OpenCloudOS-Kernel/drivers/bluetooth/btnxpuart.c

1353 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* NXP Bluetooth driver
* Copyright 2023 NXP
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/serdev.h>
#include <linux/of.h>
#include <linux/skbuff.h>
#include <asm/unaligned.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/crc8.h>
#include <linux/crc32.h>
#include <linux/string_helpers.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include "h4_recv.h"
#define MANUFACTURER_NXP 37
#define BTNXPUART_TX_STATE_ACTIVE 1
#define BTNXPUART_FW_DOWNLOADING 2
#define BTNXPUART_CHECK_BOOT_SIGNATURE 3
#define BTNXPUART_SERDEV_OPEN 4
#define FIRMWARE_W8987 "nxp/uartuart8987_bt.bin"
#define FIRMWARE_W8997 "nxp/uartuart8997_bt_v4.bin"
#define FIRMWARE_W9098 "nxp/uartuart9098_bt_v1.bin"
#define FIRMWARE_IW416 "nxp/uartiw416_bt_v0.bin"
#define FIRMWARE_IW612 "nxp/uartspi_n61x_v1.bin.se"
#define FIRMWARE_HELPER "nxp/helper_uart_3000000.bin"
#define CHIP_ID_W9098 0x5c03
#define CHIP_ID_IW416 0x7201
#define CHIP_ID_IW612 0x7601
#define HCI_NXP_PRI_BAUDRATE 115200
#define HCI_NXP_SEC_BAUDRATE 3000000
#define MAX_FW_FILE_NAME_LEN 50
/* Default ps timeout period in milliseconds */
#define PS_DEFAULT_TIMEOUT_PERIOD_MS 2000
/* wakeup methods */
#define WAKEUP_METHOD_DTR 0
#define WAKEUP_METHOD_BREAK 1
#define WAKEUP_METHOD_EXT_BREAK 2
#define WAKEUP_METHOD_RTS 3
#define WAKEUP_METHOD_INVALID 0xff
/* power save mode status */
#define PS_MODE_DISABLE 0
#define PS_MODE_ENABLE 1
/* Power Save Commands to ps_work_func */
#define PS_CMD_EXIT_PS 1
#define PS_CMD_ENTER_PS 2
/* power save state */
#define PS_STATE_AWAKE 0
#define PS_STATE_SLEEP 1
/* Bluetooth vendor command : Sleep mode */
#define HCI_NXP_AUTO_SLEEP_MODE 0xfc23
/* Bluetooth vendor command : Wakeup method */
#define HCI_NXP_WAKEUP_METHOD 0xfc53
/* Bluetooth vendor command : Set operational baudrate */
#define HCI_NXP_SET_OPER_SPEED 0xfc09
/* Bluetooth vendor command: Independent Reset */
#define HCI_NXP_IND_RESET 0xfcfc
/* Bluetooth Power State : Vendor cmd params */
#define BT_PS_ENABLE 0x02
#define BT_PS_DISABLE 0x03
/* Bluetooth Host Wakeup Methods */
#define BT_HOST_WAKEUP_METHOD_NONE 0x00
#define BT_HOST_WAKEUP_METHOD_DTR 0x01
#define BT_HOST_WAKEUP_METHOD_BREAK 0x02
#define BT_HOST_WAKEUP_METHOD_GPIO 0x03
/* Bluetooth Chip Wakeup Methods */
#define BT_CTRL_WAKEUP_METHOD_DSR 0x00
#define BT_CTRL_WAKEUP_METHOD_BREAK 0x01
#define BT_CTRL_WAKEUP_METHOD_GPIO 0x02
#define BT_CTRL_WAKEUP_METHOD_EXT_BREAK 0x04
#define BT_CTRL_WAKEUP_METHOD_RTS 0x05
struct ps_data {
u8 target_ps_mode; /* ps mode to be set */
u8 cur_psmode; /* current ps_mode */
u8 ps_state; /* controller's power save state */
u8 ps_cmd;
u8 h2c_wakeupmode;
u8 cur_h2c_wakeupmode;
u8 c2h_wakeupmode;
u8 c2h_wakeup_gpio;
u8 h2c_wakeup_gpio;
bool driver_sent_cmd;
u16 h2c_ps_interval;
u16 c2h_ps_interval;
struct hci_dev *hdev;
struct work_struct work;
struct timer_list ps_timer;
};
struct wakeup_cmd_payload {
u8 c2h_wakeupmode;
u8 c2h_wakeup_gpio;
u8 h2c_wakeupmode;
u8 h2c_wakeup_gpio;
} __packed;
struct psmode_cmd_payload {
u8 ps_cmd;
__le16 c2h_ps_interval;
} __packed;
struct btnxpuart_data {
const char *helper_fw_name;
const char *fw_name;
};
struct btnxpuart_dev {
struct hci_dev *hdev;
struct serdev_device *serdev;
struct work_struct tx_work;
unsigned long tx_state;
struct sk_buff_head txq;
struct sk_buff *rx_skb;
const struct firmware *fw;
u8 fw_name[MAX_FW_FILE_NAME_LEN];
u32 fw_dnld_v1_offset;
u32 fw_v1_sent_bytes;
u32 fw_v3_offset_correction;
u32 fw_v1_expected_len;
wait_queue_head_t fw_dnld_done_wait_q;
wait_queue_head_t check_boot_sign_wait_q;
u32 new_baudrate;
u32 current_baudrate;
u32 fw_init_baudrate;
bool timeout_changed;
bool baudrate_changed;
bool helper_downloaded;
struct ps_data psdata;
struct btnxpuart_data *nxp_data;
};
#define NXP_V1_FW_REQ_PKT 0xa5
#define NXP_V1_CHIP_VER_PKT 0xaa
#define NXP_V3_FW_REQ_PKT 0xa7
#define NXP_V3_CHIP_VER_PKT 0xab
#define NXP_ACK_V1 0x5a
#define NXP_NAK_V1 0xbf
#define NXP_ACK_V3 0x7a
#define NXP_NAK_V3 0x7b
#define NXP_CRC_ERROR_V3 0x7c
#define HDR_LEN 16
#define NXP_RECV_CHIP_VER_V1 \
.type = NXP_V1_CHIP_VER_PKT, \
.hlen = 4, \
.loff = 0, \
.lsize = 0, \
.maxlen = 4
#define NXP_RECV_FW_REQ_V1 \
.type = NXP_V1_FW_REQ_PKT, \
.hlen = 4, \
.loff = 0, \
.lsize = 0, \
.maxlen = 4
#define NXP_RECV_CHIP_VER_V3 \
.type = NXP_V3_CHIP_VER_PKT, \
.hlen = 4, \
.loff = 0, \
.lsize = 0, \
.maxlen = 4
#define NXP_RECV_FW_REQ_V3 \
.type = NXP_V3_FW_REQ_PKT, \
.hlen = 9, \
.loff = 0, \
.lsize = 0, \
.maxlen = 9
struct v1_data_req {
__le16 len;
__le16 len_comp;
} __packed;
struct v1_start_ind {
__le16 chip_id;
__le16 chip_id_comp;
} __packed;
struct v3_data_req {
__le16 len;
__le32 offset;
__le16 error;
u8 crc;
} __packed;
struct v3_start_ind {
__le16 chip_id;
u8 loader_ver;
u8 crc;
} __packed;
/* UART register addresses of BT chip */
#define CLKDIVADDR 0x7f00008f
#define UARTDIVADDR 0x7f000090
#define UARTMCRADDR 0x7f000091
#define UARTREINITADDR 0x7f000092
#define UARTICRADDR 0x7f000093
#define UARTFCRADDR 0x7f000094
#define MCR 0x00000022
#define INIT 0x00000001
#define ICR 0x000000c7
#define FCR 0x000000c7
#define POLYNOMIAL8 0x07
struct uart_reg {
__le32 address;
__le32 value;
} __packed;
struct uart_config {
struct uart_reg clkdiv;
struct uart_reg uartdiv;
struct uart_reg mcr;
struct uart_reg re_init;
struct uart_reg icr;
struct uart_reg fcr;
__be32 crc;
} __packed;
struct nxp_bootloader_cmd {
__le32 header;
__le32 arg;
__le32 payload_len;
__be32 crc;
} __packed;
static u8 crc8_table[CRC8_TABLE_SIZE];
/* Default configurations */
#define DEFAULT_H2C_WAKEUP_MODE WAKEUP_METHOD_BREAK
#define DEFAULT_PS_MODE PS_MODE_DISABLE
#define FW_INIT_BAUDRATE HCI_NXP_PRI_BAUDRATE
static struct sk_buff *nxp_drv_send_cmd(struct hci_dev *hdev, u16 opcode,
u32 plen,
void *param)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
struct ps_data *psdata = &nxpdev->psdata;
struct sk_buff *skb;
/* set flag to prevent nxp_enqueue from parsing values from this command and
* calling hci_cmd_sync_queue() again.
*/
psdata->driver_sent_cmd = true;
skb = __hci_cmd_sync(hdev, opcode, plen, param, HCI_CMD_TIMEOUT);
psdata->driver_sent_cmd = false;
return skb;
}
static void btnxpuart_tx_wakeup(struct btnxpuart_dev *nxpdev)
{
if (schedule_work(&nxpdev->tx_work))
set_bit(BTNXPUART_TX_STATE_ACTIVE, &nxpdev->tx_state);
}
/* NXP Power Save Feature */
static void ps_start_timer(struct btnxpuart_dev *nxpdev)
{
struct ps_data *psdata = &nxpdev->psdata;
if (!psdata)
return;
if (psdata->cur_psmode == PS_MODE_ENABLE)
mod_timer(&psdata->ps_timer, jiffies + msecs_to_jiffies(psdata->h2c_ps_interval));
}
static void ps_cancel_timer(struct btnxpuart_dev *nxpdev)
{
struct ps_data *psdata = &nxpdev->psdata;
flush_work(&psdata->work);
del_timer_sync(&psdata->ps_timer);
}
static void ps_control(struct hci_dev *hdev, u8 ps_state)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
struct ps_data *psdata = &nxpdev->psdata;
int status;
if (psdata->ps_state == ps_state ||
!test_bit(BTNXPUART_SERDEV_OPEN, &nxpdev->tx_state))
return;
switch (psdata->cur_h2c_wakeupmode) {
case WAKEUP_METHOD_DTR:
if (ps_state == PS_STATE_AWAKE)
status = serdev_device_set_tiocm(nxpdev->serdev, TIOCM_DTR, 0);
else
status = serdev_device_set_tiocm(nxpdev->serdev, 0, TIOCM_DTR);
break;
case WAKEUP_METHOD_BREAK:
default:
if (ps_state == PS_STATE_AWAKE)
status = serdev_device_break_ctl(nxpdev->serdev, 0);
else
status = serdev_device_break_ctl(nxpdev->serdev, -1);
bt_dev_dbg(hdev, "Set UART break: %s, status=%d",
str_on_off(ps_state == PS_STATE_SLEEP), status);
break;
}
if (!status)
psdata->ps_state = ps_state;
if (ps_state == PS_STATE_AWAKE)
btnxpuart_tx_wakeup(nxpdev);
}
static void ps_work_func(struct work_struct *work)
{
struct ps_data *data = container_of(work, struct ps_data, work);
if (data->ps_cmd == PS_CMD_ENTER_PS && data->cur_psmode == PS_MODE_ENABLE)
ps_control(data->hdev, PS_STATE_SLEEP);
else if (data->ps_cmd == PS_CMD_EXIT_PS)
ps_control(data->hdev, PS_STATE_AWAKE);
}
static void ps_timeout_func(struct timer_list *t)
{
struct ps_data *data = from_timer(data, t, ps_timer);
struct hci_dev *hdev = data->hdev;
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
if (test_bit(BTNXPUART_TX_STATE_ACTIVE, &nxpdev->tx_state)) {
ps_start_timer(nxpdev);
} else {
data->ps_cmd = PS_CMD_ENTER_PS;
schedule_work(&data->work);
}
}
static int ps_init_work(struct hci_dev *hdev)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
struct ps_data *psdata = &nxpdev->psdata;
psdata->h2c_ps_interval = PS_DEFAULT_TIMEOUT_PERIOD_MS;
psdata->ps_state = PS_STATE_AWAKE;
psdata->target_ps_mode = DEFAULT_PS_MODE;
psdata->hdev = hdev;
psdata->c2h_wakeupmode = BT_HOST_WAKEUP_METHOD_NONE;
psdata->c2h_wakeup_gpio = 0xff;
switch (DEFAULT_H2C_WAKEUP_MODE) {
case WAKEUP_METHOD_DTR:
psdata->h2c_wakeupmode = WAKEUP_METHOD_DTR;
break;
case WAKEUP_METHOD_BREAK:
default:
psdata->h2c_wakeupmode = WAKEUP_METHOD_BREAK;
break;
}
psdata->cur_psmode = PS_MODE_DISABLE;
psdata->cur_h2c_wakeupmode = WAKEUP_METHOD_INVALID;
INIT_WORK(&psdata->work, ps_work_func);
return 0;
}
static void ps_init_timer(struct hci_dev *hdev)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
struct ps_data *psdata = &nxpdev->psdata;
timer_setup(&psdata->ps_timer, ps_timeout_func, 0);
}
static void ps_wakeup(struct btnxpuart_dev *nxpdev)
{
struct ps_data *psdata = &nxpdev->psdata;
if (psdata->ps_state != PS_STATE_AWAKE) {
psdata->ps_cmd = PS_CMD_EXIT_PS;
schedule_work(&psdata->work);
}
}
static int send_ps_cmd(struct hci_dev *hdev, void *data)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
struct ps_data *psdata = &nxpdev->psdata;
struct psmode_cmd_payload pcmd;
struct sk_buff *skb;
u8 *status;
if (psdata->target_ps_mode == PS_MODE_ENABLE)
pcmd.ps_cmd = BT_PS_ENABLE;
else
pcmd.ps_cmd = BT_PS_DISABLE;
pcmd.c2h_ps_interval = __cpu_to_le16(psdata->c2h_ps_interval);
skb = nxp_drv_send_cmd(hdev, HCI_NXP_AUTO_SLEEP_MODE, sizeof(pcmd), &pcmd);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Setting Power Save mode failed (%ld)", PTR_ERR(skb));
return PTR_ERR(skb);
}
status = skb_pull_data(skb, 1);
if (status) {
if (!*status)
psdata->cur_psmode = psdata->target_ps_mode;
else
psdata->target_ps_mode = psdata->cur_psmode;
if (psdata->cur_psmode == PS_MODE_ENABLE)
ps_start_timer(nxpdev);
else
ps_wakeup(nxpdev);
bt_dev_dbg(hdev, "Power Save mode response: status=%d, ps_mode=%d",
*status, psdata->cur_psmode);
}
kfree_skb(skb);
return 0;
}
static int send_wakeup_method_cmd(struct hci_dev *hdev, void *data)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
struct ps_data *psdata = &nxpdev->psdata;
struct wakeup_cmd_payload pcmd;
struct sk_buff *skb;
u8 *status;
pcmd.c2h_wakeupmode = psdata->c2h_wakeupmode;
pcmd.c2h_wakeup_gpio = psdata->c2h_wakeup_gpio;
switch (psdata->h2c_wakeupmode) {
case WAKEUP_METHOD_DTR:
pcmd.h2c_wakeupmode = BT_CTRL_WAKEUP_METHOD_DSR;
break;
case WAKEUP_METHOD_BREAK:
default:
pcmd.h2c_wakeupmode = BT_CTRL_WAKEUP_METHOD_BREAK;
break;
}
pcmd.h2c_wakeup_gpio = 0xff;
skb = nxp_drv_send_cmd(hdev, HCI_NXP_WAKEUP_METHOD, sizeof(pcmd), &pcmd);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Setting wake-up method failed (%ld)", PTR_ERR(skb));
return PTR_ERR(skb);
}
status = skb_pull_data(skb, 1);
if (status) {
if (*status == 0)
psdata->cur_h2c_wakeupmode = psdata->h2c_wakeupmode;
else
psdata->h2c_wakeupmode = psdata->cur_h2c_wakeupmode;
bt_dev_dbg(hdev, "Set Wakeup Method response: status=%d, h2c_wakeupmode=%d",
*status, psdata->cur_h2c_wakeupmode);
}
kfree_skb(skb);
return 0;
}
static void ps_init(struct hci_dev *hdev)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
struct ps_data *psdata = &nxpdev->psdata;
serdev_device_set_tiocm(nxpdev->serdev, 0, TIOCM_RTS);
usleep_range(5000, 10000);
serdev_device_set_tiocm(nxpdev->serdev, TIOCM_RTS, 0);
usleep_range(5000, 10000);
switch (psdata->h2c_wakeupmode) {
case WAKEUP_METHOD_DTR:
serdev_device_set_tiocm(nxpdev->serdev, 0, TIOCM_DTR);
serdev_device_set_tiocm(nxpdev->serdev, TIOCM_DTR, 0);
break;
case WAKEUP_METHOD_BREAK:
default:
serdev_device_break_ctl(nxpdev->serdev, -1);
usleep_range(5000, 10000);
serdev_device_break_ctl(nxpdev->serdev, 0);
usleep_range(5000, 10000);
break;
}
if (psdata->cur_h2c_wakeupmode != psdata->h2c_wakeupmode)
hci_cmd_sync_queue(hdev, send_wakeup_method_cmd, NULL, NULL);
if (psdata->cur_psmode != psdata->target_ps_mode)
hci_cmd_sync_queue(hdev, send_ps_cmd, NULL, NULL);
}
/* NXP Firmware Download Feature */
static int nxp_download_firmware(struct hci_dev *hdev)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
int err = 0;
nxpdev->fw_dnld_v1_offset = 0;
nxpdev->fw_v1_sent_bytes = 0;
nxpdev->fw_v1_expected_len = HDR_LEN;
nxpdev->fw_v3_offset_correction = 0;
nxpdev->baudrate_changed = false;
nxpdev->timeout_changed = false;
nxpdev->helper_downloaded = false;
serdev_device_set_baudrate(nxpdev->serdev, HCI_NXP_PRI_BAUDRATE);
serdev_device_set_flow_control(nxpdev->serdev, false);
nxpdev->current_baudrate = HCI_NXP_PRI_BAUDRATE;
/* Wait till FW is downloaded and CTS becomes low */
err = wait_event_interruptible_timeout(nxpdev->fw_dnld_done_wait_q,
!test_bit(BTNXPUART_FW_DOWNLOADING,
&nxpdev->tx_state),
msecs_to_jiffies(60000));
if (err == 0) {
bt_dev_err(hdev, "FW Download Timeout.");
return -ETIMEDOUT;
}
serdev_device_set_flow_control(nxpdev->serdev, true);
err = serdev_device_wait_for_cts(nxpdev->serdev, 1, 60000);
if (err < 0) {
bt_dev_err(hdev, "CTS is still high. FW Download failed.");
return err;
}
release_firmware(nxpdev->fw);
memset(nxpdev->fw_name, 0, sizeof(nxpdev->fw_name));
/* Allow the downloaded FW to initialize */
usleep_range(800 * USEC_PER_MSEC, 1 * USEC_PER_SEC);
return 0;
}
static void nxp_send_ack(u8 ack, struct hci_dev *hdev)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
u8 ack_nak[2];
int len = 1;
ack_nak[0] = ack;
if (ack == NXP_ACK_V3) {
ack_nak[1] = crc8(crc8_table, ack_nak, 1, 0xff);
len = 2;
}
serdev_device_write_buf(nxpdev->serdev, ack_nak, len);
}
static bool nxp_fw_change_baudrate(struct hci_dev *hdev, u16 req_len)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
struct nxp_bootloader_cmd nxp_cmd5;
struct uart_config uart_config;
if (req_len == sizeof(nxp_cmd5)) {
nxp_cmd5.header = __cpu_to_le32(5);
nxp_cmd5.arg = 0;
nxp_cmd5.payload_len = __cpu_to_le32(sizeof(uart_config));
/* FW expects swapped CRC bytes */
nxp_cmd5.crc = __cpu_to_be32(crc32_be(0UL, (char *)&nxp_cmd5,
sizeof(nxp_cmd5) - 4));
serdev_device_write_buf(nxpdev->serdev, (u8 *)&nxp_cmd5, sizeof(nxp_cmd5));
nxpdev->fw_v3_offset_correction += req_len;
} else if (req_len == sizeof(uart_config)) {
uart_config.clkdiv.address = __cpu_to_le32(CLKDIVADDR);
uart_config.clkdiv.value = __cpu_to_le32(0x00c00000);
uart_config.uartdiv.address = __cpu_to_le32(UARTDIVADDR);
uart_config.uartdiv.value = __cpu_to_le32(1);
uart_config.mcr.address = __cpu_to_le32(UARTMCRADDR);
uart_config.mcr.value = __cpu_to_le32(MCR);
uart_config.re_init.address = __cpu_to_le32(UARTREINITADDR);
uart_config.re_init.value = __cpu_to_le32(INIT);
uart_config.icr.address = __cpu_to_le32(UARTICRADDR);
uart_config.icr.value = __cpu_to_le32(ICR);
uart_config.fcr.address = __cpu_to_le32(UARTFCRADDR);
uart_config.fcr.value = __cpu_to_le32(FCR);
/* FW expects swapped CRC bytes */
uart_config.crc = __cpu_to_be32(crc32_be(0UL, (char *)&uart_config,
sizeof(uart_config) - 4));
serdev_device_write_buf(nxpdev->serdev, (u8 *)&uart_config, sizeof(uart_config));
serdev_device_wait_until_sent(nxpdev->serdev, 0);
nxpdev->fw_v3_offset_correction += req_len;
return true;
}
return false;
}
static bool nxp_fw_change_timeout(struct hci_dev *hdev, u16 req_len)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
struct nxp_bootloader_cmd nxp_cmd7;
if (req_len != sizeof(nxp_cmd7))
return false;
nxp_cmd7.header = __cpu_to_le32(7);
nxp_cmd7.arg = __cpu_to_le32(0x70);
nxp_cmd7.payload_len = 0;
/* FW expects swapped CRC bytes */
nxp_cmd7.crc = __cpu_to_be32(crc32_be(0UL, (char *)&nxp_cmd7,
sizeof(nxp_cmd7) - 4));
serdev_device_write_buf(nxpdev->serdev, (u8 *)&nxp_cmd7, sizeof(nxp_cmd7));
serdev_device_wait_until_sent(nxpdev->serdev, 0);
nxpdev->fw_v3_offset_correction += req_len;
return true;
}
static u32 nxp_get_data_len(const u8 *buf)
{
struct nxp_bootloader_cmd *hdr = (struct nxp_bootloader_cmd *)buf;
return __le32_to_cpu(hdr->payload_len);
}
static bool is_fw_downloading(struct btnxpuart_dev *nxpdev)
{
return test_bit(BTNXPUART_FW_DOWNLOADING, &nxpdev->tx_state);
}
static bool process_boot_signature(struct btnxpuart_dev *nxpdev)
{
if (test_bit(BTNXPUART_CHECK_BOOT_SIGNATURE, &nxpdev->tx_state)) {
clear_bit(BTNXPUART_CHECK_BOOT_SIGNATURE, &nxpdev->tx_state);
wake_up_interruptible(&nxpdev->check_boot_sign_wait_q);
return false;
}
return is_fw_downloading(nxpdev);
}
static int nxp_request_firmware(struct hci_dev *hdev, const char *fw_name)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
int err = 0;
if (!strlen(nxpdev->fw_name)) {
snprintf(nxpdev->fw_name, MAX_FW_FILE_NAME_LEN, "%s", fw_name);
bt_dev_dbg(hdev, "Request Firmware: %s", nxpdev->fw_name);
err = request_firmware(&nxpdev->fw, nxpdev->fw_name, &hdev->dev);
if (err < 0) {
bt_dev_err(hdev, "Firmware file %s not found", nxpdev->fw_name);
clear_bit(BTNXPUART_FW_DOWNLOADING, &nxpdev->tx_state);
}
}
return err;
}
/* for legacy chipsets with V1 bootloader */
static int nxp_recv_chip_ver_v1(struct hci_dev *hdev, struct sk_buff *skb)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
struct v1_start_ind *req;
__u16 chip_id;
req = skb_pull_data(skb, sizeof(*req));
if (!req)
goto free_skb;
chip_id = le16_to_cpu(req->chip_id ^ req->chip_id_comp);
if (chip_id == 0xffff) {
nxpdev->fw_dnld_v1_offset = 0;
nxpdev->fw_v1_sent_bytes = 0;
nxpdev->fw_v1_expected_len = HDR_LEN;
release_firmware(nxpdev->fw);
memset(nxpdev->fw_name, 0, sizeof(nxpdev->fw_name));
nxp_send_ack(NXP_ACK_V1, hdev);
}
free_skb:
kfree_skb(skb);
return 0;
}
static int nxp_recv_fw_req_v1(struct hci_dev *hdev, struct sk_buff *skb)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
struct btnxpuart_data *nxp_data = nxpdev->nxp_data;
struct v1_data_req *req;
__u16 len;
if (!process_boot_signature(nxpdev))
goto free_skb;
req = skb_pull_data(skb, sizeof(*req));
if (!req)
goto free_skb;
len = __le16_to_cpu(req->len ^ req->len_comp);
if (len != 0xffff) {
bt_dev_dbg(hdev, "ERR: Send NAK");
nxp_send_ack(NXP_NAK_V1, hdev);
goto free_skb;
}
nxp_send_ack(NXP_ACK_V1, hdev);
len = __le16_to_cpu(req->len);
if (!nxp_data->helper_fw_name) {
if (!nxpdev->timeout_changed) {
nxpdev->timeout_changed = nxp_fw_change_timeout(hdev,
len);
goto free_skb;
}
if (!nxpdev->baudrate_changed) {
nxpdev->baudrate_changed = nxp_fw_change_baudrate(hdev,
len);
if (nxpdev->baudrate_changed) {
serdev_device_set_baudrate(nxpdev->serdev,
HCI_NXP_SEC_BAUDRATE);
serdev_device_set_flow_control(nxpdev->serdev, true);
nxpdev->current_baudrate = HCI_NXP_SEC_BAUDRATE;
}
goto free_skb;
}
}
if (!nxp_data->helper_fw_name || nxpdev->helper_downloaded) {
if (nxp_request_firmware(hdev, nxp_data->fw_name))
goto free_skb;
} else if (nxp_data->helper_fw_name && !nxpdev->helper_downloaded) {
if (nxp_request_firmware(hdev, nxp_data->helper_fw_name))
goto free_skb;
}
if (!len) {
bt_dev_dbg(hdev, "FW Downloaded Successfully: %zu bytes",
nxpdev->fw->size);
if (nxp_data->helper_fw_name && !nxpdev->helper_downloaded) {
nxpdev->helper_downloaded = true;
serdev_device_wait_until_sent(nxpdev->serdev, 0);
serdev_device_set_baudrate(nxpdev->serdev,
HCI_NXP_SEC_BAUDRATE);
serdev_device_set_flow_control(nxpdev->serdev, true);
} else {
clear_bit(BTNXPUART_FW_DOWNLOADING, &nxpdev->tx_state);
wake_up_interruptible(&nxpdev->fw_dnld_done_wait_q);
}
goto free_skb;
}
if (len & 0x01) {
/* The CRC did not match at the other end.
* Simply send the same bytes again.
*/
len = nxpdev->fw_v1_sent_bytes;
bt_dev_dbg(hdev, "CRC error. Resend %d bytes of FW.", len);
} else {
nxpdev->fw_dnld_v1_offset += nxpdev->fw_v1_sent_bytes;
/* The FW bin file is made up of many blocks of
* 16 byte header and payload data chunks. If the
* FW has requested a header, read the payload length
* info from the header, before sending the header.
* In the next iteration, the FW should request the
* payload data chunk, which should be equal to the
* payload length read from header. If there is a
* mismatch, clearly the driver and FW are out of sync,
* and we need to re-send the previous header again.
*/
if (len == nxpdev->fw_v1_expected_len) {
if (len == HDR_LEN)
nxpdev->fw_v1_expected_len = nxp_get_data_len(nxpdev->fw->data +
nxpdev->fw_dnld_v1_offset);
else
nxpdev->fw_v1_expected_len = HDR_LEN;
} else if (len == HDR_LEN) {
/* FW download out of sync. Send previous chunk again */
nxpdev->fw_dnld_v1_offset -= nxpdev->fw_v1_sent_bytes;
nxpdev->fw_v1_expected_len = HDR_LEN;
}
}
if (nxpdev->fw_dnld_v1_offset + len <= nxpdev->fw->size)
serdev_device_write_buf(nxpdev->serdev, nxpdev->fw->data +
nxpdev->fw_dnld_v1_offset, len);
nxpdev->fw_v1_sent_bytes = len;
free_skb:
kfree_skb(skb);
return 0;
}
static char *nxp_get_fw_name_from_chipid(struct hci_dev *hdev, u16 chipid)
{
char *fw_name = NULL;
switch (chipid) {
case CHIP_ID_W9098:
fw_name = FIRMWARE_W9098;
break;
case CHIP_ID_IW416:
fw_name = FIRMWARE_IW416;
break;
case CHIP_ID_IW612:
fw_name = FIRMWARE_IW612;
break;
default:
bt_dev_err(hdev, "Unknown chip signature %04x", chipid);
break;
}
return fw_name;
}
static int nxp_recv_chip_ver_v3(struct hci_dev *hdev, struct sk_buff *skb)
{
struct v3_start_ind *req = skb_pull_data(skb, sizeof(*req));
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
u16 chip_id;
if (!process_boot_signature(nxpdev))
goto free_skb;
chip_id = le16_to_cpu(req->chip_id);
if (!nxp_request_firmware(hdev, nxp_get_fw_name_from_chipid(hdev,
chip_id)))
nxp_send_ack(NXP_ACK_V3, hdev);
free_skb:
kfree_skb(skb);
return 0;
}
static int nxp_recv_fw_req_v3(struct hci_dev *hdev, struct sk_buff *skb)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
struct v3_data_req *req;
__u16 len;
__u32 offset;
if (!process_boot_signature(nxpdev))
goto free_skb;
req = skb_pull_data(skb, sizeof(*req));
if (!req || !nxpdev->fw)
goto free_skb;
nxp_send_ack(NXP_ACK_V3, hdev);
len = __le16_to_cpu(req->len);
if (!nxpdev->timeout_changed) {
nxpdev->timeout_changed = nxp_fw_change_timeout(hdev, len);
goto free_skb;
}
if (!nxpdev->baudrate_changed) {
nxpdev->baudrate_changed = nxp_fw_change_baudrate(hdev, len);
if (nxpdev->baudrate_changed) {
serdev_device_set_baudrate(nxpdev->serdev,
HCI_NXP_SEC_BAUDRATE);
serdev_device_set_flow_control(nxpdev->serdev, true);
nxpdev->current_baudrate = HCI_NXP_SEC_BAUDRATE;
}
goto free_skb;
}
if (req->len == 0) {
bt_dev_dbg(hdev, "FW Downloaded Successfully: %zu bytes",
nxpdev->fw->size);
clear_bit(BTNXPUART_FW_DOWNLOADING, &nxpdev->tx_state);
wake_up_interruptible(&nxpdev->fw_dnld_done_wait_q);
goto free_skb;
}
if (req->error)
bt_dev_dbg(hdev, "FW Download received err 0x%02x from chip",
req->error);
offset = __le32_to_cpu(req->offset);
if (offset < nxpdev->fw_v3_offset_correction) {
/* This scenario should ideally never occur. But if it ever does,
* FW is out of sync and needs a power cycle.
*/
bt_dev_err(hdev, "Something went wrong during FW download");
bt_dev_err(hdev, "Please power cycle and try again");
goto free_skb;
}
serdev_device_write_buf(nxpdev->serdev, nxpdev->fw->data + offset -
nxpdev->fw_v3_offset_correction, len);
free_skb:
kfree_skb(skb);
return 0;
}
static int nxp_set_baudrate_cmd(struct hci_dev *hdev, void *data)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
__le32 new_baudrate = __cpu_to_le32(nxpdev->new_baudrate);
struct ps_data *psdata = &nxpdev->psdata;
struct sk_buff *skb;
u8 *status;
if (!psdata)
return 0;
skb = nxp_drv_send_cmd(hdev, HCI_NXP_SET_OPER_SPEED, 4, (u8 *)&new_baudrate);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Setting baudrate failed (%ld)", PTR_ERR(skb));
return PTR_ERR(skb);
}
status = (u8 *)skb_pull_data(skb, 1);
if (status) {
if (*status == 0) {
serdev_device_set_baudrate(nxpdev->serdev, nxpdev->new_baudrate);
nxpdev->current_baudrate = nxpdev->new_baudrate;
}
bt_dev_dbg(hdev, "Set baudrate response: status=%d, baudrate=%d",
*status, nxpdev->new_baudrate);
}
kfree_skb(skb);
return 0;
}
static int nxp_set_ind_reset(struct hci_dev *hdev, void *data)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
struct sk_buff *skb;
u8 *status;
u8 pcmd = 0;
int err = 0;
skb = nxp_drv_send_cmd(hdev, HCI_NXP_IND_RESET, 1, &pcmd);
if (IS_ERR(skb))
return PTR_ERR(skb);
status = skb_pull_data(skb, 1);
if (!status || *status)
goto free_skb;
set_bit(BTNXPUART_FW_DOWNLOADING, &nxpdev->tx_state);
err = nxp_download_firmware(hdev);
if (err < 0)
goto free_skb;
serdev_device_set_baudrate(nxpdev->serdev, nxpdev->fw_init_baudrate);
nxpdev->current_baudrate = nxpdev->fw_init_baudrate;
if (nxpdev->current_baudrate != HCI_NXP_SEC_BAUDRATE) {
nxpdev->new_baudrate = HCI_NXP_SEC_BAUDRATE;
nxp_set_baudrate_cmd(hdev, NULL);
}
hci_cmd_sync_queue(hdev, send_wakeup_method_cmd, NULL, NULL);
hci_cmd_sync_queue(hdev, send_ps_cmd, NULL, NULL);
free_skb:
kfree_skb(skb);
return err;
}
/* NXP protocol */
static int nxp_check_boot_sign(struct btnxpuart_dev *nxpdev)
{
serdev_device_set_baudrate(nxpdev->serdev, HCI_NXP_PRI_BAUDRATE);
serdev_device_set_flow_control(nxpdev->serdev, true);
set_bit(BTNXPUART_CHECK_BOOT_SIGNATURE, &nxpdev->tx_state);
return wait_event_interruptible_timeout(nxpdev->check_boot_sign_wait_q,
!test_bit(BTNXPUART_CHECK_BOOT_SIGNATURE,
&nxpdev->tx_state),
msecs_to_jiffies(1000));
}
static int nxp_setup(struct hci_dev *hdev)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
int err = 0;
set_bit(BTNXPUART_FW_DOWNLOADING, &nxpdev->tx_state);
init_waitqueue_head(&nxpdev->fw_dnld_done_wait_q);
init_waitqueue_head(&nxpdev->check_boot_sign_wait_q);
if (nxp_check_boot_sign(nxpdev)) {
bt_dev_dbg(hdev, "Need FW Download.");
err = nxp_download_firmware(hdev);
if (err < 0)
return err;
} else {
bt_dev_dbg(hdev, "FW already running.");
clear_bit(BTNXPUART_FW_DOWNLOADING, &nxpdev->tx_state);
}
device_property_read_u32(&nxpdev->serdev->dev, "fw-init-baudrate",
&nxpdev->fw_init_baudrate);
if (!nxpdev->fw_init_baudrate)
nxpdev->fw_init_baudrate = FW_INIT_BAUDRATE;
serdev_device_set_baudrate(nxpdev->serdev, nxpdev->fw_init_baudrate);
nxpdev->current_baudrate = nxpdev->fw_init_baudrate;
if (nxpdev->current_baudrate != HCI_NXP_SEC_BAUDRATE) {
nxpdev->new_baudrate = HCI_NXP_SEC_BAUDRATE;
hci_cmd_sync_queue(hdev, nxp_set_baudrate_cmd, NULL, NULL);
}
ps_init(hdev);
return 0;
}
static int btnxpuart_queue_skb(struct hci_dev *hdev, struct sk_buff *skb)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
/* Prepend skb with frame type */
memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
skb_queue_tail(&nxpdev->txq, skb);
btnxpuart_tx_wakeup(nxpdev);
return 0;
}
static int nxp_enqueue(struct hci_dev *hdev, struct sk_buff *skb)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
struct ps_data *psdata = &nxpdev->psdata;
struct hci_command_hdr *hdr;
struct psmode_cmd_payload ps_parm;
struct wakeup_cmd_payload wakeup_parm;
__le32 baudrate_parm;
/* if vendor commands are received from user space (e.g. hcitool), update
* driver flags accordingly and ask driver to re-send the command to FW.
* In case the payload for any command does not match expected payload
* length, let the firmware and user space program handle it, or throw
* an error.
*/
if (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT && !psdata->driver_sent_cmd) {
hdr = (struct hci_command_hdr *)skb->data;
if (hdr->plen != (skb->len - HCI_COMMAND_HDR_SIZE))
return btnxpuart_queue_skb(hdev, skb);
switch (__le16_to_cpu(hdr->opcode)) {
case HCI_NXP_AUTO_SLEEP_MODE:
if (hdr->plen == sizeof(ps_parm)) {
memcpy(&ps_parm, skb->data + HCI_COMMAND_HDR_SIZE, hdr->plen);
if (ps_parm.ps_cmd == BT_PS_ENABLE)
psdata->target_ps_mode = PS_MODE_ENABLE;
else if (ps_parm.ps_cmd == BT_PS_DISABLE)
psdata->target_ps_mode = PS_MODE_DISABLE;
psdata->c2h_ps_interval = __le16_to_cpu(ps_parm.c2h_ps_interval);
hci_cmd_sync_queue(hdev, send_ps_cmd, NULL, NULL);
goto free_skb;
}
break;
case HCI_NXP_WAKEUP_METHOD:
if (hdr->plen == sizeof(wakeup_parm)) {
memcpy(&wakeup_parm, skb->data + HCI_COMMAND_HDR_SIZE, hdr->plen);
psdata->c2h_wakeupmode = wakeup_parm.c2h_wakeupmode;
psdata->c2h_wakeup_gpio = wakeup_parm.c2h_wakeup_gpio;
psdata->h2c_wakeup_gpio = wakeup_parm.h2c_wakeup_gpio;
switch (wakeup_parm.h2c_wakeupmode) {
case BT_CTRL_WAKEUP_METHOD_DSR:
psdata->h2c_wakeupmode = WAKEUP_METHOD_DTR;
break;
case BT_CTRL_WAKEUP_METHOD_BREAK:
default:
psdata->h2c_wakeupmode = WAKEUP_METHOD_BREAK;
break;
}
hci_cmd_sync_queue(hdev, send_wakeup_method_cmd, NULL, NULL);
goto free_skb;
}
break;
case HCI_NXP_SET_OPER_SPEED:
if (hdr->plen == sizeof(baudrate_parm)) {
memcpy(&baudrate_parm, skb->data + HCI_COMMAND_HDR_SIZE, hdr->plen);
nxpdev->new_baudrate = __le32_to_cpu(baudrate_parm);
hci_cmd_sync_queue(hdev, nxp_set_baudrate_cmd, NULL, NULL);
goto free_skb;
}
break;
case HCI_NXP_IND_RESET:
if (hdr->plen == 1) {
hci_cmd_sync_queue(hdev, nxp_set_ind_reset, NULL, NULL);
goto free_skb;
}
break;
default:
break;
}
}
return btnxpuart_queue_skb(hdev, skb);
free_skb:
kfree_skb(skb);
return 0;
}
static struct sk_buff *nxp_dequeue(void *data)
{
struct btnxpuart_dev *nxpdev = (struct btnxpuart_dev *)data;
ps_wakeup(nxpdev);
ps_start_timer(nxpdev);
return skb_dequeue(&nxpdev->txq);
}
/* btnxpuart based on serdev */
static void btnxpuart_tx_work(struct work_struct *work)
{
struct btnxpuart_dev *nxpdev = container_of(work, struct btnxpuart_dev,
tx_work);
struct serdev_device *serdev = nxpdev->serdev;
struct hci_dev *hdev = nxpdev->hdev;
struct sk_buff *skb;
int len;
while ((skb = nxp_dequeue(nxpdev))) {
len = serdev_device_write_buf(serdev, skb->data, skb->len);
hdev->stat.byte_tx += len;
skb_pull(skb, len);
if (skb->len > 0) {
skb_queue_head(&nxpdev->txq, skb);
break;
}
switch (hci_skb_pkt_type(skb)) {
case HCI_COMMAND_PKT:
hdev->stat.cmd_tx++;
break;
case HCI_ACLDATA_PKT:
hdev->stat.acl_tx++;
break;
case HCI_SCODATA_PKT:
hdev->stat.sco_tx++;
break;
}
kfree_skb(skb);
}
clear_bit(BTNXPUART_TX_STATE_ACTIVE, &nxpdev->tx_state);
}
static int btnxpuart_open(struct hci_dev *hdev)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
int err = 0;
err = serdev_device_open(nxpdev->serdev);
if (err) {
bt_dev_err(hdev, "Unable to open UART device %s",
dev_name(&nxpdev->serdev->dev));
} else {
set_bit(BTNXPUART_SERDEV_OPEN, &nxpdev->tx_state);
}
return err;
}
static int btnxpuart_close(struct hci_dev *hdev)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
ps_wakeup(nxpdev);
serdev_device_close(nxpdev->serdev);
clear_bit(BTNXPUART_SERDEV_OPEN, &nxpdev->tx_state);
return 0;
}
static int btnxpuart_flush(struct hci_dev *hdev)
{
struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev);
/* Flush any pending characters */
serdev_device_write_flush(nxpdev->serdev);
skb_queue_purge(&nxpdev->txq);
cancel_work_sync(&nxpdev->tx_work);
kfree_skb(nxpdev->rx_skb);
nxpdev->rx_skb = NULL;
return 0;
}
static const struct h4_recv_pkt nxp_recv_pkts[] = {
{ H4_RECV_ACL, .recv = hci_recv_frame },
{ H4_RECV_SCO, .recv = hci_recv_frame },
{ H4_RECV_EVENT, .recv = hci_recv_frame },
{ NXP_RECV_CHIP_VER_V1, .recv = nxp_recv_chip_ver_v1 },
{ NXP_RECV_FW_REQ_V1, .recv = nxp_recv_fw_req_v1 },
{ NXP_RECV_CHIP_VER_V3, .recv = nxp_recv_chip_ver_v3 },
{ NXP_RECV_FW_REQ_V3, .recv = nxp_recv_fw_req_v3 },
};
static int btnxpuart_receive_buf(struct serdev_device *serdev, const u8 *data,
size_t count)
{
struct btnxpuart_dev *nxpdev = serdev_device_get_drvdata(serdev);
ps_start_timer(nxpdev);
nxpdev->rx_skb = h4_recv_buf(nxpdev->hdev, nxpdev->rx_skb, data, count,
nxp_recv_pkts, ARRAY_SIZE(nxp_recv_pkts));
if (IS_ERR(nxpdev->rx_skb)) {
int err = PTR_ERR(nxpdev->rx_skb);
/* Safe to ignore out-of-sync bootloader signatures */
if (is_fw_downloading(nxpdev))
return count;
bt_dev_err(nxpdev->hdev, "Frame reassembly failed (%d)", err);
nxpdev->rx_skb = NULL;
return err;
}
nxpdev->hdev->stat.byte_rx += count;
return count;
}
static void btnxpuart_write_wakeup(struct serdev_device *serdev)
{
serdev_device_write_wakeup(serdev);
}
static const struct serdev_device_ops btnxpuart_client_ops = {
.receive_buf = btnxpuart_receive_buf,
.write_wakeup = btnxpuart_write_wakeup,
};
static int nxp_serdev_probe(struct serdev_device *serdev)
{
struct hci_dev *hdev;
struct btnxpuart_dev *nxpdev;
nxpdev = devm_kzalloc(&serdev->dev, sizeof(*nxpdev), GFP_KERNEL);
if (!nxpdev)
return -ENOMEM;
nxpdev->nxp_data = (struct btnxpuart_data *)device_get_match_data(&serdev->dev);
nxpdev->serdev = serdev;
serdev_device_set_drvdata(serdev, nxpdev);
serdev_device_set_client_ops(serdev, &btnxpuart_client_ops);
INIT_WORK(&nxpdev->tx_work, btnxpuart_tx_work);
skb_queue_head_init(&nxpdev->txq);
crc8_populate_msb(crc8_table, POLYNOMIAL8);
/* Initialize and register HCI device */
hdev = hci_alloc_dev();
if (!hdev) {
dev_err(&serdev->dev, "Can't allocate HCI device\n");
return -ENOMEM;
}
nxpdev->hdev = hdev;
hdev->bus = HCI_UART;
hci_set_drvdata(hdev, nxpdev);
hdev->manufacturer = MANUFACTURER_NXP;
hdev->open = btnxpuart_open;
hdev->close = btnxpuart_close;
hdev->flush = btnxpuart_flush;
hdev->setup = nxp_setup;
hdev->send = nxp_enqueue;
SET_HCIDEV_DEV(hdev, &serdev->dev);
if (hci_register_dev(hdev) < 0) {
dev_err(&serdev->dev, "Can't register HCI device\n");
hci_free_dev(hdev);
return -ENODEV;
}
ps_init_work(hdev);
ps_init_timer(hdev);
return 0;
}
static void nxp_serdev_remove(struct serdev_device *serdev)
{
struct btnxpuart_dev *nxpdev = serdev_device_get_drvdata(serdev);
struct hci_dev *hdev = nxpdev->hdev;
/* Restore FW baudrate to fw_init_baudrate if changed.
* This will ensure FW baudrate is in sync with
* driver baudrate in case this driver is re-inserted.
*/
if (nxpdev->current_baudrate != nxpdev->fw_init_baudrate) {
nxpdev->new_baudrate = nxpdev->fw_init_baudrate;
nxp_set_baudrate_cmd(hdev, NULL);
}
ps_cancel_timer(nxpdev);
hci_unregister_dev(hdev);
hci_free_dev(hdev);
}
static struct btnxpuart_data w8987_data __maybe_unused = {
.helper_fw_name = NULL,
.fw_name = FIRMWARE_W8987,
};
static struct btnxpuart_data w8997_data __maybe_unused = {
.helper_fw_name = FIRMWARE_HELPER,
.fw_name = FIRMWARE_W8997,
};
static const struct of_device_id nxpuart_of_match_table[] __maybe_unused = {
{ .compatible = "nxp,88w8987-bt", .data = &w8987_data },
{ .compatible = "nxp,88w8997-bt", .data = &w8997_data },
{ }
};
MODULE_DEVICE_TABLE(of, nxpuart_of_match_table);
static struct serdev_device_driver nxp_serdev_driver = {
.probe = nxp_serdev_probe,
.remove = nxp_serdev_remove,
.driver = {
.name = "btnxpuart",
.of_match_table = of_match_ptr(nxpuart_of_match_table),
},
};
module_serdev_device_driver(nxp_serdev_driver);
MODULE_AUTHOR("Neeraj Sanjay Kale <neeraj.sanjaykale@nxp.com>");
MODULE_DESCRIPTION("NXP Bluetooth Serial driver");
MODULE_LICENSE("GPL");