419 lines
12 KiB
C
419 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/****************************************************************************
|
|
* Driver for Solarflare network controllers and boards
|
|
* Copyright 2018 Solarflare Communications Inc.
|
|
* Copyright 2019-2020 Xilinx Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include <net/ip6_checksum.h>
|
|
|
|
#include "net_driver.h"
|
|
#include "tx_common.h"
|
|
#include "nic_common.h"
|
|
#include "mcdi_functions.h"
|
|
#include "ef100_regs.h"
|
|
#include "io.h"
|
|
#include "ef100_tx.h"
|
|
#include "ef100_nic.h"
|
|
|
|
int ef100_tx_probe(struct efx_tx_queue *tx_queue)
|
|
{
|
|
/* Allocate an extra descriptor for the QMDA status completion entry */
|
|
return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
|
|
(tx_queue->ptr_mask + 2) *
|
|
sizeof(efx_oword_t),
|
|
GFP_KERNEL);
|
|
}
|
|
|
|
void ef100_tx_init(struct efx_tx_queue *tx_queue)
|
|
{
|
|
/* must be the inverse of lookup in efx_get_tx_channel */
|
|
tx_queue->core_txq =
|
|
netdev_get_tx_queue(tx_queue->efx->net_dev,
|
|
tx_queue->channel->channel -
|
|
tx_queue->efx->tx_channel_offset);
|
|
|
|
/* This value is purely documentational; as EF100 never passes through
|
|
* the switch statement in tx.c:__efx_enqueue_skb(), that switch does
|
|
* not handle case 3. EF100's TSOv3 descriptors are generated by
|
|
* ef100_make_tso_desc().
|
|
* Meanwhile, all efx_mcdi_tx_init() cares about is that it's not 2.
|
|
*/
|
|
tx_queue->tso_version = 3;
|
|
if (efx_mcdi_tx_init(tx_queue))
|
|
netdev_WARN(tx_queue->efx->net_dev,
|
|
"failed to initialise TXQ %d\n", tx_queue->queue);
|
|
}
|
|
|
|
static bool ef100_tx_can_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
struct ef100_nic_data *nic_data;
|
|
struct efx_tx_buffer *buffer;
|
|
struct tcphdr *tcphdr;
|
|
struct iphdr *iphdr;
|
|
size_t header_len;
|
|
u32 mss;
|
|
|
|
nic_data = efx->nic_data;
|
|
|
|
if (!skb_is_gso_tcp(skb))
|
|
return false;
|
|
if (!(efx->net_dev->features & NETIF_F_TSO))
|
|
return false;
|
|
|
|
mss = skb_shinfo(skb)->gso_size;
|
|
if (unlikely(mss < 4)) {
|
|
WARN_ONCE(1, "MSS of %u is too small for TSO\n", mss);
|
|
return false;
|
|
}
|
|
|
|
header_len = efx_tx_tso_header_length(skb);
|
|
if (header_len > nic_data->tso_max_hdr_len)
|
|
return false;
|
|
|
|
if (skb_shinfo(skb)->gso_segs > nic_data->tso_max_payload_num_segs) {
|
|
/* net_dev->gso_max_segs should've caught this */
|
|
WARN_ON_ONCE(1);
|
|
return false;
|
|
}
|
|
|
|
if (skb->data_len / mss > nic_data->tso_max_frames)
|
|
return false;
|
|
|
|
/* net_dev->gso_max_size should've caught this */
|
|
if (WARN_ON_ONCE(skb->data_len > nic_data->tso_max_payload_len))
|
|
return false;
|
|
|
|
/* Reserve an empty buffer for the TSO V3 descriptor.
|
|
* Convey the length of the header since we already know it.
|
|
*/
|
|
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
|
buffer->flags = EFX_TX_BUF_TSO_V3 | EFX_TX_BUF_CONT;
|
|
buffer->len = header_len;
|
|
buffer->unmap_len = 0;
|
|
buffer->skb = skb;
|
|
++tx_queue->insert_count;
|
|
|
|
/* Adjust the TCP checksum to exclude the total length, since we set
|
|
* ED_INNER_IP_LEN in the descriptor.
|
|
*/
|
|
tcphdr = tcp_hdr(skb);
|
|
if (skb_is_gso_v6(skb)) {
|
|
tcphdr->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
|
|
&ipv6_hdr(skb)->daddr,
|
|
0, IPPROTO_TCP, 0);
|
|
} else {
|
|
iphdr = ip_hdr(skb);
|
|
tcphdr->check = ~csum_tcpudp_magic(iphdr->saddr, iphdr->daddr,
|
|
0, IPPROTO_TCP, 0);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static efx_oword_t *ef100_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
|
|
{
|
|
if (likely(tx_queue->txd.buf.addr))
|
|
return ((efx_oword_t *)tx_queue->txd.buf.addr) + index;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
static void ef100_notify_tx_desc(struct efx_tx_queue *tx_queue)
|
|
{
|
|
unsigned int write_ptr;
|
|
efx_dword_t reg;
|
|
|
|
tx_queue->xmit_pending = false;
|
|
|
|
if (unlikely(tx_queue->notify_count == tx_queue->write_count))
|
|
return;
|
|
|
|
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
|
|
/* The write pointer goes into the high word */
|
|
EFX_POPULATE_DWORD_1(reg, ERF_GZ_TX_RING_PIDX, write_ptr);
|
|
efx_writed_page(tx_queue->efx, ®,
|
|
ER_GZ_TX_RING_DOORBELL, tx_queue->queue);
|
|
tx_queue->notify_count = tx_queue->write_count;
|
|
}
|
|
|
|
static void ef100_tx_push_buffers(struct efx_tx_queue *tx_queue)
|
|
{
|
|
ef100_notify_tx_desc(tx_queue);
|
|
++tx_queue->pushes;
|
|
}
|
|
|
|
static void ef100_set_tx_csum_partial(const struct sk_buff *skb,
|
|
struct efx_tx_buffer *buffer, efx_oword_t *txd)
|
|
{
|
|
efx_oword_t csum;
|
|
int csum_start;
|
|
|
|
if (!skb || skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return;
|
|
|
|
/* skb->csum_start has the offset from head, but we need the offset
|
|
* from data.
|
|
*/
|
|
csum_start = skb_checksum_start_offset(skb);
|
|
EFX_POPULATE_OWORD_3(csum,
|
|
ESF_GZ_TX_SEND_CSO_PARTIAL_EN, 1,
|
|
ESF_GZ_TX_SEND_CSO_PARTIAL_START_W,
|
|
csum_start >> 1,
|
|
ESF_GZ_TX_SEND_CSO_PARTIAL_CSUM_W,
|
|
skb->csum_offset >> 1);
|
|
EFX_OR_OWORD(*txd, *txd, csum);
|
|
}
|
|
|
|
static void ef100_set_tx_hw_vlan(const struct sk_buff *skb, efx_oword_t *txd)
|
|
{
|
|
u16 vlan_tci = skb_vlan_tag_get(skb);
|
|
efx_oword_t vlan;
|
|
|
|
EFX_POPULATE_OWORD_2(vlan,
|
|
ESF_GZ_TX_SEND_VLAN_INSERT_EN, 1,
|
|
ESF_GZ_TX_SEND_VLAN_INSERT_TCI, vlan_tci);
|
|
EFX_OR_OWORD(*txd, *txd, vlan);
|
|
}
|
|
|
|
static void ef100_make_send_desc(struct efx_nic *efx,
|
|
const struct sk_buff *skb,
|
|
struct efx_tx_buffer *buffer, efx_oword_t *txd,
|
|
unsigned int segment_count)
|
|
{
|
|
/* TX send descriptor */
|
|
EFX_POPULATE_OWORD_3(*txd,
|
|
ESF_GZ_TX_SEND_NUM_SEGS, segment_count,
|
|
ESF_GZ_TX_SEND_LEN, buffer->len,
|
|
ESF_GZ_TX_SEND_ADDR, buffer->dma_addr);
|
|
|
|
if (likely(efx->net_dev->features & NETIF_F_HW_CSUM))
|
|
ef100_set_tx_csum_partial(skb, buffer, txd);
|
|
if (efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX &&
|
|
skb && skb_vlan_tag_present(skb))
|
|
ef100_set_tx_hw_vlan(skb, txd);
|
|
}
|
|
|
|
static void ef100_make_tso_desc(struct efx_nic *efx,
|
|
const struct sk_buff *skb,
|
|
struct efx_tx_buffer *buffer, efx_oword_t *txd,
|
|
unsigned int segment_count)
|
|
{
|
|
u32 mangleid = (efx->net_dev->features & NETIF_F_TSO_MANGLEID) ||
|
|
skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID ?
|
|
ESE_GZ_TX_DESC_IP4_ID_NO_OP :
|
|
ESE_GZ_TX_DESC_IP4_ID_INC_MOD16;
|
|
u16 vlan_enable = efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX ?
|
|
skb_vlan_tag_present(skb) : 0;
|
|
unsigned int len, ip_offset, tcp_offset, payload_segs;
|
|
u16 vlan_tci = skb_vlan_tag_get(skb);
|
|
u32 mss = skb_shinfo(skb)->gso_size;
|
|
|
|
len = skb->len - buffer->len;
|
|
/* We use 1 for the TSO descriptor and 1 for the header */
|
|
payload_segs = segment_count - 2;
|
|
ip_offset = skb_network_offset(skb);
|
|
tcp_offset = skb_transport_offset(skb);
|
|
|
|
EFX_POPULATE_OWORD_13(*txd,
|
|
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_TSO,
|
|
ESF_GZ_TX_TSO_MSS, mss,
|
|
ESF_GZ_TX_TSO_HDR_NUM_SEGS, 1,
|
|
ESF_GZ_TX_TSO_PAYLOAD_NUM_SEGS, payload_segs,
|
|
ESF_GZ_TX_TSO_HDR_LEN_W, buffer->len >> 1,
|
|
ESF_GZ_TX_TSO_PAYLOAD_LEN, len,
|
|
ESF_GZ_TX_TSO_CSO_INNER_L4, 1,
|
|
ESF_GZ_TX_TSO_INNER_L3_OFF_W, ip_offset >> 1,
|
|
ESF_GZ_TX_TSO_INNER_L4_OFF_W, tcp_offset >> 1,
|
|
ESF_GZ_TX_TSO_ED_INNER_IP4_ID, mangleid,
|
|
ESF_GZ_TX_TSO_ED_INNER_IP_LEN, 1,
|
|
ESF_GZ_TX_TSO_VLAN_INSERT_EN, vlan_enable,
|
|
ESF_GZ_TX_TSO_VLAN_INSERT_TCI, vlan_tci
|
|
);
|
|
}
|
|
|
|
static void ef100_tx_make_descriptors(struct efx_tx_queue *tx_queue,
|
|
const struct sk_buff *skb,
|
|
unsigned int segment_count)
|
|
{
|
|
unsigned int old_write_count = tx_queue->write_count;
|
|
unsigned int new_write_count = old_write_count;
|
|
struct efx_tx_buffer *buffer;
|
|
unsigned int next_desc_type;
|
|
unsigned int write_ptr;
|
|
efx_oword_t *txd;
|
|
unsigned int nr_descs = tx_queue->insert_count - old_write_count;
|
|
|
|
if (unlikely(nr_descs == 0))
|
|
return;
|
|
|
|
if (segment_count)
|
|
next_desc_type = ESE_GZ_TX_DESC_TYPE_TSO;
|
|
else
|
|
next_desc_type = ESE_GZ_TX_DESC_TYPE_SEND;
|
|
|
|
/* if it's a raw write (such as XDP) then always SEND single frames */
|
|
if (!skb)
|
|
nr_descs = 1;
|
|
|
|
do {
|
|
write_ptr = new_write_count & tx_queue->ptr_mask;
|
|
buffer = &tx_queue->buffer[write_ptr];
|
|
txd = ef100_tx_desc(tx_queue, write_ptr);
|
|
++new_write_count;
|
|
|
|
/* Create TX descriptor ring entry */
|
|
tx_queue->packet_write_count = new_write_count;
|
|
|
|
switch (next_desc_type) {
|
|
case ESE_GZ_TX_DESC_TYPE_SEND:
|
|
ef100_make_send_desc(tx_queue->efx, skb,
|
|
buffer, txd, nr_descs);
|
|
break;
|
|
case ESE_GZ_TX_DESC_TYPE_TSO:
|
|
/* TX TSO descriptor */
|
|
WARN_ON_ONCE(!(buffer->flags & EFX_TX_BUF_TSO_V3));
|
|
ef100_make_tso_desc(tx_queue->efx, skb,
|
|
buffer, txd, nr_descs);
|
|
break;
|
|
default:
|
|
/* TX segment descriptor */
|
|
EFX_POPULATE_OWORD_3(*txd,
|
|
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEG,
|
|
ESF_GZ_TX_SEG_LEN, buffer->len,
|
|
ESF_GZ_TX_SEG_ADDR, buffer->dma_addr);
|
|
}
|
|
/* if it's a raw write (such as XDP) then always SEND */
|
|
next_desc_type = skb ? ESE_GZ_TX_DESC_TYPE_SEG :
|
|
ESE_GZ_TX_DESC_TYPE_SEND;
|
|
|
|
} while (new_write_count != tx_queue->insert_count);
|
|
|
|
wmb(); /* Ensure descriptors are written before they are fetched */
|
|
|
|
tx_queue->write_count = new_write_count;
|
|
|
|
/* The write_count above must be updated before reading
|
|
* channel->holdoff_doorbell to avoid a race with the
|
|
* completion path, so ensure these operations are not
|
|
* re-ordered. This also flushes the update of write_count
|
|
* back into the cache.
|
|
*/
|
|
smp_mb();
|
|
}
|
|
|
|
void ef100_tx_write(struct efx_tx_queue *tx_queue)
|
|
{
|
|
ef100_tx_make_descriptors(tx_queue, NULL, 0);
|
|
ef100_tx_push_buffers(tx_queue);
|
|
}
|
|
|
|
void ef100_ev_tx(struct efx_channel *channel, const efx_qword_t *p_event)
|
|
{
|
|
unsigned int tx_done =
|
|
EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_NUM_DESC);
|
|
unsigned int qlabel =
|
|
EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_Q_LABEL);
|
|
struct efx_tx_queue *tx_queue =
|
|
efx_channel_get_tx_queue(channel, qlabel);
|
|
unsigned int tx_index = (tx_queue->read_count + tx_done - 1) &
|
|
tx_queue->ptr_mask;
|
|
|
|
efx_xmit_done(tx_queue, tx_index);
|
|
}
|
|
|
|
/* Add a socket buffer to a TX queue
|
|
*
|
|
* You must hold netif_tx_lock() to call this function.
|
|
*
|
|
* Returns 0 on success, error code otherwise. In case of an error this
|
|
* function will free the SKB.
|
|
*/
|
|
int ef100_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
|
{
|
|
unsigned int old_insert_count = tx_queue->insert_count;
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
bool xmit_more = netdev_xmit_more();
|
|
unsigned int fill_level;
|
|
unsigned int segments;
|
|
int rc;
|
|
|
|
if (!tx_queue->buffer || !tx_queue->ptr_mask) {
|
|
netif_stop_queue(efx->net_dev);
|
|
dev_kfree_skb_any(skb);
|
|
return -ENODEV;
|
|
}
|
|
|
|
segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
|
|
if (segments == 1)
|
|
segments = 0; /* Don't use TSO/GSO for a single segment. */
|
|
if (segments && !ef100_tx_can_tso(tx_queue, skb)) {
|
|
rc = efx_tx_tso_fallback(tx_queue, skb);
|
|
tx_queue->tso_fallbacks++;
|
|
if (rc)
|
|
goto err;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Map for DMA and create descriptors */
|
|
rc = efx_tx_map_data(tx_queue, skb, segments);
|
|
if (rc)
|
|
goto err;
|
|
ef100_tx_make_descriptors(tx_queue, skb, segments);
|
|
|
|
fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
|
|
if (fill_level > efx->txq_stop_thresh) {
|
|
struct efx_tx_queue *txq2;
|
|
|
|
netif_tx_stop_queue(tx_queue->core_txq);
|
|
/* Re-read after a memory barrier in case we've raced with
|
|
* the completion path. Otherwise there's a danger we'll never
|
|
* restart the queue if all completions have just happened.
|
|
*/
|
|
smp_mb();
|
|
efx_for_each_channel_tx_queue(txq2, tx_queue->channel)
|
|
txq2->old_read_count = READ_ONCE(txq2->read_count);
|
|
fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
|
|
if (fill_level < efx->txq_stop_thresh)
|
|
netif_tx_start_queue(tx_queue->core_txq);
|
|
}
|
|
|
|
tx_queue->xmit_pending = true;
|
|
|
|
/* If xmit_more then we don't need to push the doorbell, unless there
|
|
* are 256 descriptors already queued in which case we have to push to
|
|
* ensure we never push more than 256 at once.
|
|
*/
|
|
if (__netdev_tx_sent_queue(tx_queue->core_txq, skb->len, xmit_more) ||
|
|
tx_queue->write_count - tx_queue->notify_count > 255)
|
|
ef100_tx_push_buffers(tx_queue);
|
|
|
|
if (segments) {
|
|
tx_queue->tso_bursts++;
|
|
tx_queue->tso_packets += segments;
|
|
tx_queue->tx_packets += segments;
|
|
} else {
|
|
tx_queue->tx_packets++;
|
|
}
|
|
return 0;
|
|
|
|
err:
|
|
efx_enqueue_unwind(tx_queue, old_insert_count);
|
|
if (!IS_ERR_OR_NULL(skb))
|
|
dev_kfree_skb_any(skb);
|
|
|
|
/* If we're not expecting another transmit and we had something to push
|
|
* on this queue then we need to push here to get the previous packets
|
|
* out. We only enter this branch from before the xmit_more handling
|
|
* above, so xmit_pending still refers to the old state.
|
|
*/
|
|
if (tx_queue->xmit_pending && !xmit_more)
|
|
ef100_tx_push_buffers(tx_queue);
|
|
return rc;
|
|
}
|