OpenCloudOS-Kernel/drivers/net/ns83820.c

2203 lines
59 KiB
C

#define VERSION "0.22"
/* ns83820.c by Benjamin LaHaise with contributions.
*
* Questions/comments/discussion to linux-ns83820@kvack.org.
*
* $Revision: 1.34.2.23 $
*
* Copyright 2001 Benjamin LaHaise.
* Copyright 2001, 2002 Red Hat.
*
* Mmmm, chocolate vanilla mocha...
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* ChangeLog
* =========
* 20010414 0.1 - created
* 20010622 0.2 - basic rx and tx.
* 20010711 0.3 - added duplex and link state detection support.
* 20010713 0.4 - zero copy, no hangs.
* 0.5 - 64 bit dma support (davem will hate me for this)
* - disable jumbo frames to avoid tx hangs
* - work around tx deadlocks on my 1.02 card via
* fiddling with TXCFG
* 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
* 20010816 0.7 - misc cleanups
* 20010826 0.8 - fix critical zero copy bugs
* 0.9 - internal experiment
* 20010827 0.10 - fix ia64 unaligned access.
* 20010906 0.11 - accept all packets with checksum errors as
* otherwise fragments get lost
* - fix >> 32 bugs
* 0.12 - add statistics counters
* - add allmulti/promisc support
* 20011009 0.13 - hotplug support, other smaller pci api cleanups
* 20011204 0.13a - optical transceiver support added
* by Michael Clark <michael@metaparadigm.com>
* 20011205 0.13b - call register_netdev earlier in initialization
* suppress duplicate link status messages
* 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
* 20011204 0.15 get ppc (big endian) working
* 20011218 0.16 various cleanups
* 20020310 0.17 speedups
* 20020610 0.18 - actually use the pci dma api for highmem
* - remove pci latency register fiddling
* 0.19 - better bist support
* - add ihr and reset_phy parameters
* - gmii bus probing
* - fix missed txok introduced during performance
* tuning
* 0.20 - fix stupid RFEN thinko. i am such a smurf.
* 20040828 0.21 - add hardware vlan accleration
* by Neil Horman <nhorman@redhat.com>
* 20050406 0.22 - improved DAC ifdefs from Andi Kleen
* - removal of dead code from Adrian Bunk
* - fix half duplex collision behaviour
* Driver Overview
* ===============
*
* This driver was originally written for the National Semiconductor
* 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
* this code will turn out to be a) clean, b) correct, and c) fast.
* With that in mind, I'm aiming to split the code up as much as
* reasonably possible. At present there are X major sections that
* break down into a) packet receive, b) packet transmit, c) link
* management, d) initialization and configuration. Where possible,
* these code paths are designed to run in parallel.
*
* This driver has been tested and found to work with the following
* cards (in no particular order):
*
* Cameo SOHO-GA2000T SOHO-GA2500T
* D-Link DGE-500T
* PureData PDP8023Z-TG
* SMC SMC9452TX SMC9462TX
* Netgear GA621
*
* Special thanks to SMC for providing hardware to test this driver on.
*
* Reports of success or failure would be greatly appreciated.
*/
//#define dprintk printk
#define dprintk(x...) do { } while (0)
#include <linux/config.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/smp_lock.h>
#include <linux/workqueue.h>
#include <linux/init.h>
#include <linux/ip.h> /* for iph */
#include <linux/in.h> /* for IPPROTO_... */
#include <linux/compiler.h>
#include <linux/prefetch.h>
#include <linux/ethtool.h>
#include <linux/timer.h>
#include <linux/if_vlan.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#define DRV_NAME "ns83820"
/* Global parameters. See module_param near the bottom. */
static int ihr = 2;
static int reset_phy = 0;
static int lnksts = 0; /* CFG_LNKSTS bit polarity */
/* Dprintk is used for more interesting debug events */
#undef Dprintk
#define Dprintk dprintk
/* tunables */
#define RX_BUF_SIZE 1500 /* 8192 */
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
#define NS83820_VLAN_ACCEL_SUPPORT
#endif
/* Must not exceed ~65000. */
#define NR_RX_DESC 64
#define NR_TX_DESC 128
/* not tunable */
#define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
#define MIN_TX_DESC_FREE 8
/* register defines */
#define CFGCS 0x04
#define CR_TXE 0x00000001
#define CR_TXD 0x00000002
/* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
* The Receive engine skips one descriptor and moves
* onto the next one!! */
#define CR_RXE 0x00000004
#define CR_RXD 0x00000008
#define CR_TXR 0x00000010
#define CR_RXR 0x00000020
#define CR_SWI 0x00000080
#define CR_RST 0x00000100
#define PTSCR_EEBIST_FAIL 0x00000001
#define PTSCR_EEBIST_EN 0x00000002
#define PTSCR_EELOAD_EN 0x00000004
#define PTSCR_RBIST_FAIL 0x000001b8
#define PTSCR_RBIST_DONE 0x00000200
#define PTSCR_RBIST_EN 0x00000400
#define PTSCR_RBIST_RST 0x00002000
#define MEAR_EEDI 0x00000001
#define MEAR_EEDO 0x00000002
#define MEAR_EECLK 0x00000004
#define MEAR_EESEL 0x00000008
#define MEAR_MDIO 0x00000010
#define MEAR_MDDIR 0x00000020
#define MEAR_MDC 0x00000040
#define ISR_TXDESC3 0x40000000
#define ISR_TXDESC2 0x20000000
#define ISR_TXDESC1 0x10000000
#define ISR_TXDESC0 0x08000000
#define ISR_RXDESC3 0x04000000
#define ISR_RXDESC2 0x02000000
#define ISR_RXDESC1 0x01000000
#define ISR_RXDESC0 0x00800000
#define ISR_TXRCMP 0x00400000
#define ISR_RXRCMP 0x00200000
#define ISR_DPERR 0x00100000
#define ISR_SSERR 0x00080000
#define ISR_RMABT 0x00040000
#define ISR_RTABT 0x00020000
#define ISR_RXSOVR 0x00010000
#define ISR_HIBINT 0x00008000
#define ISR_PHY 0x00004000
#define ISR_PME 0x00002000
#define ISR_SWI 0x00001000
#define ISR_MIB 0x00000800
#define ISR_TXURN 0x00000400
#define ISR_TXIDLE 0x00000200
#define ISR_TXERR 0x00000100
#define ISR_TXDESC 0x00000080
#define ISR_TXOK 0x00000040
#define ISR_RXORN 0x00000020
#define ISR_RXIDLE 0x00000010
#define ISR_RXEARLY 0x00000008
#define ISR_RXERR 0x00000004
#define ISR_RXDESC 0x00000002
#define ISR_RXOK 0x00000001
#define TXCFG_CSI 0x80000000
#define TXCFG_HBI 0x40000000
#define TXCFG_MLB 0x20000000
#define TXCFG_ATP 0x10000000
#define TXCFG_ECRETRY 0x00800000
#define TXCFG_BRST_DIS 0x00080000
#define TXCFG_MXDMA1024 0x00000000
#define TXCFG_MXDMA512 0x00700000
#define TXCFG_MXDMA256 0x00600000
#define TXCFG_MXDMA128 0x00500000
#define TXCFG_MXDMA64 0x00400000
#define TXCFG_MXDMA32 0x00300000
#define TXCFG_MXDMA16 0x00200000
#define TXCFG_MXDMA8 0x00100000
#define CFG_LNKSTS 0x80000000
#define CFG_SPDSTS 0x60000000
#define CFG_SPDSTS1 0x40000000
#define CFG_SPDSTS0 0x20000000
#define CFG_DUPSTS 0x10000000
#define CFG_TBI_EN 0x01000000
#define CFG_MODE_1000 0x00400000
/* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
* Read the Phy response and then configure the MAC accordingly */
#define CFG_AUTO_1000 0x00200000
#define CFG_PINT_CTL 0x001c0000
#define CFG_PINT_DUPSTS 0x00100000
#define CFG_PINT_LNKSTS 0x00080000
#define CFG_PINT_SPDSTS 0x00040000
#define CFG_TMRTEST 0x00020000
#define CFG_MRM_DIS 0x00010000
#define CFG_MWI_DIS 0x00008000
#define CFG_T64ADDR 0x00004000
#define CFG_PCI64_DET 0x00002000
#define CFG_DATA64_EN 0x00001000
#define CFG_M64ADDR 0x00000800
#define CFG_PHY_RST 0x00000400
#define CFG_PHY_DIS 0x00000200
#define CFG_EXTSTS_EN 0x00000100
#define CFG_REQALG 0x00000080
#define CFG_SB 0x00000040
#define CFG_POW 0x00000020
#define CFG_EXD 0x00000010
#define CFG_PESEL 0x00000008
#define CFG_BROM_DIS 0x00000004
#define CFG_EXT_125 0x00000002
#define CFG_BEM 0x00000001
#define EXTSTS_UDPPKT 0x00200000
#define EXTSTS_TCPPKT 0x00080000
#define EXTSTS_IPPKT 0x00020000
#define EXTSTS_VPKT 0x00010000
#define EXTSTS_VTG_MASK 0x0000ffff
#define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
#define MIBC_MIBS 0x00000008
#define MIBC_ACLR 0x00000004
#define MIBC_FRZ 0x00000002
#define MIBC_WRN 0x00000001
#define PCR_PSEN (1 << 31)
#define PCR_PS_MCAST (1 << 30)
#define PCR_PS_DA (1 << 29)
#define PCR_STHI_8 (3 << 23)
#define PCR_STLO_4 (1 << 23)
#define PCR_FFHI_8K (3 << 21)
#define PCR_FFLO_4K (1 << 21)
#define PCR_PAUSE_CNT 0xFFFE
#define RXCFG_AEP 0x80000000
#define RXCFG_ARP 0x40000000
#define RXCFG_STRIPCRC 0x20000000
#define RXCFG_RX_FD 0x10000000
#define RXCFG_ALP 0x08000000
#define RXCFG_AIRL 0x04000000
#define RXCFG_MXDMA512 0x00700000
#define RXCFG_DRTH 0x0000003e
#define RXCFG_DRTH0 0x00000002
#define RFCR_RFEN 0x80000000
#define RFCR_AAB 0x40000000
#define RFCR_AAM 0x20000000
#define RFCR_AAU 0x10000000
#define RFCR_APM 0x08000000
#define RFCR_APAT 0x07800000
#define RFCR_APAT3 0x04000000
#define RFCR_APAT2 0x02000000
#define RFCR_APAT1 0x01000000
#define RFCR_APAT0 0x00800000
#define RFCR_AARP 0x00400000
#define RFCR_MHEN 0x00200000
#define RFCR_UHEN 0x00100000
#define RFCR_ULM 0x00080000
#define VRCR_RUDPE 0x00000080
#define VRCR_RTCPE 0x00000040
#define VRCR_RIPE 0x00000020
#define VRCR_IPEN 0x00000010
#define VRCR_DUTF 0x00000008
#define VRCR_DVTF 0x00000004
#define VRCR_VTREN 0x00000002
#define VRCR_VTDEN 0x00000001
#define VTCR_PPCHK 0x00000008
#define VTCR_GCHK 0x00000004
#define VTCR_VPPTI 0x00000002
#define VTCR_VGTI 0x00000001
#define CR 0x00
#define CFG 0x04
#define MEAR 0x08
#define PTSCR 0x0c
#define ISR 0x10
#define IMR 0x14
#define IER 0x18
#define IHR 0x1c
#define TXDP 0x20
#define TXDP_HI 0x24
#define TXCFG 0x28
#define GPIOR 0x2c
#define RXDP 0x30
#define RXDP_HI 0x34
#define RXCFG 0x38
#define PQCR 0x3c
#define WCSR 0x40
#define PCR 0x44
#define RFCR 0x48
#define RFDR 0x4c
#define SRR 0x58
#define VRCR 0xbc
#define VTCR 0xc0
#define VDR 0xc4
#define CCSR 0xcc
#define TBICR 0xe0
#define TBISR 0xe4
#define TANAR 0xe8
#define TANLPAR 0xec
#define TANER 0xf0
#define TESR 0xf4
#define TBICR_MR_AN_ENABLE 0x00001000
#define TBICR_MR_RESTART_AN 0x00000200
#define TBISR_MR_LINK_STATUS 0x00000020
#define TBISR_MR_AN_COMPLETE 0x00000004
#define TANAR_PS2 0x00000100
#define TANAR_PS1 0x00000080
#define TANAR_HALF_DUP 0x00000040
#define TANAR_FULL_DUP 0x00000020
#define GPIOR_GP5_OE 0x00000200
#define GPIOR_GP4_OE 0x00000100
#define GPIOR_GP3_OE 0x00000080
#define GPIOR_GP2_OE 0x00000040
#define GPIOR_GP1_OE 0x00000020
#define GPIOR_GP3_OUT 0x00000004
#define GPIOR_GP1_OUT 0x00000001
#define LINK_AUTONEGOTIATE 0x01
#define LINK_DOWN 0x02
#define LINK_UP 0x04
#define HW_ADDR_LEN sizeof(dma_addr_t)
#define desc_addr_set(desc, addr) \
do { \
((desc)[0] = cpu_to_le32(addr)); \
if (HW_ADDR_LEN == 8) \
(desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
} while(0)
#define desc_addr_get(desc) \
(le32_to_cpu((desc)[0]) | \
(HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
#define DESC_LINK 0
#define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
#define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
#define DESC_EXTSTS (DESC_CMDSTS + 4/4)
#define CMDSTS_OWN 0x80000000
#define CMDSTS_MORE 0x40000000
#define CMDSTS_INTR 0x20000000
#define CMDSTS_ERR 0x10000000
#define CMDSTS_OK 0x08000000
#define CMDSTS_RUNT 0x00200000
#define CMDSTS_LEN_MASK 0x0000ffff
#define CMDSTS_DEST_MASK 0x01800000
#define CMDSTS_DEST_SELF 0x00800000
#define CMDSTS_DEST_MULTI 0x01000000
#define DESC_SIZE 8 /* Should be cache line sized */
struct rx_info {
spinlock_t lock;
int up;
long idle;
struct sk_buff *skbs[NR_RX_DESC];
u32 *next_rx_desc;
u16 next_rx, next_empty;
u32 *descs;
dma_addr_t phy_descs;
};
struct ns83820 {
struct net_device_stats stats;
u8 __iomem *base;
struct pci_dev *pci_dev;
#ifdef NS83820_VLAN_ACCEL_SUPPORT
struct vlan_group *vlgrp;
#endif
struct rx_info rx_info;
struct tasklet_struct rx_tasklet;
unsigned ihr;
struct work_struct tq_refill;
/* protects everything below. irqsave when using. */
spinlock_t misc_lock;
u32 CFG_cache;
u32 MEAR_cache;
u32 IMR_cache;
unsigned linkstate;
spinlock_t tx_lock;
u16 tx_done_idx;
u16 tx_idx;
volatile u16 tx_free_idx; /* idx of free desc chain */
u16 tx_intr_idx;
atomic_t nr_tx_skbs;
struct sk_buff *tx_skbs[NR_TX_DESC];
char pad[16] __attribute__((aligned(16)));
u32 *tx_descs;
dma_addr_t tx_phy_descs;
struct timer_list tx_watchdog;
};
static inline struct ns83820 *PRIV(struct net_device *dev)
{
return netdev_priv(dev);
}
#define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
static inline void kick_rx(struct net_device *ndev)
{
struct ns83820 *dev = PRIV(ndev);
dprintk("kick_rx: maybe kicking\n");
if (test_and_clear_bit(0, &dev->rx_info.idle)) {
dprintk("actually kicking\n");
writel(dev->rx_info.phy_descs +
(4 * DESC_SIZE * dev->rx_info.next_rx),
dev->base + RXDP);
if (dev->rx_info.next_rx == dev->rx_info.next_empty)
printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
ndev->name);
__kick_rx(dev);
}
}
//free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
#define start_tx_okay(dev) \
(((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
#ifdef NS83820_VLAN_ACCEL_SUPPORT
static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
{
struct ns83820 *dev = PRIV(ndev);
spin_lock_irq(&dev->misc_lock);
spin_lock(&dev->tx_lock);
dev->vlgrp = grp;
spin_unlock(&dev->tx_lock);
spin_unlock_irq(&dev->misc_lock);
}
static void ns83820_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
{
struct ns83820 *dev = PRIV(ndev);
spin_lock_irq(&dev->misc_lock);
spin_lock(&dev->tx_lock);
if (dev->vlgrp)
dev->vlgrp->vlan_devices[vid] = NULL;
spin_unlock(&dev->tx_lock);
spin_unlock_irq(&dev->misc_lock);
}
#endif
/* Packet Receiver
*
* The hardware supports linked lists of receive descriptors for
* which ownership is transfered back and forth by means of an
* ownership bit. While the hardware does support the use of a
* ring for receive descriptors, we only make use of a chain in
* an attempt to reduce bus traffic under heavy load scenarios.
* This will also make bugs a bit more obvious. The current code
* only makes use of a single rx chain; I hope to implement
* priority based rx for version 1.0. Goal: even under overload
* conditions, still route realtime traffic with as low jitter as
* possible.
*/
static inline void build_rx_desc(struct ns83820 *dev, u32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
{
desc_addr_set(desc + DESC_LINK, link);
desc_addr_set(desc + DESC_BUFPTR, buf);
desc[DESC_EXTSTS] = cpu_to_le32(extsts);
mb();
desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
}
#define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
{
unsigned next_empty;
u32 cmdsts;
u32 *sg;
dma_addr_t buf;
next_empty = dev->rx_info.next_empty;
/* don't overrun last rx marker */
if (unlikely(nr_rx_empty(dev) <= 2)) {
kfree_skb(skb);
return 1;
}
#if 0
dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
dev->rx_info.next_empty,
dev->rx_info.nr_used,
dev->rx_info.next_rx
);
#endif
sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
if (unlikely(NULL != dev->rx_info.skbs[next_empty]))
BUG();
dev->rx_info.skbs[next_empty] = skb;
dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
buf = pci_map_single(dev->pci_dev, skb->data,
REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
/* update link of previous rx */
if (likely(next_empty != dev->rx_info.next_rx))
dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
return 0;
}
static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
{
struct ns83820 *dev = PRIV(ndev);
unsigned i;
unsigned long flags = 0;
if (unlikely(nr_rx_empty(dev) <= 2))
return 0;
dprintk("rx_refill(%p)\n", ndev);
if (gfp == GFP_ATOMIC)
spin_lock_irqsave(&dev->rx_info.lock, flags);
for (i=0; i<NR_RX_DESC; i++) {
struct sk_buff *skb;
long res;
/* extra 16 bytes for alignment */
skb = __dev_alloc_skb(REAL_RX_BUF_SIZE+16, gfp);
if (unlikely(!skb))
break;
res = (long)skb->data & 0xf;
res = 0x10 - res;
res &= 0xf;
skb_reserve(skb, res);
skb->dev = ndev;
if (gfp != GFP_ATOMIC)
spin_lock_irqsave(&dev->rx_info.lock, flags);
res = ns83820_add_rx_skb(dev, skb);
if (gfp != GFP_ATOMIC)
spin_unlock_irqrestore(&dev->rx_info.lock, flags);
if (res) {
i = 1;
break;
}
}
if (gfp == GFP_ATOMIC)
spin_unlock_irqrestore(&dev->rx_info.lock, flags);
return i ? 0 : -ENOMEM;
}
static void FASTCALL(rx_refill_atomic(struct net_device *ndev));
static void fastcall rx_refill_atomic(struct net_device *ndev)
{
rx_refill(ndev, GFP_ATOMIC);
}
/* REFILL */
static inline void queue_refill(void *_dev)
{
struct net_device *ndev = _dev;
struct ns83820 *dev = PRIV(ndev);
rx_refill(ndev, GFP_KERNEL);
if (dev->rx_info.up)
kick_rx(ndev);
}
static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
{
build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
}
static void FASTCALL(phy_intr(struct net_device *ndev));
static void fastcall phy_intr(struct net_device *ndev)
{
struct ns83820 *dev = PRIV(ndev);
static char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
u32 cfg, new_cfg;
u32 tbisr, tanar, tanlpar;
int speed, fullduplex, newlinkstate;
cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
if (dev->CFG_cache & CFG_TBI_EN) {
/* we have an optical transceiver */
tbisr = readl(dev->base + TBISR);
tanar = readl(dev->base + TANAR);
tanlpar = readl(dev->base + TANLPAR);
dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
tbisr, tanar, tanlpar);
if ( (fullduplex = (tanlpar & TANAR_FULL_DUP)
&& (tanar & TANAR_FULL_DUP)) ) {
/* both of us are full duplex */
writel(readl(dev->base + TXCFG)
| TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
dev->base + TXCFG);
writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
dev->base + RXCFG);
/* Light up full duplex LED */
writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
dev->base + GPIOR);
} else if(((tanlpar & TANAR_HALF_DUP)
&& (tanar & TANAR_HALF_DUP))
|| ((tanlpar & TANAR_FULL_DUP)
&& (tanar & TANAR_HALF_DUP))
|| ((tanlpar & TANAR_HALF_DUP)
&& (tanar & TANAR_FULL_DUP))) {
/* one or both of us are half duplex */
writel((readl(dev->base + TXCFG)
& ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
dev->base + TXCFG);
writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
dev->base + RXCFG);
/* Turn off full duplex LED */
writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
dev->base + GPIOR);
}
speed = 4; /* 1000F */
} else {
/* we have a copper transceiver */
new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
if (cfg & CFG_SPDSTS1)
new_cfg |= CFG_MODE_1000;
else
new_cfg &= ~CFG_MODE_1000;
speed = ((cfg / CFG_SPDSTS0) & 3);
fullduplex = (cfg & CFG_DUPSTS);
if (fullduplex) {
new_cfg |= CFG_SB;
writel(readl(dev->base + TXCFG)
| TXCFG_CSI | TXCFG_HBI,
dev->base + TXCFG);
writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
dev->base + RXCFG);
} else {
writel(readl(dev->base + TXCFG)
& ~(TXCFG_CSI | TXCFG_HBI),
dev->base + TXCFG);
writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
dev->base + RXCFG);
}
if ((cfg & CFG_LNKSTS) &&
((new_cfg ^ dev->CFG_cache) != 0)) {
writel(new_cfg, dev->base + CFG);
dev->CFG_cache = new_cfg;
}
dev->CFG_cache &= ~CFG_SPDSTS;
dev->CFG_cache |= cfg & CFG_SPDSTS;
}
newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
if (newlinkstate & LINK_UP
&& dev->linkstate != newlinkstate) {
netif_start_queue(ndev);
netif_wake_queue(ndev);
printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
ndev->name,
speeds[speed],
fullduplex ? "full" : "half");
} else if (newlinkstate & LINK_DOWN
&& dev->linkstate != newlinkstate) {
netif_stop_queue(ndev);
printk(KERN_INFO "%s: link now down.\n", ndev->name);
}
dev->linkstate = newlinkstate;
}
static int ns83820_setup_rx(struct net_device *ndev)
{
struct ns83820 *dev = PRIV(ndev);
unsigned i;
int ret;
dprintk("ns83820_setup_rx(%p)\n", ndev);
dev->rx_info.idle = 1;
dev->rx_info.next_rx = 0;
dev->rx_info.next_rx_desc = dev->rx_info.descs;
dev->rx_info.next_empty = 0;
for (i=0; i<NR_RX_DESC; i++)
clear_rx_desc(dev, i);
writel(0, dev->base + RXDP_HI);
writel(dev->rx_info.phy_descs, dev->base + RXDP);
ret = rx_refill(ndev, GFP_KERNEL);
if (!ret) {
dprintk("starting receiver\n");
/* prevent the interrupt handler from stomping on us */
spin_lock_irq(&dev->rx_info.lock);
writel(0x0001, dev->base + CCSR);
writel(0, dev->base + RFCR);
writel(0x7fc00000, dev->base + RFCR);
writel(0xffc00000, dev->base + RFCR);
dev->rx_info.up = 1;
phy_intr(ndev);
/* Okay, let it rip */
spin_lock_irq(&dev->misc_lock);
dev->IMR_cache |= ISR_PHY;
dev->IMR_cache |= ISR_RXRCMP;
//dev->IMR_cache |= ISR_RXERR;
//dev->IMR_cache |= ISR_RXOK;
dev->IMR_cache |= ISR_RXORN;
dev->IMR_cache |= ISR_RXSOVR;
dev->IMR_cache |= ISR_RXDESC;
dev->IMR_cache |= ISR_RXIDLE;
dev->IMR_cache |= ISR_TXDESC;
dev->IMR_cache |= ISR_TXIDLE;
writel(dev->IMR_cache, dev->base + IMR);
writel(1, dev->base + IER);
spin_unlock_irq(&dev->misc_lock);
kick_rx(ndev);
spin_unlock_irq(&dev->rx_info.lock);
}
return ret;
}
static void ns83820_cleanup_rx(struct ns83820 *dev)
{
unsigned i;
unsigned long flags;
dprintk("ns83820_cleanup_rx(%p)\n", dev);
/* disable receive interrupts */
spin_lock_irqsave(&dev->misc_lock, flags);
dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
writel(dev->IMR_cache, dev->base + IMR);
spin_unlock_irqrestore(&dev->misc_lock, flags);
/* synchronize with the interrupt handler and kill it */
dev->rx_info.up = 0;
synchronize_irq(dev->pci_dev->irq);
/* touch the pci bus... */
readl(dev->base + IMR);
/* assumes the transmitter is already disabled and reset */
writel(0, dev->base + RXDP_HI);
writel(0, dev->base + RXDP);
for (i=0; i<NR_RX_DESC; i++) {
struct sk_buff *skb = dev->rx_info.skbs[i];
dev->rx_info.skbs[i] = NULL;
clear_rx_desc(dev, i);
if (skb)
kfree_skb(skb);
}
}
static void FASTCALL(ns83820_rx_kick(struct net_device *ndev));
static void fastcall ns83820_rx_kick(struct net_device *ndev)
{
struct ns83820 *dev = PRIV(ndev);
/*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
if (dev->rx_info.up) {
rx_refill_atomic(ndev);
kick_rx(ndev);
}
}
if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
schedule_work(&dev->tq_refill);
else
kick_rx(ndev);
if (dev->rx_info.idle)
printk(KERN_DEBUG "%s: BAD\n", ndev->name);
}
/* rx_irq
*
*/
static void FASTCALL(rx_irq(struct net_device *ndev));
static void fastcall rx_irq(struct net_device *ndev)
{
struct ns83820 *dev = PRIV(ndev);
struct rx_info *info = &dev->rx_info;
unsigned next_rx;
int rx_rc, len;
u32 cmdsts, *desc;
unsigned long flags;
int nr = 0;
dprintk("rx_irq(%p)\n", ndev);
dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
readl(dev->base + RXDP),
(long)(dev->rx_info.phy_descs),
(int)dev->rx_info.next_rx,
(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
(int)dev->rx_info.next_empty,
(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
);
spin_lock_irqsave(&info->lock, flags);
if (!info->up)
goto out;
dprintk("walking descs\n");
next_rx = info->next_rx;
desc = info->next_rx_desc;
while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
(cmdsts != CMDSTS_OWN)) {
struct sk_buff *skb;
u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
dprintk("cmdsts: %08x\n", cmdsts);
dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
dprintk("extsts: %08x\n", extsts);
skb = info->skbs[next_rx];
info->skbs[next_rx] = NULL;
info->next_rx = (next_rx + 1) % NR_RX_DESC;
mb();
clear_rx_desc(dev, next_rx);
pci_unmap_single(dev->pci_dev, bufptr,
RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
len = cmdsts & CMDSTS_LEN_MASK;
#ifdef NS83820_VLAN_ACCEL_SUPPORT
/* NH: As was mentioned below, this chip is kinda
* brain dead about vlan tag stripping. Frames
* that are 64 bytes with a vlan header appended
* like arp frames, or pings, are flagged as Runts
* when the tag is stripped and hardware. This
* also means that the OK bit in the descriptor
* is cleared when the frame comes in so we have
* to do a specific length check here to make sure
* the frame would have been ok, had we not stripped
* the tag.
*/
if (likely((CMDSTS_OK & cmdsts) ||
((cmdsts & CMDSTS_RUNT) && len >= 56))) {
#else
if (likely(CMDSTS_OK & cmdsts)) {
#endif
skb_put(skb, len);
if (unlikely(!skb))
goto netdev_mangle_me_harder_failed;
if (cmdsts & CMDSTS_DEST_MULTI)
dev->stats.multicast ++;
dev->stats.rx_packets ++;
dev->stats.rx_bytes += len;
if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else {
skb->ip_summed = CHECKSUM_NONE;
}
skb->protocol = eth_type_trans(skb, ndev);
#ifdef NS83820_VLAN_ACCEL_SUPPORT
if(extsts & EXTSTS_VPKT) {
unsigned short tag;
tag = ntohs(extsts & EXTSTS_VTG_MASK);
rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
} else {
rx_rc = netif_rx(skb);
}
#else
rx_rc = netif_rx(skb);
#endif
if (NET_RX_DROP == rx_rc) {
netdev_mangle_me_harder_failed:
dev->stats.rx_dropped ++;
}
} else {
kfree_skb(skb);
}
nr++;
next_rx = info->next_rx;
desc = info->descs + (DESC_SIZE * next_rx);
}
info->next_rx = next_rx;
info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
out:
if (0 && !nr) {
Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
}
spin_unlock_irqrestore(&info->lock, flags);
}
static void rx_action(unsigned long _dev)
{
struct net_device *ndev = (void *)_dev;
struct ns83820 *dev = PRIV(ndev);
rx_irq(ndev);
writel(ihr, dev->base + IHR);
spin_lock_irq(&dev->misc_lock);
dev->IMR_cache |= ISR_RXDESC;
writel(dev->IMR_cache, dev->base + IMR);
spin_unlock_irq(&dev->misc_lock);
rx_irq(ndev);
ns83820_rx_kick(ndev);
}
/* Packet Transmit code
*/
static inline void kick_tx(struct ns83820 *dev)
{
dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
dev, dev->tx_idx, dev->tx_free_idx);
writel(CR_TXE, dev->base + CR);
}
/* No spinlock needed on the transmit irq path as the interrupt handler is
* serialized.
*/
static void do_tx_done(struct net_device *ndev)
{
struct ns83820 *dev = PRIV(ndev);
u32 cmdsts, tx_done_idx, *desc;
spin_lock_irq(&dev->tx_lock);
dprintk("do_tx_done(%p)\n", ndev);
tx_done_idx = dev->tx_done_idx;
desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
while ((tx_done_idx != dev->tx_free_idx) &&
!(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
struct sk_buff *skb;
unsigned len;
dma_addr_t addr;
if (cmdsts & CMDSTS_ERR)
dev->stats.tx_errors ++;
if (cmdsts & CMDSTS_OK)
dev->stats.tx_packets ++;
if (cmdsts & CMDSTS_OK)
dev->stats.tx_bytes += cmdsts & 0xffff;
dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
tx_done_idx, dev->tx_free_idx, cmdsts);
skb = dev->tx_skbs[tx_done_idx];
dev->tx_skbs[tx_done_idx] = NULL;
dprintk("done(%p)\n", skb);
len = cmdsts & CMDSTS_LEN_MASK;
addr = desc_addr_get(desc + DESC_BUFPTR);
if (skb) {
pci_unmap_single(dev->pci_dev,
addr,
len,
PCI_DMA_TODEVICE);
dev_kfree_skb_irq(skb);
atomic_dec(&dev->nr_tx_skbs);
} else
pci_unmap_page(dev->pci_dev,
addr,
len,
PCI_DMA_TODEVICE);
tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
dev->tx_done_idx = tx_done_idx;
desc[DESC_CMDSTS] = cpu_to_le32(0);
mb();
desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
}
/* Allow network stack to resume queueing packets after we've
* finished transmitting at least 1/4 of the packets in the queue.
*/
if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
dprintk("start_queue(%p)\n", ndev);
netif_start_queue(ndev);
netif_wake_queue(ndev);
}
spin_unlock_irq(&dev->tx_lock);
}
static void ns83820_cleanup_tx(struct ns83820 *dev)
{
unsigned i;
for (i=0; i<NR_TX_DESC; i++) {
struct sk_buff *skb = dev->tx_skbs[i];
dev->tx_skbs[i] = NULL;
if (skb) {
u32 *desc = dev->tx_descs + (i * DESC_SIZE);
pci_unmap_single(dev->pci_dev,
desc_addr_get(desc + DESC_BUFPTR),
le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
PCI_DMA_TODEVICE);
dev_kfree_skb_irq(skb);
atomic_dec(&dev->nr_tx_skbs);
}
}
memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
}
/* transmit routine. This code relies on the network layer serializing
* its calls in, but will run happily in parallel with the interrupt
* handler. This code currently has provisions for fragmenting tx buffers
* while trying to track down a bug in either the zero copy code or
* the tx fifo (hence the MAX_FRAG_LEN).
*/
static int ns83820_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct ns83820 *dev = PRIV(ndev);
u32 free_idx, cmdsts, extsts;
int nr_free, nr_frags;
unsigned tx_done_idx, last_idx;
dma_addr_t buf;
unsigned len;
skb_frag_t *frag;
int stopped = 0;
int do_intr = 0;
volatile u32 *first_desc;
dprintk("ns83820_hard_start_xmit\n");
nr_frags = skb_shinfo(skb)->nr_frags;
again:
if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
netif_stop_queue(ndev);
if (unlikely(dev->CFG_cache & CFG_LNKSTS))
return 1;
netif_start_queue(ndev);
}
last_idx = free_idx = dev->tx_free_idx;
tx_done_idx = dev->tx_done_idx;
nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
nr_free -= 1;
if (nr_free <= nr_frags) {
dprintk("stop_queue - not enough(%p)\n", ndev);
netif_stop_queue(ndev);
/* Check again: we may have raced with a tx done irq */
if (dev->tx_done_idx != tx_done_idx) {
dprintk("restart queue(%p)\n", ndev);
netif_start_queue(ndev);
goto again;
}
return 1;
}
if (free_idx == dev->tx_intr_idx) {
do_intr = 1;
dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
}
nr_free -= nr_frags;
if (nr_free < MIN_TX_DESC_FREE) {
dprintk("stop_queue - last entry(%p)\n", ndev);
netif_stop_queue(ndev);
stopped = 1;
}
frag = skb_shinfo(skb)->frags;
if (!nr_frags)
frag = NULL;
extsts = 0;
if (skb->ip_summed == CHECKSUM_HW) {
extsts |= EXTSTS_IPPKT;
if (IPPROTO_TCP == skb->nh.iph->protocol)
extsts |= EXTSTS_TCPPKT;
else if (IPPROTO_UDP == skb->nh.iph->protocol)
extsts |= EXTSTS_UDPPKT;
}
#ifdef NS83820_VLAN_ACCEL_SUPPORT
if(vlan_tx_tag_present(skb)) {
/* fetch the vlan tag info out of the
* ancilliary data if the vlan code
* is using hw vlan acceleration
*/
short tag = vlan_tx_tag_get(skb);
extsts |= (EXTSTS_VPKT | htons(tag));
}
#endif
len = skb->len;
if (nr_frags)
len -= skb->data_len;
buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
for (;;) {
volatile u32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
(unsigned long long)buf);
last_idx = free_idx;
free_idx = (free_idx + 1) % NR_TX_DESC;
desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
desc_addr_set(desc + DESC_BUFPTR, buf);
desc[DESC_EXTSTS] = cpu_to_le32(extsts);
cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
cmdsts |= len;
desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
if (!nr_frags)
break;
buf = pci_map_page(dev->pci_dev, frag->page,
frag->page_offset,
frag->size, PCI_DMA_TODEVICE);
dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
(long long)buf, (long) page_to_pfn(frag->page),
frag->page_offset);
len = frag->size;
frag++;
nr_frags--;
}
dprintk("done pkt\n");
spin_lock_irq(&dev->tx_lock);
dev->tx_skbs[last_idx] = skb;
first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
dev->tx_free_idx = free_idx;
atomic_inc(&dev->nr_tx_skbs);
spin_unlock_irq(&dev->tx_lock);
kick_tx(dev);
/* Check again: we may have raced with a tx done irq */
if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
netif_start_queue(ndev);
/* set the transmit start time to catch transmit timeouts */
ndev->trans_start = jiffies;
return 0;
}
static void ns83820_update_stats(struct ns83820 *dev)
{
u8 __iomem *base = dev->base;
/* the DP83820 will freeze counters, so we need to read all of them */
dev->stats.rx_errors += readl(base + 0x60) & 0xffff;
dev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff;
dev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff;
dev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff;
/*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
dev->stats.rx_length_errors += readl(base + 0x74) & 0xffff;
dev->stats.rx_length_errors += readl(base + 0x78) & 0xffff;
/*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
/*dev->stats.rx_pause_count += */ readl(base + 0x80);
/*dev->stats.tx_pause_count += */ readl(base + 0x84);
dev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff;
}
static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
{
struct ns83820 *dev = PRIV(ndev);
/* somewhat overkill */
spin_lock_irq(&dev->misc_lock);
ns83820_update_stats(dev);
spin_unlock_irq(&dev->misc_lock);
return &dev->stats;
}
static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
{
struct ns83820 *dev = PRIV(ndev);
strcpy(info->driver, "ns83820");
strcpy(info->version, VERSION);
strcpy(info->bus_info, pci_name(dev->pci_dev));
}
static u32 ns83820_get_link(struct net_device *ndev)
{
struct ns83820 *dev = PRIV(ndev);
u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
return cfg & CFG_LNKSTS ? 1 : 0;
}
static struct ethtool_ops ops = {
.get_drvinfo = ns83820_get_drvinfo,
.get_link = ns83820_get_link
};
static void ns83820_mib_isr(struct ns83820 *dev)
{
spin_lock(&dev->misc_lock);
ns83820_update_stats(dev);
spin_unlock(&dev->misc_lock);
}
static void ns83820_do_isr(struct net_device *ndev, u32 isr);
static irqreturn_t ns83820_irq(int foo, void *data, struct pt_regs *regs)
{
struct net_device *ndev = data;
struct ns83820 *dev = PRIV(ndev);
u32 isr;
dprintk("ns83820_irq(%p)\n", ndev);
dev->ihr = 0;
isr = readl(dev->base + ISR);
dprintk("irq: %08x\n", isr);
ns83820_do_isr(ndev, isr);
return IRQ_HANDLED;
}
static void ns83820_do_isr(struct net_device *ndev, u32 isr)
{
struct ns83820 *dev = PRIV(ndev);
#ifdef DEBUG
if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
Dprintk("odd isr? 0x%08x\n", isr);
#endif
if (ISR_RXIDLE & isr) {
dev->rx_info.idle = 1;
Dprintk("oh dear, we are idle\n");
ns83820_rx_kick(ndev);
}
if ((ISR_RXDESC | ISR_RXOK) & isr) {
prefetch(dev->rx_info.next_rx_desc);
spin_lock_irq(&dev->misc_lock);
dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
writel(dev->IMR_cache, dev->base + IMR);
spin_unlock_irq(&dev->misc_lock);
tasklet_schedule(&dev->rx_tasklet);
//rx_irq(ndev);
//writel(4, dev->base + IHR);
}
if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
ns83820_rx_kick(ndev);
if (unlikely(ISR_RXSOVR & isr)) {
//printk("overrun: rxsovr\n");
dev->stats.rx_fifo_errors ++;
}
if (unlikely(ISR_RXORN & isr)) {
//printk("overrun: rxorn\n");
dev->stats.rx_fifo_errors ++;
}
if ((ISR_RXRCMP & isr) && dev->rx_info.up)
writel(CR_RXE, dev->base + CR);
if (ISR_TXIDLE & isr) {
u32 txdp;
txdp = readl(dev->base + TXDP);
dprintk("txdp: %08x\n", txdp);
txdp -= dev->tx_phy_descs;
dev->tx_idx = txdp / (DESC_SIZE * 4);
if (dev->tx_idx >= NR_TX_DESC) {
printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
dev->tx_idx = 0;
}
/* The may have been a race between a pci originated read
* and the descriptor update from the cpu. Just in case,
* kick the transmitter if the hardware thinks it is on a
* different descriptor than we are.
*/
if (dev->tx_idx != dev->tx_free_idx)
kick_tx(dev);
}
/* Defer tx ring processing until more than a minimum amount of
* work has accumulated
*/
if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
do_tx_done(ndev);
/* Disable TxOk if there are no outstanding tx packets.
*/
if ((dev->tx_done_idx == dev->tx_free_idx) &&
(dev->IMR_cache & ISR_TXOK)) {
spin_lock_irq(&dev->misc_lock);
dev->IMR_cache &= ~ISR_TXOK;
writel(dev->IMR_cache, dev->base + IMR);
spin_unlock_irq(&dev->misc_lock);
}
}
/* The TxIdle interrupt can come in before the transmit has
* completed. Normally we reap packets off of the combination
* of TxDesc and TxIdle and leave TxOk disabled (since it
* occurs on every packet), but when no further irqs of this
* nature are expected, we must enable TxOk.
*/
if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
spin_lock_irq(&dev->misc_lock);
dev->IMR_cache |= ISR_TXOK;
writel(dev->IMR_cache, dev->base + IMR);
spin_unlock_irq(&dev->misc_lock);
}
/* MIB interrupt: one of the statistics counters is about to overflow */
if (unlikely(ISR_MIB & isr))
ns83820_mib_isr(dev);
/* PHY: Link up/down/negotiation state change */
if (unlikely(ISR_PHY & isr))
phy_intr(ndev);
#if 0 /* Still working on the interrupt mitigation strategy */
if (dev->ihr)
writel(dev->ihr, dev->base + IHR);
#endif
}
static void ns83820_do_reset(struct ns83820 *dev, u32 which)
{
Dprintk("resetting chip...\n");
writel(which, dev->base + CR);
do {
schedule();
} while (readl(dev->base + CR) & which);
Dprintk("okay!\n");
}
static int ns83820_stop(struct net_device *ndev)
{
struct ns83820 *dev = PRIV(ndev);
/* FIXME: protect against interrupt handler? */
del_timer_sync(&dev->tx_watchdog);
/* disable interrupts */
writel(0, dev->base + IMR);
writel(0, dev->base + IER);
readl(dev->base + IER);
dev->rx_info.up = 0;
synchronize_irq(dev->pci_dev->irq);
ns83820_do_reset(dev, CR_RST);
synchronize_irq(dev->pci_dev->irq);
spin_lock_irq(&dev->misc_lock);
dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
spin_unlock_irq(&dev->misc_lock);
ns83820_cleanup_rx(dev);
ns83820_cleanup_tx(dev);
return 0;
}
static void ns83820_tx_timeout(struct net_device *ndev)
{
struct ns83820 *dev = PRIV(ndev);
u32 tx_done_idx, *desc;
unsigned long flags;
local_irq_save(flags);
tx_done_idx = dev->tx_done_idx;
desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
ndev->name,
tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
#if defined(DEBUG)
{
u32 isr;
isr = readl(dev->base + ISR);
printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
ns83820_do_isr(ndev, isr);
}
#endif
do_tx_done(ndev);
tx_done_idx = dev->tx_done_idx;
desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
ndev->name,
tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
local_irq_restore(flags);
}
static void ns83820_tx_watch(unsigned long data)
{
struct net_device *ndev = (void *)data;
struct ns83820 *dev = PRIV(ndev);
#if defined(DEBUG)
printk("ns83820_tx_watch: %u %u %d\n",
dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
);
#endif
if (time_after(jiffies, ndev->trans_start + 1*HZ) &&
dev->tx_done_idx != dev->tx_free_idx) {
printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
ndev->name,
dev->tx_done_idx, dev->tx_free_idx,
atomic_read(&dev->nr_tx_skbs));
ns83820_tx_timeout(ndev);
}
mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
}
static int ns83820_open(struct net_device *ndev)
{
struct ns83820 *dev = PRIV(ndev);
unsigned i;
u32 desc;
int ret;
dprintk("ns83820_open\n");
writel(0, dev->base + PQCR);
ret = ns83820_setup_rx(ndev);
if (ret)
goto failed;
memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
for (i=0; i<NR_TX_DESC; i++) {
dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
= cpu_to_le32(
dev->tx_phy_descs
+ ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
}
dev->tx_idx = 0;
dev->tx_done_idx = 0;
desc = dev->tx_phy_descs;
writel(0, dev->base + TXDP_HI);
writel(desc, dev->base + TXDP);
init_timer(&dev->tx_watchdog);
dev->tx_watchdog.data = (unsigned long)ndev;
dev->tx_watchdog.function = ns83820_tx_watch;
mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
netif_start_queue(ndev); /* FIXME: wait for phy to come up */
return 0;
failed:
ns83820_stop(ndev);
return ret;
}
static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
{
unsigned i;
for (i=0; i<3; i++) {
u32 data;
/* Read from the perfect match memory: this is loaded by
* the chip from the EEPROM via the EELOAD self test.
*/
writel(i*2, dev->base + RFCR);
data = readl(dev->base + RFDR);
*mac++ = data;
*mac++ = data >> 8;
}
}
static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
{
if (new_mtu > RX_BUF_SIZE)
return -EINVAL;
ndev->mtu = new_mtu;
return 0;
}
static void ns83820_set_multicast(struct net_device *ndev)
{
struct ns83820 *dev = PRIV(ndev);
u8 __iomem *rfcr = dev->base + RFCR;
u32 and_mask = 0xffffffff;
u32 or_mask = 0;
u32 val;
if (ndev->flags & IFF_PROMISC)
or_mask |= RFCR_AAU | RFCR_AAM;
else
and_mask &= ~(RFCR_AAU | RFCR_AAM);
if (ndev->flags & IFF_ALLMULTI)
or_mask |= RFCR_AAM;
else
and_mask &= ~RFCR_AAM;
spin_lock_irq(&dev->misc_lock);
val = (readl(rfcr) & and_mask) | or_mask;
/* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
writel(val & ~RFCR_RFEN, rfcr);
writel(val, rfcr);
spin_unlock_irq(&dev->misc_lock);
}
static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
{
struct ns83820 *dev = PRIV(ndev);
int timed_out = 0;
long start;
u32 status;
int loops = 0;
dprintk("%s: start %s\n", ndev->name, name);
start = jiffies;
writel(enable, dev->base + PTSCR);
for (;;) {
loops++;
status = readl(dev->base + PTSCR);
if (!(status & enable))
break;
if (status & done)
break;
if (status & fail)
break;
if ((jiffies - start) >= HZ) {
timed_out = 1;
break;
}
schedule_timeout_uninterruptible(1);
}
if (status & fail)
printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
ndev->name, name, status, fail);
else if (timed_out)
printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
ndev->name, name, status);
dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
}
#ifdef PHY_CODE_IS_FINISHED
static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
{
/* drive MDC low */
dev->MEAR_cache &= ~MEAR_MDC;
writel(dev->MEAR_cache, dev->base + MEAR);
readl(dev->base + MEAR);
/* enable output, set bit */
dev->MEAR_cache |= MEAR_MDDIR;
if (bit)
dev->MEAR_cache |= MEAR_MDIO;
else
dev->MEAR_cache &= ~MEAR_MDIO;
/* set the output bit */
writel(dev->MEAR_cache, dev->base + MEAR);
readl(dev->base + MEAR);
/* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
udelay(1);
/* drive MDC high causing the data bit to be latched */
dev->MEAR_cache |= MEAR_MDC;
writel(dev->MEAR_cache, dev->base + MEAR);
readl(dev->base + MEAR);
/* Wait again... */
udelay(1);
}
static int ns83820_mii_read_bit(struct ns83820 *dev)
{
int bit;
/* drive MDC low, disable output */
dev->MEAR_cache &= ~MEAR_MDC;
dev->MEAR_cache &= ~MEAR_MDDIR;
writel(dev->MEAR_cache, dev->base + MEAR);
readl(dev->base + MEAR);
/* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
udelay(1);
/* drive MDC high causing the data bit to be latched */
bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
dev->MEAR_cache |= MEAR_MDC;
writel(dev->MEAR_cache, dev->base + MEAR);
/* Wait again... */
udelay(1);
return bit;
}
static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
{
unsigned data = 0;
int i;
/* read some garbage so that we eventually sync up */
for (i=0; i<64; i++)
ns83820_mii_read_bit(dev);
ns83820_mii_write_bit(dev, 0); /* start */
ns83820_mii_write_bit(dev, 1);
ns83820_mii_write_bit(dev, 1); /* opcode read */
ns83820_mii_write_bit(dev, 0);
/* write out the phy address: 5 bits, msb first */
for (i=0; i<5; i++)
ns83820_mii_write_bit(dev, phy & (0x10 >> i));
/* write out the register address, 5 bits, msb first */
for (i=0; i<5; i++)
ns83820_mii_write_bit(dev, reg & (0x10 >> i));
ns83820_mii_read_bit(dev); /* turn around cycles */
ns83820_mii_read_bit(dev);
/* read in the register data, 16 bits msb first */
for (i=0; i<16; i++) {
data <<= 1;
data |= ns83820_mii_read_bit(dev);
}
return data;
}
static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
{
int i;
/* read some garbage so that we eventually sync up */
for (i=0; i<64; i++)
ns83820_mii_read_bit(dev);
ns83820_mii_write_bit(dev, 0); /* start */
ns83820_mii_write_bit(dev, 1);
ns83820_mii_write_bit(dev, 0); /* opcode read */
ns83820_mii_write_bit(dev, 1);
/* write out the phy address: 5 bits, msb first */
for (i=0; i<5; i++)
ns83820_mii_write_bit(dev, phy & (0x10 >> i));
/* write out the register address, 5 bits, msb first */
for (i=0; i<5; i++)
ns83820_mii_write_bit(dev, reg & (0x10 >> i));
ns83820_mii_read_bit(dev); /* turn around cycles */
ns83820_mii_read_bit(dev);
/* read in the register data, 16 bits msb first */
for (i=0; i<16; i++)
ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
return data;
}
static void ns83820_probe_phy(struct net_device *ndev)
{
struct ns83820 *dev = PRIV(ndev);
static int first;
int i;
#define MII_PHYIDR1 0x02
#define MII_PHYIDR2 0x03
#if 0
if (!first) {
unsigned tmp;
ns83820_mii_read_reg(dev, 1, 0x09);
ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
tmp = ns83820_mii_read_reg(dev, 1, 0x00);
ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
udelay(1300);
ns83820_mii_read_reg(dev, 1, 0x09);
}
#endif
first = 1;
for (i=1; i<2; i++) {
int j;
unsigned a, b;
a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
//printk("%s: phy %d: 0x%04x 0x%04x\n",
// ndev->name, i, a, b);
for (j=0; j<0x16; j+=4) {
dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
ndev->name, j,
ns83820_mii_read_reg(dev, i, 0 + j),
ns83820_mii_read_reg(dev, i, 1 + j),
ns83820_mii_read_reg(dev, i, 2 + j),
ns83820_mii_read_reg(dev, i, 3 + j)
);
}
}
{
unsigned a, b;
/* read firmware version: memory addr is 0x8402 and 0x8403 */
ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
a = ns83820_mii_read_reg(dev, 1, 0x1d);
ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
b = ns83820_mii_read_reg(dev, 1, 0x1d);
dprintk("version: 0x%04x 0x%04x\n", a, b);
}
}
#endif
static int __devinit ns83820_init_one(struct pci_dev *pci_dev, const struct pci_device_id *id)
{
struct net_device *ndev;
struct ns83820 *dev;
long addr;
int err;
int using_dac = 0;
/* See if we can set the dma mask early on; failure is fatal. */
if (sizeof(dma_addr_t) == 8 &&
!pci_set_dma_mask(pci_dev, 0xffffffffffffffffULL)) {
using_dac = 1;
} else if (!pci_set_dma_mask(pci_dev, 0xffffffff)) {
using_dac = 0;
} else {
printk(KERN_WARNING "ns83820.c: pci_set_dma_mask failed!\n");
return -ENODEV;
}
ndev = alloc_etherdev(sizeof(struct ns83820));
dev = PRIV(ndev);
err = -ENOMEM;
if (!dev)
goto out;
spin_lock_init(&dev->rx_info.lock);
spin_lock_init(&dev->tx_lock);
spin_lock_init(&dev->misc_lock);
dev->pci_dev = pci_dev;
SET_MODULE_OWNER(ndev);
SET_NETDEV_DEV(ndev, &pci_dev->dev);
INIT_WORK(&dev->tq_refill, queue_refill, ndev);
tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
err = pci_enable_device(pci_dev);
if (err) {
printk(KERN_INFO "ns83820: pci_enable_dev failed: %d\n", err);
goto out_free;
}
pci_set_master(pci_dev);
addr = pci_resource_start(pci_dev, 1);
dev->base = ioremap_nocache(addr, PAGE_SIZE);
dev->tx_descs = pci_alloc_consistent(pci_dev,
4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
dev->rx_info.descs = pci_alloc_consistent(pci_dev,
4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
err = -ENOMEM;
if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
goto out_disable;
dprintk("%p: %08lx %p: %08lx\n",
dev->tx_descs, (long)dev->tx_phy_descs,
dev->rx_info.descs, (long)dev->rx_info.phy_descs);
/* disable interrupts */
writel(0, dev->base + IMR);
writel(0, dev->base + IER);
readl(dev->base + IER);
dev->IMR_cache = 0;
err = request_irq(pci_dev->irq, ns83820_irq, SA_SHIRQ,
DRV_NAME, ndev);
if (err) {
printk(KERN_INFO "ns83820: unable to register irq %d\n",
pci_dev->irq);
goto out_disable;
}
/*
* FIXME: we are holding rtnl_lock() over obscenely long area only
* because some of the setup code uses dev->name. It's Wrong(tm) -
* we should be using driver-specific names for all that stuff.
* For now that will do, but we really need to come back and kill
* most of the dev_alloc_name() users later.
*/
rtnl_lock();
err = dev_alloc_name(ndev, ndev->name);
if (err < 0) {
printk(KERN_INFO "ns83820: unable to get netdev name: %d\n", err);
goto out_free_irq;
}
printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
pci_dev->subsystem_vendor, pci_dev->subsystem_device);
ndev->open = ns83820_open;
ndev->stop = ns83820_stop;
ndev->hard_start_xmit = ns83820_hard_start_xmit;
ndev->get_stats = ns83820_get_stats;
ndev->change_mtu = ns83820_change_mtu;
ndev->set_multicast_list = ns83820_set_multicast;
SET_ETHTOOL_OPS(ndev, &ops);
ndev->tx_timeout = ns83820_tx_timeout;
ndev->watchdog_timeo = 5 * HZ;
pci_set_drvdata(pci_dev, ndev);
ns83820_do_reset(dev, CR_RST);
/* Must reset the ram bist before running it */
writel(PTSCR_RBIST_RST, dev->base + PTSCR);
ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN,
PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
PTSCR_EEBIST_FAIL);
ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
/* I love config registers */
dev->CFG_cache = readl(dev->base + CFG);
if ((dev->CFG_cache & CFG_PCI64_DET)) {
printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
ndev->name);
/*dev->CFG_cache |= CFG_DATA64_EN;*/
if (!(dev->CFG_cache & CFG_DATA64_EN))
printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n",
ndev->name);
} else
dev->CFG_cache &= ~(CFG_DATA64_EN);
dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS |
CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
CFG_M64ADDR);
dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL;
dev->CFG_cache |= CFG_REQALG;
dev->CFG_cache |= CFG_POW;
dev->CFG_cache |= CFG_TMRTEST;
/* When compiled with 64 bit addressing, we must always enable
* the 64 bit descriptor format.
*/
if (sizeof(dma_addr_t) == 8)
dev->CFG_cache |= CFG_M64ADDR;
if (using_dac)
dev->CFG_cache |= CFG_T64ADDR;
/* Big endian mode does not seem to do what the docs suggest */
dev->CFG_cache &= ~CFG_BEM;
/* setup optical transceiver if we have one */
if (dev->CFG_cache & CFG_TBI_EN) {
printk(KERN_INFO "%s: enabling optical transceiver\n",
ndev->name);
writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
/* setup auto negotiation feature advertisement */
writel(readl(dev->base + TANAR)
| TANAR_HALF_DUP | TANAR_FULL_DUP,
dev->base + TANAR);
/* start auto negotiation */
writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
dev->base + TBICR);
writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
dev->linkstate = LINK_AUTONEGOTIATE;
dev->CFG_cache |= CFG_MODE_1000;
}
writel(dev->CFG_cache, dev->base + CFG);
dprintk("CFG: %08x\n", dev->CFG_cache);
if (reset_phy) {
printk(KERN_INFO "%s: resetting phy\n", ndev->name);
writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
msleep(10);
writel(dev->CFG_cache, dev->base + CFG);
}
#if 0 /* Huh? This sets the PCI latency register. Should be done via
* the PCI layer. FIXME.
*/
if (readl(dev->base + SRR))
writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
#endif
/* Note! The DMA burst size interacts with packet
* transmission, such that the largest packet that
* can be transmitted is 8192 - FLTH - burst size.
* If only the transmit fifo was larger...
*/
/* Ramit : 1024 DMA is not a good idea, it ends up banging
* some DELL and COMPAQ SMP systems */
writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
| ((1600 / 32) * 0x100),
dev->base + TXCFG);
/* Flush the interrupt holdoff timer */
writel(0x000, dev->base + IHR);
writel(0x100, dev->base + IHR);
writel(0x000, dev->base + IHR);
/* Set Rx to full duplex, don't accept runt, errored, long or length
* range errored packets. Use 512 byte DMA.
*/
/* Ramit : 1024 DMA is not a good idea, it ends up banging
* some DELL and COMPAQ SMP systems
* Turn on ALP, only we are accpeting Jumbo Packets */
writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
| RXCFG_STRIPCRC
//| RXCFG_ALP
| (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
/* Disable priority queueing */
writel(0, dev->base + PQCR);
/* Enable IP checksum validation and detetion of VLAN headers.
* Note: do not set the reject options as at least the 0x102
* revision of the chip does not properly accept IP fragments
* at least for UDP.
*/
/* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
* the MAC it calculates the packetsize AFTER stripping the VLAN
* header, and if a VLAN Tagged packet of 64 bytes is received (like
* a ping with a VLAN header) then the card, strips the 4 byte VLAN
* tag and then checks the packet size, so if RXCFG_ARP is not enabled,
* it discrards it!. These guys......
* also turn on tag stripping if hardware acceleration is enabled
*/
#ifdef NS83820_VLAN_ACCEL_SUPPORT
#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
#else
#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
#endif
writel(VRCR_INIT_VALUE, dev->base + VRCR);
/* Enable per-packet TCP/UDP/IP checksumming
* and per packet vlan tag insertion if
* vlan hardware acceleration is enabled
*/
#ifdef NS83820_VLAN_ACCEL_SUPPORT
#define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
#else
#define VTCR_INIT_VALUE VTCR_PPCHK
#endif
writel(VTCR_INIT_VALUE, dev->base + VTCR);
/* Ramit : Enable async and sync pause frames */
/* writel(0, dev->base + PCR); */
writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
dev->base + PCR);
/* Disable Wake On Lan */
writel(0, dev->base + WCSR);
ns83820_getmac(dev, ndev->dev_addr);
/* Yes, we support dumb IP checksum on transmit */
ndev->features |= NETIF_F_SG;
ndev->features |= NETIF_F_IP_CSUM;
#ifdef NS83820_VLAN_ACCEL_SUPPORT
/* We also support hardware vlan acceleration */
ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
ndev->vlan_rx_register = ns83820_vlan_rx_register;
ndev->vlan_rx_kill_vid = ns83820_vlan_rx_kill_vid;
#endif
if (using_dac) {
printk(KERN_INFO "%s: using 64 bit addressing.\n",
ndev->name);
ndev->features |= NETIF_F_HIGHDMA;
}
printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %02x:%02x:%02x:%02x:%02x:%02x io=0x%08lx irq=%d f=%s\n",
ndev->name,
(unsigned)readl(dev->base + SRR) >> 8,
(unsigned)readl(dev->base + SRR) & 0xff,
ndev->dev_addr[0], ndev->dev_addr[1],
ndev->dev_addr[2], ndev->dev_addr[3],
ndev->dev_addr[4], ndev->dev_addr[5],
addr, pci_dev->irq,
(ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
);
#ifdef PHY_CODE_IS_FINISHED
ns83820_probe_phy(ndev);
#endif
err = register_netdevice(ndev);
if (err) {
printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
goto out_cleanup;
}
rtnl_unlock();
return 0;
out_cleanup:
writel(0, dev->base + IMR); /* paranoia */
writel(0, dev->base + IER);
readl(dev->base + IER);
out_free_irq:
rtnl_unlock();
free_irq(pci_dev->irq, ndev);
out_disable:
if (dev->base)
iounmap(dev->base);
pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
pci_disable_device(pci_dev);
out_free:
free_netdev(ndev);
pci_set_drvdata(pci_dev, NULL);
out:
return err;
}
static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
{
struct net_device *ndev = pci_get_drvdata(pci_dev);
struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
if (!ndev) /* paranoia */
return;
writel(0, dev->base + IMR); /* paranoia */
writel(0, dev->base + IER);
readl(dev->base + IER);
unregister_netdev(ndev);
free_irq(dev->pci_dev->irq, ndev);
iounmap(dev->base);
pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
dev->tx_descs, dev->tx_phy_descs);
pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
dev->rx_info.descs, dev->rx_info.phy_descs);
pci_disable_device(dev->pci_dev);
free_netdev(ndev);
pci_set_drvdata(pci_dev, NULL);
}
static struct pci_device_id ns83820_pci_tbl[] = {
{ 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
{ 0, },
};
static struct pci_driver driver = {
.name = "ns83820",
.id_table = ns83820_pci_tbl,
.probe = ns83820_init_one,
.remove = __devexit_p(ns83820_remove_one),
#if 0 /* FIXME: implement */
.suspend = ,
.resume = ,
#endif
};
static int __init ns83820_init(void)
{
printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
return pci_module_init(&driver);
}
static void __exit ns83820_exit(void)
{
pci_unregister_driver(&driver);
}
MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
module_param(lnksts, int, 0);
MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
module_param(ihr, int, 0);
MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
module_param(reset_phy, int, 0);
MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
module_init(ns83820_init);
module_exit(ns83820_exit);