OpenCloudOS-Kernel/drivers/scsi/aacraid/comminit.c

493 lines
16 KiB
C

/*
* Adaptec AAC series RAID controller driver
* (c) Copyright 2001 Red Hat Inc.
*
* based on the old aacraid driver that is..
* Adaptec aacraid device driver for Linux.
*
* Copyright (c) 2000-2010 Adaptec, Inc.
* 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Module Name:
* comminit.c
*
* Abstract: This supports the initialization of the host adapter commuication interface.
* This is a platform dependent module for the pci cyclone board.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/completion.h>
#include <linux/mm.h>
#include <scsi/scsi_host.h>
#include "aacraid.h"
struct aac_common aac_config = {
.irq_mod = 1
};
static int aac_alloc_comm(struct aac_dev *dev, void **commaddr, unsigned long commsize, unsigned long commalign)
{
unsigned char *base;
unsigned long size, align;
const unsigned long fibsize = 4096;
const unsigned long printfbufsiz = 256;
unsigned long host_rrq_size = 0;
struct aac_init *init;
dma_addr_t phys;
unsigned long aac_max_hostphysmempages;
if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
dev->comm_interface == AAC_COMM_MESSAGE_TYPE2)
host_rrq_size = (dev->scsi_host_ptr->can_queue
+ AAC_NUM_MGT_FIB) * sizeof(u32);
size = fibsize + sizeof(struct aac_init) + commsize +
commalign + printfbufsiz + host_rrq_size;
base = pci_alloc_consistent(dev->pdev, size, &phys);
if(base == NULL)
{
printk(KERN_ERR "aacraid: unable to create mapping.\n");
return 0;
}
dev->comm_addr = (void *)base;
dev->comm_phys = phys;
dev->comm_size = size;
if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
dev->host_rrq = (u32 *)(base + fibsize);
dev->host_rrq_pa = phys + fibsize;
memset(dev->host_rrq, 0, host_rrq_size);
}
dev->init = (struct aac_init *)(base + fibsize + host_rrq_size);
dev->init_pa = phys + fibsize + host_rrq_size;
init = dev->init;
init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION);
if (dev->max_fib_size != sizeof(struct hw_fib))
init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_4);
init->MiniPortRevision = cpu_to_le32(Sa_MINIPORT_REVISION);
init->fsrev = cpu_to_le32(dev->fsrev);
/*
* Adapter Fibs are the first thing allocated so that they
* start page aligned
*/
dev->aif_base_va = (struct hw_fib *)base;
init->AdapterFibsVirtualAddress = 0;
init->AdapterFibsPhysicalAddress = cpu_to_le32((u32)phys);
init->AdapterFibsSize = cpu_to_le32(fibsize);
init->AdapterFibAlign = cpu_to_le32(sizeof(struct hw_fib));
/*
* number of 4k pages of host physical memory. The aacraid fw needs
* this number to be less than 4gb worth of pages. New firmware doesn't
* have any issues with the mapping system, but older Firmware did, and
* had *troubles* dealing with the math overloading past 32 bits, thus
* we must limit this field.
*/
aac_max_hostphysmempages = dma_get_required_mask(&dev->pdev->dev) >> 12;
if (aac_max_hostphysmempages < AAC_MAX_HOSTPHYSMEMPAGES)
init->HostPhysMemPages = cpu_to_le32(aac_max_hostphysmempages);
else
init->HostPhysMemPages = cpu_to_le32(AAC_MAX_HOSTPHYSMEMPAGES);
init->InitFlags = cpu_to_le32(INITFLAGS_DRIVER_USES_UTC_TIME |
INITFLAGS_DRIVER_SUPPORTS_PM);
init->MaxIoCommands = cpu_to_le32(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
init->MaxIoSize = cpu_to_le32(dev->scsi_host_ptr->max_sectors << 9);
init->MaxFibSize = cpu_to_le32(dev->max_fib_size);
init->MaxNumAif = cpu_to_le32(dev->max_num_aif);
if (dev->comm_interface == AAC_COMM_MESSAGE) {
init->InitFlags |= cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED);
dprintk((KERN_WARNING"aacraid: New Comm Interface enabled\n"));
} else if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1) {
init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_6);
init->InitFlags |= cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED |
INITFLAGS_NEW_COMM_TYPE1_SUPPORTED | INITFLAGS_FAST_JBOD_SUPPORTED);
init->HostRRQ_AddrHigh = cpu_to_le32((u32)((u64)dev->host_rrq_pa >> 32));
init->HostRRQ_AddrLow = cpu_to_le32((u32)(dev->host_rrq_pa & 0xffffffff));
dprintk((KERN_WARNING"aacraid: New Comm Interface type1 enabled\n"));
} else if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_7);
init->InitFlags |= cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED |
INITFLAGS_NEW_COMM_TYPE2_SUPPORTED | INITFLAGS_FAST_JBOD_SUPPORTED);
init->HostRRQ_AddrHigh = cpu_to_le32((u32)((u64)dev->host_rrq_pa >> 32));
init->HostRRQ_AddrLow = cpu_to_le32((u32)(dev->host_rrq_pa & 0xffffffff));
init->MiniPortRevision = cpu_to_le32(0L); /* number of MSI-X */
dprintk((KERN_WARNING"aacraid: New Comm Interface type2 enabled\n"));
}
/*
* Increment the base address by the amount already used
*/
base = base + fibsize + host_rrq_size + sizeof(struct aac_init);
phys = (dma_addr_t)((ulong)phys + fibsize + host_rrq_size +
sizeof(struct aac_init));
/*
* Align the beginning of Headers to commalign
*/
align = (commalign - ((uintptr_t)(base) & (commalign - 1)));
base = base + align;
phys = phys + align;
/*
* Fill in addresses of the Comm Area Headers and Queues
*/
*commaddr = base;
init->CommHeaderAddress = cpu_to_le32((u32)phys);
/*
* Increment the base address by the size of the CommArea
*/
base = base + commsize;
phys = phys + commsize;
/*
* Place the Printf buffer area after the Fast I/O comm area.
*/
dev->printfbuf = (void *)base;
init->printfbuf = cpu_to_le32(phys);
init->printfbufsiz = cpu_to_le32(printfbufsiz);
memset(base, 0, printfbufsiz);
return 1;
}
static void aac_queue_init(struct aac_dev * dev, struct aac_queue * q, u32 *mem, int qsize)
{
q->numpending = 0;
q->dev = dev;
init_waitqueue_head(&q->cmdready);
INIT_LIST_HEAD(&q->cmdq);
init_waitqueue_head(&q->qfull);
spin_lock_init(&q->lockdata);
q->lock = &q->lockdata;
q->headers.producer = (__le32 *)mem;
q->headers.consumer = (__le32 *)(mem+1);
*(q->headers.producer) = cpu_to_le32(qsize);
*(q->headers.consumer) = cpu_to_le32(qsize);
q->entries = qsize;
}
/**
* aac_send_shutdown - shutdown an adapter
* @dev: Adapter to shutdown
*
* This routine will send a VM_CloseAll (shutdown) request to the adapter.
*/
int aac_send_shutdown(struct aac_dev * dev)
{
struct fib * fibctx;
struct aac_close *cmd;
int status;
fibctx = aac_fib_alloc(dev);
if (!fibctx)
return -ENOMEM;
aac_fib_init(fibctx);
cmd = (struct aac_close *) fib_data(fibctx);
cmd->command = cpu_to_le32(VM_CloseAll);
cmd->cid = cpu_to_le32(0xffffffff);
status = aac_fib_send(ContainerCommand,
fibctx,
sizeof(struct aac_close),
FsaNormal,
-2 /* Timeout silently */, 1,
NULL, NULL);
if (status >= 0)
aac_fib_complete(fibctx);
/* FIB should be freed only after getting the response from the F/W */
if (status != -ERESTARTSYS)
aac_fib_free(fibctx);
return status;
}
/**
* aac_comm_init - Initialise FSA data structures
* @dev: Adapter to initialise
*
* Initializes the data structures that are required for the FSA commuication
* interface to operate.
* Returns
* 1 - if we were able to init the commuication interface.
* 0 - If there were errors initing. This is a fatal error.
*/
static int aac_comm_init(struct aac_dev * dev)
{
unsigned long hdrsize = (sizeof(u32) * NUMBER_OF_COMM_QUEUES) * 2;
unsigned long queuesize = sizeof(struct aac_entry) * TOTAL_QUEUE_ENTRIES;
u32 *headers;
struct aac_entry * queues;
unsigned long size;
struct aac_queue_block * comm = dev->queues;
/*
* Now allocate and initialize the zone structures used as our
* pool of FIB context records. The size of the zone is based
* on the system memory size. We also initialize the mutex used
* to protect the zone.
*/
spin_lock_init(&dev->fib_lock);
/*
* Allocate the physically contiguous space for the commuication
* queue headers.
*/
size = hdrsize + queuesize;
if (!aac_alloc_comm(dev, (void * *)&headers, size, QUEUE_ALIGNMENT))
return -ENOMEM;
queues = (struct aac_entry *)(((ulong)headers) + hdrsize);
/* Adapter to Host normal priority Command queue */
comm->queue[HostNormCmdQueue].base = queues;
aac_queue_init(dev, &comm->queue[HostNormCmdQueue], headers, HOST_NORM_CMD_ENTRIES);
queues += HOST_NORM_CMD_ENTRIES;
headers += 2;
/* Adapter to Host high priority command queue */
comm->queue[HostHighCmdQueue].base = queues;
aac_queue_init(dev, &comm->queue[HostHighCmdQueue], headers, HOST_HIGH_CMD_ENTRIES);
queues += HOST_HIGH_CMD_ENTRIES;
headers +=2;
/* Host to adapter normal priority command queue */
comm->queue[AdapNormCmdQueue].base = queues;
aac_queue_init(dev, &comm->queue[AdapNormCmdQueue], headers, ADAP_NORM_CMD_ENTRIES);
queues += ADAP_NORM_CMD_ENTRIES;
headers += 2;
/* host to adapter high priority command queue */
comm->queue[AdapHighCmdQueue].base = queues;
aac_queue_init(dev, &comm->queue[AdapHighCmdQueue], headers, ADAP_HIGH_CMD_ENTRIES);
queues += ADAP_HIGH_CMD_ENTRIES;
headers += 2;
/* adapter to host normal priority response queue */
comm->queue[HostNormRespQueue].base = queues;
aac_queue_init(dev, &comm->queue[HostNormRespQueue], headers, HOST_NORM_RESP_ENTRIES);
queues += HOST_NORM_RESP_ENTRIES;
headers += 2;
/* adapter to host high priority response queue */
comm->queue[HostHighRespQueue].base = queues;
aac_queue_init(dev, &comm->queue[HostHighRespQueue], headers, HOST_HIGH_RESP_ENTRIES);
queues += HOST_HIGH_RESP_ENTRIES;
headers += 2;
/* host to adapter normal priority response queue */
comm->queue[AdapNormRespQueue].base = queues;
aac_queue_init(dev, &comm->queue[AdapNormRespQueue], headers, ADAP_NORM_RESP_ENTRIES);
queues += ADAP_NORM_RESP_ENTRIES;
headers += 2;
/* host to adapter high priority response queue */
comm->queue[AdapHighRespQueue].base = queues;
aac_queue_init(dev, &comm->queue[AdapHighRespQueue], headers, ADAP_HIGH_RESP_ENTRIES);
comm->queue[AdapNormCmdQueue].lock = comm->queue[HostNormRespQueue].lock;
comm->queue[AdapHighCmdQueue].lock = comm->queue[HostHighRespQueue].lock;
comm->queue[AdapNormRespQueue].lock = comm->queue[HostNormCmdQueue].lock;
comm->queue[AdapHighRespQueue].lock = comm->queue[HostHighCmdQueue].lock;
return 0;
}
struct aac_dev *aac_init_adapter(struct aac_dev *dev)
{
u32 status[5];
struct Scsi_Host * host = dev->scsi_host_ptr;
extern int aac_sync_mode;
/*
* Check the preferred comm settings, defaults from template.
*/
dev->management_fib_count = 0;
spin_lock_init(&dev->manage_lock);
spin_lock_init(&dev->sync_lock);
dev->max_fib_size = sizeof(struct hw_fib);
dev->sg_tablesize = host->sg_tablesize = (dev->max_fib_size
- sizeof(struct aac_fibhdr)
- sizeof(struct aac_write) + sizeof(struct sgentry))
/ sizeof(struct sgentry);
dev->comm_interface = AAC_COMM_PRODUCER;
dev->raw_io_interface = dev->raw_io_64 = 0;
if ((!aac_adapter_sync_cmd(dev, GET_ADAPTER_PROPERTIES,
0, 0, 0, 0, 0, 0, status+0, status+1, status+2, NULL, NULL)) &&
(status[0] == 0x00000001)) {
if (status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_64))
dev->raw_io_64 = 1;
dev->sync_mode = aac_sync_mode;
if (dev->a_ops.adapter_comm &&
(status[1] & le32_to_cpu(AAC_OPT_NEW_COMM))) {
dev->comm_interface = AAC_COMM_MESSAGE;
dev->raw_io_interface = 1;
if ((status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_TYPE1))) {
/* driver supports TYPE1 (Tupelo) */
dev->comm_interface = AAC_COMM_MESSAGE_TYPE1;
} else if ((status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_TYPE2))) {
/* driver supports TYPE2 (Denali) */
dev->comm_interface = AAC_COMM_MESSAGE_TYPE2;
} else if ((status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_TYPE4)) ||
(status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_TYPE3))) {
/* driver doesn't TYPE3 and TYPE4 */
/* switch to sync. mode */
dev->comm_interface = AAC_COMM_MESSAGE_TYPE2;
dev->sync_mode = 1;
}
}
if ((dev->comm_interface == AAC_COMM_MESSAGE) &&
(status[2] > dev->base_size)) {
aac_adapter_ioremap(dev, 0);
dev->base_size = status[2];
if (aac_adapter_ioremap(dev, status[2])) {
/* remap failed, go back ... */
dev->comm_interface = AAC_COMM_PRODUCER;
if (aac_adapter_ioremap(dev, AAC_MIN_FOOTPRINT_SIZE)) {
printk(KERN_WARNING
"aacraid: unable to map adapter.\n");
return NULL;
}
}
}
}
if ((!aac_adapter_sync_cmd(dev, GET_COMM_PREFERRED_SETTINGS,
0, 0, 0, 0, 0, 0,
status+0, status+1, status+2, status+3, status+4))
&& (status[0] == 0x00000001)) {
/*
* status[1] >> 16 maximum command size in KB
* status[1] & 0xFFFF maximum FIB size
* status[2] >> 16 maximum SG elements to driver
* status[2] & 0xFFFF maximum SG elements from driver
* status[3] & 0xFFFF maximum number FIBs outstanding
*/
host->max_sectors = (status[1] >> 16) << 1;
/* Multiple of 32 for PMC */
dev->max_fib_size = status[1] & 0xFFE0;
host->sg_tablesize = status[2] >> 16;
dev->sg_tablesize = status[2] & 0xFFFF;
if (dev->pdev->device == PMC_DEVICE_S7 ||
dev->pdev->device == PMC_DEVICE_S8 ||
dev->pdev->device == PMC_DEVICE_S9)
host->can_queue = ((status[3] >> 16) ? (status[3] >> 16) :
(status[3] & 0xFFFF)) - AAC_NUM_MGT_FIB;
else
host->can_queue = (status[3] & 0xFFFF) - AAC_NUM_MGT_FIB;
dev->max_num_aif = status[4] & 0xFFFF;
/*
* NOTE:
* All these overrides are based on a fixed internal
* knowledge and understanding of existing adapters,
* acbsize should be set with caution.
*/
if (acbsize == 512) {
host->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
dev->max_fib_size = 512;
dev->sg_tablesize = host->sg_tablesize
= (512 - sizeof(struct aac_fibhdr)
- sizeof(struct aac_write) + sizeof(struct sgentry))
/ sizeof(struct sgentry);
host->can_queue = AAC_NUM_IO_FIB;
} else if (acbsize == 2048) {
host->max_sectors = 512;
dev->max_fib_size = 2048;
host->sg_tablesize = 65;
dev->sg_tablesize = 81;
host->can_queue = 512 - AAC_NUM_MGT_FIB;
} else if (acbsize == 4096) {
host->max_sectors = 1024;
dev->max_fib_size = 4096;
host->sg_tablesize = 129;
dev->sg_tablesize = 166;
host->can_queue = 256 - AAC_NUM_MGT_FIB;
} else if (acbsize == 8192) {
host->max_sectors = 2048;
dev->max_fib_size = 8192;
host->sg_tablesize = 257;
dev->sg_tablesize = 337;
host->can_queue = 128 - AAC_NUM_MGT_FIB;
} else if (acbsize > 0) {
printk("Illegal acbsize=%d ignored\n", acbsize);
}
}
{
if (numacb > 0) {
if (numacb < host->can_queue)
host->can_queue = numacb;
else
printk("numacb=%d ignored\n", numacb);
}
}
if (host->can_queue > AAC_NUM_IO_FIB)
host->can_queue = AAC_NUM_IO_FIB;
/*
* Ok now init the communication subsystem
*/
dev->queues = kzalloc(sizeof(struct aac_queue_block), GFP_KERNEL);
if (dev->queues == NULL) {
printk(KERN_ERR "Error could not allocate comm region.\n");
return NULL;
}
if (aac_comm_init(dev)<0){
kfree(dev->queues);
return NULL;
}
/*
* Initialize the list of fibs
*/
if (aac_fib_setup(dev) < 0) {
kfree(dev->queues);
return NULL;
}
INIT_LIST_HEAD(&dev->fib_list);
INIT_LIST_HEAD(&dev->sync_fib_list);
return dev;
}