk;
}
for (i = 0; i < ASRC_CLK_MAX_NUM; i++) {
ret = clk_prepare_enable(asrc_priv->asrck_clk[i]);
if (ret)
goto disable_asrck_clk;
}
/* Stop all pairs provisionally */
regmap_read(asrc->regmap, REG_ASRCTR, &asrctr);
regmap_update_bits(asrc->regmap, REG_ASRCTR,
ASRCTR_ASRCEi_ALL_MASK, 0);
/* Restore all registers */
regcache_cache_only(asrc->regmap, false);
regcache_mark_dirty(asrc->regmap);
regcache_sync(asrc->regmap);
regmap_update_bits(asrc->regmap, REG_ASRCFG,
ASRCFG_NDPRi_ALL_MASK | ASRCFG_POSTMODi_ALL_MASK |
ASRCFG_PREMODi_ALL_MASK, asrc_priv->regcache_cfg);
/* Restart enabled pairs */
regmap_update_bits(asrc->regmap, REG_ASRCTR,
ASRCTR_ASRCEi_ALL_MASK, asrctr);
return 0;
disable_asrck_clk:
for (i--; i >= 0; i--)
clk_disable_unprepare(asrc_priv->asrck_clk[i]);
if (!IS_ERR(asrc->spba_clk))
clk_disable_unprepare(asrc->spba_clk);
disable_ipg_clk:
clk_disable_unprepare(asrc->ipg_clk);
disable_mem_clk:
clk_disable_unprepare(asrc->mem_clk);
return ret;
}
static int fsl_asrc_runtime_suspend(struct device *dev)
{
struct fsl_asrc *asrc = dev_get_drvdata(dev);
struct fsl_asrc_priv *asrc_priv = asrc->private;
int i;
regmap_read(asrc->regmap, REG_ASRCFG,
&asrc_priv->regcache_cfg);
regcache_cache_only(asrc->regmap, true);
for (i = 0; i < ASRC_CLK_MAX_NUM; i++)
clk_disable_unprepare(asrc_priv->asrck_clk[i]);
if (!IS_ERR(asrc->spba_clk))
clk_disable_unprepare(asrc->spba_clk);
clk_disable_unprepare(asrc->ipg_clk);
clk_disable_unprepare(asrc->mem_clk);
return 0;
}
static const struct dev_pm_ops fsl_asrc_pm = {
SET_RUNTIME_PM_OPS(fsl_asrc_runtime_suspend, fsl_asrc_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
static const struct fsl_asrc_soc_data fsl_asrc_imx35_data = {
.use_edma = false,
.channel_bits = 3,
};
static const struct fsl_asrc_soc_data fsl_asrc_imx53_data = {
.use_edma = false,
.channel_bits = 4,
};
static const struct fsl_asrc_soc_data fsl_asrc_imx8qm_data = {
.use_edma = true,
.channel_bits = 4,
};
static const struct fsl_asrc_soc_data fsl_asrc_imx8qxp_data = {
.use_edma = true,
.channel_bits = 4,
};
static const struct of_device_id fsl_asrc_ids[] = {
{ .compatible = "fsl,imx35-asrc", .data = &fsl_asrc_imx35_data },
{ .compatible = "fsl,imx53-asrc", .data = &fsl_asrc_imx53_data },
{ .compatible = "fsl,imx8qm-asrc", .data = &fsl_asrc_imx8qm_data },
{ .compatible = "fsl,imx8qxp-asrc", .data = &fsl_asrc_imx8qxp_data },
{}
};
MODULE_DEVICE_TABLE(of, fsl_asrc_ids);
static struct platform_driver fsl_asrc_driver = {
.probe = fsl_asrc_probe,
.remove = fsl_asrc_remove,
.driver = {
.name = "fsl-asrc",
.of_match_table = fsl_asrc_ids,
.pm = &fsl_asrc_pm,
},
};
module_platform_driver(fsl_asrc_driver);
MODULE_DESCRIPTION("Freescale ASRC ASoC driver");
MODULE_AUTHOR("Nicolin Chen <nicoleotsuka@gmail.com>");
MODULE_ALIAS("platform:fsl-asrc");
MODULE_LICENSE("GPL v2");