1954 lines
52 KiB
C
1954 lines
52 KiB
C
/*
|
|
* Intel MIC Platform Software Stack (MPSS)
|
|
*
|
|
* Copyright(c) 2015 Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* Intel SCIF driver.
|
|
*
|
|
*/
|
|
#include "scif_main.h"
|
|
#include "scif_map.h"
|
|
|
|
/*
|
|
* struct scif_dma_comp_cb - SCIF DMA completion callback
|
|
*
|
|
* @dma_completion_func: DMA completion callback
|
|
* @cb_cookie: DMA completion callback cookie
|
|
* @temp_buf: Temporary buffer
|
|
* @temp_buf_to_free: Temporary buffer to be freed
|
|
* @is_cache: Is a kmem_cache allocated buffer
|
|
* @dst_offset: Destination registration offset
|
|
* @dst_window: Destination registration window
|
|
* @len: Length of the temp buffer
|
|
* @temp_phys: DMA address of the temp buffer
|
|
* @sdev: The SCIF device
|
|
* @header_padding: padding for cache line alignment
|
|
*/
|
|
struct scif_dma_comp_cb {
|
|
void (*dma_completion_func)(void *cookie);
|
|
void *cb_cookie;
|
|
u8 *temp_buf;
|
|
u8 *temp_buf_to_free;
|
|
bool is_cache;
|
|
s64 dst_offset;
|
|
struct scif_window *dst_window;
|
|
size_t len;
|
|
dma_addr_t temp_phys;
|
|
struct scif_dev *sdev;
|
|
int header_padding;
|
|
};
|
|
|
|
/**
|
|
* struct scif_copy_work - Work for DMA copy
|
|
*
|
|
* @src_offset: Starting source offset
|
|
* @dst_offset: Starting destination offset
|
|
* @src_window: Starting src registered window
|
|
* @dst_window: Starting dst registered window
|
|
* @loopback: true if this is a loopback DMA transfer
|
|
* @len: Length of the transfer
|
|
* @comp_cb: DMA copy completion callback
|
|
* @remote_dev: The remote SCIF peer device
|
|
* @fence_type: polling or interrupt based
|
|
* @ordered: is this a tail byte ordered DMA transfer
|
|
*/
|
|
struct scif_copy_work {
|
|
s64 src_offset;
|
|
s64 dst_offset;
|
|
struct scif_window *src_window;
|
|
struct scif_window *dst_window;
|
|
int loopback;
|
|
size_t len;
|
|
struct scif_dma_comp_cb *comp_cb;
|
|
struct scif_dev *remote_dev;
|
|
int fence_type;
|
|
bool ordered;
|
|
};
|
|
|
|
/**
|
|
* scif_reserve_dma_chan:
|
|
* @ep: Endpoint Descriptor.
|
|
*
|
|
* This routine reserves a DMA channel for a particular
|
|
* endpoint. All DMA transfers for an endpoint are always
|
|
* programmed on the same DMA channel.
|
|
*/
|
|
int scif_reserve_dma_chan(struct scif_endpt *ep)
|
|
{
|
|
int err = 0;
|
|
struct scif_dev *scifdev;
|
|
struct scif_hw_dev *sdev;
|
|
struct dma_chan *chan;
|
|
|
|
/* Loopback DMAs are not supported on the management node */
|
|
if (!scif_info.nodeid && scifdev_self(ep->remote_dev))
|
|
return 0;
|
|
if (scif_info.nodeid)
|
|
scifdev = &scif_dev[0];
|
|
else
|
|
scifdev = ep->remote_dev;
|
|
sdev = scifdev->sdev;
|
|
if (!sdev->num_dma_ch)
|
|
return -ENODEV;
|
|
chan = sdev->dma_ch[scifdev->dma_ch_idx];
|
|
scifdev->dma_ch_idx = (scifdev->dma_ch_idx + 1) % sdev->num_dma_ch;
|
|
mutex_lock(&ep->rma_info.rma_lock);
|
|
ep->rma_info.dma_chan = chan;
|
|
mutex_unlock(&ep->rma_info.rma_lock);
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_MMU_NOTIFIER
|
|
/**
|
|
* scif_rma_destroy_tcw:
|
|
*
|
|
* This routine destroys temporary cached windows
|
|
*/
|
|
static
|
|
void __scif_rma_destroy_tcw(struct scif_mmu_notif *mmn,
|
|
u64 start, u64 len)
|
|
{
|
|
struct list_head *item, *tmp;
|
|
struct scif_window *window;
|
|
u64 start_va, end_va;
|
|
u64 end = start + len;
|
|
|
|
if (end <= start)
|
|
return;
|
|
|
|
list_for_each_safe(item, tmp, &mmn->tc_reg_list) {
|
|
window = list_entry(item, struct scif_window, list);
|
|
if (!len)
|
|
break;
|
|
start_va = window->va_for_temp;
|
|
end_va = start_va + (window->nr_pages << PAGE_SHIFT);
|
|
if (start < start_va && end <= start_va)
|
|
break;
|
|
if (start >= end_va)
|
|
continue;
|
|
__scif_rma_destroy_tcw_helper(window);
|
|
}
|
|
}
|
|
|
|
static void scif_rma_destroy_tcw(struct scif_mmu_notif *mmn, u64 start, u64 len)
|
|
{
|
|
struct scif_endpt *ep = mmn->ep;
|
|
|
|
spin_lock(&ep->rma_info.tc_lock);
|
|
__scif_rma_destroy_tcw(mmn, start, len);
|
|
spin_unlock(&ep->rma_info.tc_lock);
|
|
}
|
|
|
|
static void scif_rma_destroy_tcw_ep(struct scif_endpt *ep)
|
|
{
|
|
struct list_head *item, *tmp;
|
|
struct scif_mmu_notif *mmn;
|
|
|
|
list_for_each_safe(item, tmp, &ep->rma_info.mmn_list) {
|
|
mmn = list_entry(item, struct scif_mmu_notif, list);
|
|
scif_rma_destroy_tcw(mmn, 0, ULONG_MAX);
|
|
}
|
|
}
|
|
|
|
static void __scif_rma_destroy_tcw_ep(struct scif_endpt *ep)
|
|
{
|
|
struct list_head *item, *tmp;
|
|
struct scif_mmu_notif *mmn;
|
|
|
|
spin_lock(&ep->rma_info.tc_lock);
|
|
list_for_each_safe(item, tmp, &ep->rma_info.mmn_list) {
|
|
mmn = list_entry(item, struct scif_mmu_notif, list);
|
|
__scif_rma_destroy_tcw(mmn, 0, ULONG_MAX);
|
|
}
|
|
spin_unlock(&ep->rma_info.tc_lock);
|
|
}
|
|
|
|
static bool scif_rma_tc_can_cache(struct scif_endpt *ep, size_t cur_bytes)
|
|
{
|
|
if ((cur_bytes >> PAGE_SHIFT) > scif_info.rma_tc_limit)
|
|
return false;
|
|
if ((atomic_read(&ep->rma_info.tcw_total_pages)
|
|
+ (cur_bytes >> PAGE_SHIFT)) >
|
|
scif_info.rma_tc_limit) {
|
|
dev_info(scif_info.mdev.this_device,
|
|
"%s %d total=%d, current=%zu reached max\n",
|
|
__func__, __LINE__,
|
|
atomic_read(&ep->rma_info.tcw_total_pages),
|
|
(1 + (cur_bytes >> PAGE_SHIFT)));
|
|
scif_rma_destroy_tcw_invalid();
|
|
__scif_rma_destroy_tcw_ep(ep);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void scif_mmu_notifier_release(struct mmu_notifier *mn,
|
|
struct mm_struct *mm)
|
|
{
|
|
struct scif_mmu_notif *mmn;
|
|
|
|
mmn = container_of(mn, struct scif_mmu_notif, ep_mmu_notifier);
|
|
scif_rma_destroy_tcw(mmn, 0, ULONG_MAX);
|
|
schedule_work(&scif_info.misc_work);
|
|
}
|
|
|
|
static int scif_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
bool blockable)
|
|
{
|
|
struct scif_mmu_notif *mmn;
|
|
|
|
mmn = container_of(mn, struct scif_mmu_notif, ep_mmu_notifier);
|
|
scif_rma_destroy_tcw(mmn, start, end - start);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void scif_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
/*
|
|
* Nothing to do here, everything needed was done in
|
|
* invalidate_range_start.
|
|
*/
|
|
}
|
|
|
|
static const struct mmu_notifier_ops scif_mmu_notifier_ops = {
|
|
.release = scif_mmu_notifier_release,
|
|
.clear_flush_young = NULL,
|
|
.invalidate_range_start = scif_mmu_notifier_invalidate_range_start,
|
|
.invalidate_range_end = scif_mmu_notifier_invalidate_range_end};
|
|
|
|
static void scif_ep_unregister_mmu_notifier(struct scif_endpt *ep)
|
|
{
|
|
struct scif_endpt_rma_info *rma = &ep->rma_info;
|
|
struct scif_mmu_notif *mmn = NULL;
|
|
struct list_head *item, *tmp;
|
|
|
|
mutex_lock(&ep->rma_info.mmn_lock);
|
|
list_for_each_safe(item, tmp, &rma->mmn_list) {
|
|
mmn = list_entry(item, struct scif_mmu_notif, list);
|
|
mmu_notifier_unregister(&mmn->ep_mmu_notifier, mmn->mm);
|
|
list_del(item);
|
|
kfree(mmn);
|
|
}
|
|
mutex_unlock(&ep->rma_info.mmn_lock);
|
|
}
|
|
|
|
static void scif_init_mmu_notifier(struct scif_mmu_notif *mmn,
|
|
struct mm_struct *mm, struct scif_endpt *ep)
|
|
{
|
|
mmn->ep = ep;
|
|
mmn->mm = mm;
|
|
mmn->ep_mmu_notifier.ops = &scif_mmu_notifier_ops;
|
|
INIT_LIST_HEAD(&mmn->list);
|
|
INIT_LIST_HEAD(&mmn->tc_reg_list);
|
|
}
|
|
|
|
static struct scif_mmu_notif *
|
|
scif_find_mmu_notifier(struct mm_struct *mm, struct scif_endpt_rma_info *rma)
|
|
{
|
|
struct scif_mmu_notif *mmn;
|
|
|
|
list_for_each_entry(mmn, &rma->mmn_list, list)
|
|
if (mmn->mm == mm)
|
|
return mmn;
|
|
return NULL;
|
|
}
|
|
|
|
static struct scif_mmu_notif *
|
|
scif_add_mmu_notifier(struct mm_struct *mm, struct scif_endpt *ep)
|
|
{
|
|
struct scif_mmu_notif *mmn
|
|
= kzalloc(sizeof(*mmn), GFP_KERNEL);
|
|
|
|
if (!mmn)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
scif_init_mmu_notifier(mmn, current->mm, ep);
|
|
if (mmu_notifier_register(&mmn->ep_mmu_notifier, current->mm)) {
|
|
kfree(mmn);
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
list_add(&mmn->list, &ep->rma_info.mmn_list);
|
|
return mmn;
|
|
}
|
|
|
|
/*
|
|
* Called from the misc thread to destroy temporary cached windows and
|
|
* unregister the MMU notifier for the SCIF endpoint.
|
|
*/
|
|
void scif_mmu_notif_handler(struct work_struct *work)
|
|
{
|
|
struct list_head *pos, *tmpq;
|
|
struct scif_endpt *ep;
|
|
restart:
|
|
scif_rma_destroy_tcw_invalid();
|
|
spin_lock(&scif_info.rmalock);
|
|
list_for_each_safe(pos, tmpq, &scif_info.mmu_notif_cleanup) {
|
|
ep = list_entry(pos, struct scif_endpt, mmu_list);
|
|
list_del(&ep->mmu_list);
|
|
spin_unlock(&scif_info.rmalock);
|
|
scif_rma_destroy_tcw_ep(ep);
|
|
scif_ep_unregister_mmu_notifier(ep);
|
|
goto restart;
|
|
}
|
|
spin_unlock(&scif_info.rmalock);
|
|
}
|
|
|
|
static bool scif_is_set_reg_cache(int flags)
|
|
{
|
|
return !!(flags & SCIF_RMA_USECACHE);
|
|
}
|
|
#else
|
|
static struct scif_mmu_notif *
|
|
scif_find_mmu_notifier(struct mm_struct *mm,
|
|
struct scif_endpt_rma_info *rma)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static struct scif_mmu_notif *
|
|
scif_add_mmu_notifier(struct mm_struct *mm, struct scif_endpt *ep)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
void scif_mmu_notif_handler(struct work_struct *work)
|
|
{
|
|
}
|
|
|
|
static bool scif_is_set_reg_cache(int flags)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static bool scif_rma_tc_can_cache(struct scif_endpt *ep, size_t cur_bytes)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* scif_register_temp:
|
|
* @epd: End Point Descriptor.
|
|
* @addr: virtual address to/from which to copy
|
|
* @len: length of range to copy
|
|
* @out_offset: computed offset returned by reference.
|
|
* @out_window: allocated registered window returned by reference.
|
|
*
|
|
* Create a temporary registered window. The peer will not know about this
|
|
* window. This API is used for scif_vreadfrom()/scif_vwriteto() API's.
|
|
*/
|
|
static int
|
|
scif_register_temp(scif_epd_t epd, unsigned long addr, size_t len, int prot,
|
|
off_t *out_offset, struct scif_window **out_window)
|
|
{
|
|
struct scif_endpt *ep = (struct scif_endpt *)epd;
|
|
int err;
|
|
scif_pinned_pages_t pinned_pages;
|
|
size_t aligned_len;
|
|
|
|
aligned_len = ALIGN(len, PAGE_SIZE);
|
|
|
|
err = __scif_pin_pages((void *)(addr & PAGE_MASK),
|
|
aligned_len, &prot, 0, &pinned_pages);
|
|
if (err)
|
|
return err;
|
|
|
|
pinned_pages->prot = prot;
|
|
|
|
/* Compute the offset for this registration */
|
|
err = scif_get_window_offset(ep, 0, 0,
|
|
aligned_len >> PAGE_SHIFT,
|
|
(s64 *)out_offset);
|
|
if (err)
|
|
goto error_unpin;
|
|
|
|
/* Allocate and prepare self registration window */
|
|
*out_window = scif_create_window(ep, aligned_len >> PAGE_SHIFT,
|
|
*out_offset, true);
|
|
if (!*out_window) {
|
|
scif_free_window_offset(ep, NULL, *out_offset);
|
|
err = -ENOMEM;
|
|
goto error_unpin;
|
|
}
|
|
|
|
(*out_window)->pinned_pages = pinned_pages;
|
|
(*out_window)->nr_pages = pinned_pages->nr_pages;
|
|
(*out_window)->prot = pinned_pages->prot;
|
|
|
|
(*out_window)->va_for_temp = addr & PAGE_MASK;
|
|
err = scif_map_window(ep->remote_dev, *out_window);
|
|
if (err) {
|
|
/* Something went wrong! Rollback */
|
|
scif_destroy_window(ep, *out_window);
|
|
*out_window = NULL;
|
|
} else {
|
|
*out_offset |= (addr - (*out_window)->va_for_temp);
|
|
}
|
|
return err;
|
|
error_unpin:
|
|
if (err)
|
|
dev_err(&ep->remote_dev->sdev->dev,
|
|
"%s %d err %d\n", __func__, __LINE__, err);
|
|
scif_unpin_pages(pinned_pages);
|
|
return err;
|
|
}
|
|
|
|
#define SCIF_DMA_TO (3 * HZ)
|
|
|
|
/*
|
|
* scif_sync_dma - Program a DMA without an interrupt descriptor
|
|
*
|
|
* @dev - The address of the pointer to the device instance used
|
|
* for DMA registration.
|
|
* @chan - DMA channel to be used.
|
|
* @sync_wait: Wait for DMA to complete?
|
|
*
|
|
* Return 0 on success and -errno on error.
|
|
*/
|
|
static int scif_sync_dma(struct scif_hw_dev *sdev, struct dma_chan *chan,
|
|
bool sync_wait)
|
|
{
|
|
int err = 0;
|
|
struct dma_async_tx_descriptor *tx = NULL;
|
|
enum dma_ctrl_flags flags = DMA_PREP_FENCE;
|
|
dma_cookie_t cookie;
|
|
struct dma_device *ddev;
|
|
|
|
if (!chan) {
|
|
err = -EIO;
|
|
dev_err(&sdev->dev, "%s %d err %d\n",
|
|
__func__, __LINE__, err);
|
|
return err;
|
|
}
|
|
ddev = chan->device;
|
|
|
|
tx = ddev->device_prep_dma_memcpy(chan, 0, 0, 0, flags);
|
|
if (!tx) {
|
|
err = -ENOMEM;
|
|
dev_err(&sdev->dev, "%s %d err %d\n",
|
|
__func__, __LINE__, err);
|
|
goto release;
|
|
}
|
|
cookie = tx->tx_submit(tx);
|
|
|
|
if (dma_submit_error(cookie)) {
|
|
err = -ENOMEM;
|
|
dev_err(&sdev->dev, "%s %d err %d\n",
|
|
__func__, __LINE__, err);
|
|
goto release;
|
|
}
|
|
if (!sync_wait) {
|
|
dma_async_issue_pending(chan);
|
|
} else {
|
|
if (dma_sync_wait(chan, cookie) == DMA_COMPLETE) {
|
|
err = 0;
|
|
} else {
|
|
err = -EIO;
|
|
dev_err(&sdev->dev, "%s %d err %d\n",
|
|
__func__, __LINE__, err);
|
|
}
|
|
}
|
|
release:
|
|
return err;
|
|
}
|
|
|
|
static void scif_dma_callback(void *arg)
|
|
{
|
|
struct completion *done = (struct completion *)arg;
|
|
|
|
complete(done);
|
|
}
|
|
|
|
#define SCIF_DMA_SYNC_WAIT true
|
|
#define SCIF_DMA_POLL BIT(0)
|
|
#define SCIF_DMA_INTR BIT(1)
|
|
|
|
/*
|
|
* scif_async_dma - Program a DMA with an interrupt descriptor
|
|
*
|
|
* @dev - The address of the pointer to the device instance used
|
|
* for DMA registration.
|
|
* @chan - DMA channel to be used.
|
|
* Return 0 on success and -errno on error.
|
|
*/
|
|
static int scif_async_dma(struct scif_hw_dev *sdev, struct dma_chan *chan)
|
|
{
|
|
int err = 0;
|
|
struct dma_device *ddev;
|
|
struct dma_async_tx_descriptor *tx = NULL;
|
|
enum dma_ctrl_flags flags = DMA_PREP_INTERRUPT | DMA_PREP_FENCE;
|
|
DECLARE_COMPLETION_ONSTACK(done_wait);
|
|
dma_cookie_t cookie;
|
|
enum dma_status status;
|
|
|
|
if (!chan) {
|
|
err = -EIO;
|
|
dev_err(&sdev->dev, "%s %d err %d\n",
|
|
__func__, __LINE__, err);
|
|
return err;
|
|
}
|
|
ddev = chan->device;
|
|
|
|
tx = ddev->device_prep_dma_memcpy(chan, 0, 0, 0, flags);
|
|
if (!tx) {
|
|
err = -ENOMEM;
|
|
dev_err(&sdev->dev, "%s %d err %d\n",
|
|
__func__, __LINE__, err);
|
|
goto release;
|
|
}
|
|
reinit_completion(&done_wait);
|
|
tx->callback = scif_dma_callback;
|
|
tx->callback_param = &done_wait;
|
|
cookie = tx->tx_submit(tx);
|
|
|
|
if (dma_submit_error(cookie)) {
|
|
err = -ENOMEM;
|
|
dev_err(&sdev->dev, "%s %d err %d\n",
|
|
__func__, __LINE__, err);
|
|
goto release;
|
|
}
|
|
dma_async_issue_pending(chan);
|
|
|
|
err = wait_for_completion_timeout(&done_wait, SCIF_DMA_TO);
|
|
if (!err) {
|
|
err = -EIO;
|
|
dev_err(&sdev->dev, "%s %d err %d\n",
|
|
__func__, __LINE__, err);
|
|
goto release;
|
|
}
|
|
err = 0;
|
|
status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
|
|
if (status != DMA_COMPLETE) {
|
|
err = -EIO;
|
|
dev_err(&sdev->dev, "%s %d err %d\n",
|
|
__func__, __LINE__, err);
|
|
goto release;
|
|
}
|
|
release:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* scif_drain_dma_poll - Drain all outstanding DMA operations for a particular
|
|
* DMA channel via polling.
|
|
*
|
|
* @sdev - The SCIF device
|
|
* @chan - DMA channel
|
|
* Return 0 on success and -errno on error.
|
|
*/
|
|
static int scif_drain_dma_poll(struct scif_hw_dev *sdev, struct dma_chan *chan)
|
|
{
|
|
if (!chan)
|
|
return -EINVAL;
|
|
return scif_sync_dma(sdev, chan, SCIF_DMA_SYNC_WAIT);
|
|
}
|
|
|
|
/*
|
|
* scif_drain_dma_intr - Drain all outstanding DMA operations for a particular
|
|
* DMA channel via interrupt based blocking wait.
|
|
*
|
|
* @sdev - The SCIF device
|
|
* @chan - DMA channel
|
|
* Return 0 on success and -errno on error.
|
|
*/
|
|
int scif_drain_dma_intr(struct scif_hw_dev *sdev, struct dma_chan *chan)
|
|
{
|
|
if (!chan)
|
|
return -EINVAL;
|
|
return scif_async_dma(sdev, chan);
|
|
}
|
|
|
|
/**
|
|
* scif_rma_destroy_windows:
|
|
*
|
|
* This routine destroys all windows queued for cleanup
|
|
*/
|
|
void scif_rma_destroy_windows(void)
|
|
{
|
|
struct list_head *item, *tmp;
|
|
struct scif_window *window;
|
|
struct scif_endpt *ep;
|
|
struct dma_chan *chan;
|
|
|
|
might_sleep();
|
|
restart:
|
|
spin_lock(&scif_info.rmalock);
|
|
list_for_each_safe(item, tmp, &scif_info.rma) {
|
|
window = list_entry(item, struct scif_window,
|
|
list);
|
|
ep = (struct scif_endpt *)window->ep;
|
|
chan = ep->rma_info.dma_chan;
|
|
|
|
list_del_init(&window->list);
|
|
spin_unlock(&scif_info.rmalock);
|
|
if (!chan || !scifdev_alive(ep) ||
|
|
!scif_drain_dma_intr(ep->remote_dev->sdev,
|
|
ep->rma_info.dma_chan))
|
|
/* Remove window from global list */
|
|
window->unreg_state = OP_COMPLETED;
|
|
else
|
|
dev_warn(&ep->remote_dev->sdev->dev,
|
|
"DMA engine hung?\n");
|
|
if (window->unreg_state == OP_COMPLETED) {
|
|
if (window->type == SCIF_WINDOW_SELF)
|
|
scif_destroy_window(ep, window);
|
|
else
|
|
scif_destroy_remote_window(window);
|
|
atomic_dec(&ep->rma_info.tw_refcount);
|
|
}
|
|
goto restart;
|
|
}
|
|
spin_unlock(&scif_info.rmalock);
|
|
}
|
|
|
|
/**
|
|
* scif_rma_destroy_tcw:
|
|
*
|
|
* This routine destroys temporary cached registered windows
|
|
* which have been queued for cleanup.
|
|
*/
|
|
void scif_rma_destroy_tcw_invalid(void)
|
|
{
|
|
struct list_head *item, *tmp;
|
|
struct scif_window *window;
|
|
struct scif_endpt *ep;
|
|
struct dma_chan *chan;
|
|
|
|
might_sleep();
|
|
restart:
|
|
spin_lock(&scif_info.rmalock);
|
|
list_for_each_safe(item, tmp, &scif_info.rma_tc) {
|
|
window = list_entry(item, struct scif_window, list);
|
|
ep = (struct scif_endpt *)window->ep;
|
|
chan = ep->rma_info.dma_chan;
|
|
list_del_init(&window->list);
|
|
spin_unlock(&scif_info.rmalock);
|
|
mutex_lock(&ep->rma_info.rma_lock);
|
|
if (!chan || !scifdev_alive(ep) ||
|
|
!scif_drain_dma_intr(ep->remote_dev->sdev,
|
|
ep->rma_info.dma_chan)) {
|
|
atomic_sub(window->nr_pages,
|
|
&ep->rma_info.tcw_total_pages);
|
|
scif_destroy_window(ep, window);
|
|
atomic_dec(&ep->rma_info.tcw_refcount);
|
|
} else {
|
|
dev_warn(&ep->remote_dev->sdev->dev,
|
|
"DMA engine hung?\n");
|
|
}
|
|
mutex_unlock(&ep->rma_info.rma_lock);
|
|
goto restart;
|
|
}
|
|
spin_unlock(&scif_info.rmalock);
|
|
}
|
|
|
|
static inline
|
|
void *_get_local_va(off_t off, struct scif_window *window, size_t len)
|
|
{
|
|
int page_nr = (off - window->offset) >> PAGE_SHIFT;
|
|
off_t page_off = off & ~PAGE_MASK;
|
|
void *va = NULL;
|
|
|
|
if (window->type == SCIF_WINDOW_SELF) {
|
|
struct page **pages = window->pinned_pages->pages;
|
|
|
|
va = page_address(pages[page_nr]) + page_off;
|
|
}
|
|
return va;
|
|
}
|
|
|
|
static inline
|
|
void *ioremap_remote(off_t off, struct scif_window *window,
|
|
size_t len, struct scif_dev *dev,
|
|
struct scif_window_iter *iter)
|
|
{
|
|
dma_addr_t phys = scif_off_to_dma_addr(window, off, NULL, iter);
|
|
|
|
/*
|
|
* If the DMA address is not card relative then we need the DMA
|
|
* addresses to be an offset into the bar. The aperture base was already
|
|
* added so subtract it here since scif_ioremap is going to add it again
|
|
*/
|
|
if (!scifdev_self(dev) && window->type == SCIF_WINDOW_PEER &&
|
|
dev->sdev->aper && !dev->sdev->card_rel_da)
|
|
phys = phys - dev->sdev->aper->pa;
|
|
return scif_ioremap(phys, len, dev);
|
|
}
|
|
|
|
static inline void
|
|
iounmap_remote(void *virt, size_t size, struct scif_copy_work *work)
|
|
{
|
|
scif_iounmap(virt, size, work->remote_dev);
|
|
}
|
|
|
|
/*
|
|
* Takes care of ordering issue caused by
|
|
* 1. Hardware: Only in the case of cpu copy from mgmt node to card
|
|
* because of WC memory.
|
|
* 2. Software: If memcpy reorders copy instructions for optimization.
|
|
* This could happen at both mgmt node and card.
|
|
*/
|
|
static inline void
|
|
scif_ordered_memcpy_toio(char *dst, const char *src, size_t count)
|
|
{
|
|
if (!count)
|
|
return;
|
|
|
|
memcpy_toio((void __iomem __force *)dst, src, --count);
|
|
/* Order the last byte with the previous stores */
|
|
wmb();
|
|
*(dst + count) = *(src + count);
|
|
}
|
|
|
|
static inline void scif_unaligned_cpy_toio(char *dst, const char *src,
|
|
size_t count, bool ordered)
|
|
{
|
|
if (ordered)
|
|
scif_ordered_memcpy_toio(dst, src, count);
|
|
else
|
|
memcpy_toio((void __iomem __force *)dst, src, count);
|
|
}
|
|
|
|
static inline
|
|
void scif_ordered_memcpy_fromio(char *dst, const char *src, size_t count)
|
|
{
|
|
if (!count)
|
|
return;
|
|
|
|
memcpy_fromio(dst, (void __iomem __force *)src, --count);
|
|
/* Order the last byte with the previous loads */
|
|
rmb();
|
|
*(dst + count) = *(src + count);
|
|
}
|
|
|
|
static inline void scif_unaligned_cpy_fromio(char *dst, const char *src,
|
|
size_t count, bool ordered)
|
|
{
|
|
if (ordered)
|
|
scif_ordered_memcpy_fromio(dst, src, count);
|
|
else
|
|
memcpy_fromio(dst, (void __iomem __force *)src, count);
|
|
}
|
|
|
|
#define SCIF_RMA_ERROR_CODE (~(dma_addr_t)0x0)
|
|
|
|
/*
|
|
* scif_off_to_dma_addr:
|
|
* Obtain the dma_addr given the window and the offset.
|
|
* @window: Registered window.
|
|
* @off: Window offset.
|
|
* @nr_bytes: Return the number of contiguous bytes till next DMA addr index.
|
|
* @index: Return the index of the dma_addr array found.
|
|
* @start_off: start offset of index of the dma addr array found.
|
|
* The nr_bytes provides the callee an estimate of the maximum possible
|
|
* DMA xfer possible while the index/start_off provide faster lookups
|
|
* for the next iteration.
|
|
*/
|
|
dma_addr_t scif_off_to_dma_addr(struct scif_window *window, s64 off,
|
|
size_t *nr_bytes, struct scif_window_iter *iter)
|
|
{
|
|
int i, page_nr;
|
|
s64 start, end;
|
|
off_t page_off;
|
|
|
|
if (window->nr_pages == window->nr_contig_chunks) {
|
|
page_nr = (off - window->offset) >> PAGE_SHIFT;
|
|
page_off = off & ~PAGE_MASK;
|
|
|
|
if (nr_bytes)
|
|
*nr_bytes = PAGE_SIZE - page_off;
|
|
return window->dma_addr[page_nr] | page_off;
|
|
}
|
|
if (iter) {
|
|
i = iter->index;
|
|
start = iter->offset;
|
|
} else {
|
|
i = 0;
|
|
start = window->offset;
|
|
}
|
|
for (; i < window->nr_contig_chunks; i++) {
|
|
end = start + (window->num_pages[i] << PAGE_SHIFT);
|
|
if (off >= start && off < end) {
|
|
if (iter) {
|
|
iter->index = i;
|
|
iter->offset = start;
|
|
}
|
|
if (nr_bytes)
|
|
*nr_bytes = end - off;
|
|
return (window->dma_addr[i] + (off - start));
|
|
}
|
|
start += (window->num_pages[i] << PAGE_SHIFT);
|
|
}
|
|
dev_err(scif_info.mdev.this_device,
|
|
"%s %d BUG. Addr not found? window %p off 0x%llx\n",
|
|
__func__, __LINE__, window, off);
|
|
return SCIF_RMA_ERROR_CODE;
|
|
}
|
|
|
|
/*
|
|
* Copy between rma window and temporary buffer
|
|
*/
|
|
static void scif_rma_local_cpu_copy(s64 offset, struct scif_window *window,
|
|
u8 *temp, size_t rem_len, bool to_temp)
|
|
{
|
|
void *window_virt;
|
|
size_t loop_len;
|
|
int offset_in_page;
|
|
s64 end_offset;
|
|
|
|
offset_in_page = offset & ~PAGE_MASK;
|
|
loop_len = PAGE_SIZE - offset_in_page;
|
|
|
|
if (rem_len < loop_len)
|
|
loop_len = rem_len;
|
|
|
|
window_virt = _get_local_va(offset, window, loop_len);
|
|
if (!window_virt)
|
|
return;
|
|
if (to_temp)
|
|
memcpy(temp, window_virt, loop_len);
|
|
else
|
|
memcpy(window_virt, temp, loop_len);
|
|
|
|
offset += loop_len;
|
|
temp += loop_len;
|
|
rem_len -= loop_len;
|
|
|
|
end_offset = window->offset +
|
|
(window->nr_pages << PAGE_SHIFT);
|
|
while (rem_len) {
|
|
if (offset == end_offset) {
|
|
window = list_next_entry(window, list);
|
|
end_offset = window->offset +
|
|
(window->nr_pages << PAGE_SHIFT);
|
|
}
|
|
loop_len = min(PAGE_SIZE, rem_len);
|
|
window_virt = _get_local_va(offset, window, loop_len);
|
|
if (!window_virt)
|
|
return;
|
|
if (to_temp)
|
|
memcpy(temp, window_virt, loop_len);
|
|
else
|
|
memcpy(window_virt, temp, loop_len);
|
|
offset += loop_len;
|
|
temp += loop_len;
|
|
rem_len -= loop_len;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* scif_rma_completion_cb:
|
|
* @data: RMA cookie
|
|
*
|
|
* RMA interrupt completion callback.
|
|
*/
|
|
static void scif_rma_completion_cb(void *data)
|
|
{
|
|
struct scif_dma_comp_cb *comp_cb = data;
|
|
|
|
/* Free DMA Completion CB. */
|
|
if (comp_cb->dst_window)
|
|
scif_rma_local_cpu_copy(comp_cb->dst_offset,
|
|
comp_cb->dst_window,
|
|
comp_cb->temp_buf +
|
|
comp_cb->header_padding,
|
|
comp_cb->len, false);
|
|
scif_unmap_single(comp_cb->temp_phys, comp_cb->sdev,
|
|
SCIF_KMEM_UNALIGNED_BUF_SIZE);
|
|
if (comp_cb->is_cache)
|
|
kmem_cache_free(unaligned_cache,
|
|
comp_cb->temp_buf_to_free);
|
|
else
|
|
kfree(comp_cb->temp_buf_to_free);
|
|
}
|
|
|
|
/* Copies between temporary buffer and offsets provided in work */
|
|
static int
|
|
scif_rma_list_dma_copy_unaligned(struct scif_copy_work *work,
|
|
u8 *temp, struct dma_chan *chan,
|
|
bool src_local)
|
|
{
|
|
struct scif_dma_comp_cb *comp_cb = work->comp_cb;
|
|
dma_addr_t window_dma_addr, temp_dma_addr;
|
|
dma_addr_t temp_phys = comp_cb->temp_phys;
|
|
size_t loop_len, nr_contig_bytes = 0, remaining_len = work->len;
|
|
int offset_in_ca, ret = 0;
|
|
s64 end_offset, offset;
|
|
struct scif_window *window;
|
|
void *window_virt_addr;
|
|
size_t tail_len;
|
|
struct dma_async_tx_descriptor *tx;
|
|
struct dma_device *dev = chan->device;
|
|
dma_cookie_t cookie;
|
|
|
|
if (src_local) {
|
|
offset = work->dst_offset;
|
|
window = work->dst_window;
|
|
} else {
|
|
offset = work->src_offset;
|
|
window = work->src_window;
|
|
}
|
|
|
|
offset_in_ca = offset & (L1_CACHE_BYTES - 1);
|
|
if (offset_in_ca) {
|
|
loop_len = L1_CACHE_BYTES - offset_in_ca;
|
|
loop_len = min(loop_len, remaining_len);
|
|
window_virt_addr = ioremap_remote(offset, window,
|
|
loop_len,
|
|
work->remote_dev,
|
|
NULL);
|
|
if (!window_virt_addr)
|
|
return -ENOMEM;
|
|
if (src_local)
|
|
scif_unaligned_cpy_toio(window_virt_addr, temp,
|
|
loop_len,
|
|
work->ordered &&
|
|
!(remaining_len - loop_len));
|
|
else
|
|
scif_unaligned_cpy_fromio(temp, window_virt_addr,
|
|
loop_len, work->ordered &&
|
|
!(remaining_len - loop_len));
|
|
iounmap_remote(window_virt_addr, loop_len, work);
|
|
|
|
offset += loop_len;
|
|
temp += loop_len;
|
|
temp_phys += loop_len;
|
|
remaining_len -= loop_len;
|
|
}
|
|
|
|
offset_in_ca = offset & ~PAGE_MASK;
|
|
end_offset = window->offset +
|
|
(window->nr_pages << PAGE_SHIFT);
|
|
|
|
tail_len = remaining_len & (L1_CACHE_BYTES - 1);
|
|
remaining_len -= tail_len;
|
|
while (remaining_len) {
|
|
if (offset == end_offset) {
|
|
window = list_next_entry(window, list);
|
|
end_offset = window->offset +
|
|
(window->nr_pages << PAGE_SHIFT);
|
|
}
|
|
if (scif_is_mgmt_node())
|
|
temp_dma_addr = temp_phys;
|
|
else
|
|
/* Fix if we ever enable IOMMU on the card */
|
|
temp_dma_addr = (dma_addr_t)virt_to_phys(temp);
|
|
window_dma_addr = scif_off_to_dma_addr(window, offset,
|
|
&nr_contig_bytes,
|
|
NULL);
|
|
loop_len = min(nr_contig_bytes, remaining_len);
|
|
if (src_local) {
|
|
if (work->ordered && !tail_len &&
|
|
!(remaining_len - loop_len) &&
|
|
loop_len != L1_CACHE_BYTES) {
|
|
/*
|
|
* Break up the last chunk of the transfer into
|
|
* two steps. if there is no tail to guarantee
|
|
* DMA ordering. SCIF_DMA_POLLING inserts
|
|
* a status update descriptor in step 1 which
|
|
* acts as a double sided synchronization fence
|
|
* for the DMA engine to ensure that the last
|
|
* cache line in step 2 is updated last.
|
|
*/
|
|
/* Step 1) DMA: Body Length - L1_CACHE_BYTES. */
|
|
tx =
|
|
dev->device_prep_dma_memcpy(chan,
|
|
window_dma_addr,
|
|
temp_dma_addr,
|
|
loop_len -
|
|
L1_CACHE_BYTES,
|
|
DMA_PREP_FENCE);
|
|
if (!tx) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
cookie = tx->tx_submit(tx);
|
|
if (dma_submit_error(cookie)) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
dma_async_issue_pending(chan);
|
|
offset += (loop_len - L1_CACHE_BYTES);
|
|
temp_dma_addr += (loop_len - L1_CACHE_BYTES);
|
|
window_dma_addr += (loop_len - L1_CACHE_BYTES);
|
|
remaining_len -= (loop_len - L1_CACHE_BYTES);
|
|
loop_len = remaining_len;
|
|
|
|
/* Step 2) DMA: L1_CACHE_BYTES */
|
|
tx =
|
|
dev->device_prep_dma_memcpy(chan,
|
|
window_dma_addr,
|
|
temp_dma_addr,
|
|
loop_len, 0);
|
|
if (!tx) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
cookie = tx->tx_submit(tx);
|
|
if (dma_submit_error(cookie)) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
dma_async_issue_pending(chan);
|
|
} else {
|
|
tx =
|
|
dev->device_prep_dma_memcpy(chan,
|
|
window_dma_addr,
|
|
temp_dma_addr,
|
|
loop_len, 0);
|
|
if (!tx) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
cookie = tx->tx_submit(tx);
|
|
if (dma_submit_error(cookie)) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
dma_async_issue_pending(chan);
|
|
}
|
|
} else {
|
|
tx = dev->device_prep_dma_memcpy(chan, temp_dma_addr,
|
|
window_dma_addr, loop_len, 0);
|
|
if (!tx) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
cookie = tx->tx_submit(tx);
|
|
if (dma_submit_error(cookie)) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
dma_async_issue_pending(chan);
|
|
}
|
|
offset += loop_len;
|
|
temp += loop_len;
|
|
temp_phys += loop_len;
|
|
remaining_len -= loop_len;
|
|
offset_in_ca = 0;
|
|
}
|
|
if (tail_len) {
|
|
if (offset == end_offset) {
|
|
window = list_next_entry(window, list);
|
|
end_offset = window->offset +
|
|
(window->nr_pages << PAGE_SHIFT);
|
|
}
|
|
window_virt_addr = ioremap_remote(offset, window, tail_len,
|
|
work->remote_dev,
|
|
NULL);
|
|
if (!window_virt_addr)
|
|
return -ENOMEM;
|
|
/*
|
|
* The CPU copy for the tail bytes must be initiated only once
|
|
* previous DMA transfers for this endpoint have completed
|
|
* to guarantee ordering.
|
|
*/
|
|
if (work->ordered) {
|
|
struct scif_dev *rdev = work->remote_dev;
|
|
|
|
ret = scif_drain_dma_intr(rdev->sdev, chan);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
if (src_local)
|
|
scif_unaligned_cpy_toio(window_virt_addr, temp,
|
|
tail_len, work->ordered);
|
|
else
|
|
scif_unaligned_cpy_fromio(temp, window_virt_addr,
|
|
tail_len, work->ordered);
|
|
iounmap_remote(window_virt_addr, tail_len, work);
|
|
}
|
|
tx = dev->device_prep_dma_memcpy(chan, 0, 0, 0, DMA_PREP_INTERRUPT);
|
|
if (!tx) {
|
|
ret = -ENOMEM;
|
|
return ret;
|
|
}
|
|
tx->callback = &scif_rma_completion_cb;
|
|
tx->callback_param = comp_cb;
|
|
cookie = tx->tx_submit(tx);
|
|
|
|
if (dma_submit_error(cookie)) {
|
|
ret = -ENOMEM;
|
|
return ret;
|
|
}
|
|
dma_async_issue_pending(chan);
|
|
return 0;
|
|
err:
|
|
dev_err(scif_info.mdev.this_device,
|
|
"%s %d Desc Prog Failed ret %d\n",
|
|
__func__, __LINE__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* _scif_rma_list_dma_copy_aligned:
|
|
*
|
|
* Traverse all the windows and perform DMA copy.
|
|
*/
|
|
static int _scif_rma_list_dma_copy_aligned(struct scif_copy_work *work,
|
|
struct dma_chan *chan)
|
|
{
|
|
dma_addr_t src_dma_addr, dst_dma_addr;
|
|
size_t loop_len, remaining_len, src_contig_bytes = 0;
|
|
size_t dst_contig_bytes = 0;
|
|
struct scif_window_iter src_win_iter;
|
|
struct scif_window_iter dst_win_iter;
|
|
s64 end_src_offset, end_dst_offset;
|
|
struct scif_window *src_window = work->src_window;
|
|
struct scif_window *dst_window = work->dst_window;
|
|
s64 src_offset = work->src_offset, dst_offset = work->dst_offset;
|
|
int ret = 0;
|
|
struct dma_async_tx_descriptor *tx;
|
|
struct dma_device *dev = chan->device;
|
|
dma_cookie_t cookie;
|
|
|
|
remaining_len = work->len;
|
|
|
|
scif_init_window_iter(src_window, &src_win_iter);
|
|
scif_init_window_iter(dst_window, &dst_win_iter);
|
|
end_src_offset = src_window->offset +
|
|
(src_window->nr_pages << PAGE_SHIFT);
|
|
end_dst_offset = dst_window->offset +
|
|
(dst_window->nr_pages << PAGE_SHIFT);
|
|
while (remaining_len) {
|
|
if (src_offset == end_src_offset) {
|
|
src_window = list_next_entry(src_window, list);
|
|
end_src_offset = src_window->offset +
|
|
(src_window->nr_pages << PAGE_SHIFT);
|
|
scif_init_window_iter(src_window, &src_win_iter);
|
|
}
|
|
if (dst_offset == end_dst_offset) {
|
|
dst_window = list_next_entry(dst_window, list);
|
|
end_dst_offset = dst_window->offset +
|
|
(dst_window->nr_pages << PAGE_SHIFT);
|
|
scif_init_window_iter(dst_window, &dst_win_iter);
|
|
}
|
|
|
|
/* compute dma addresses for transfer */
|
|
src_dma_addr = scif_off_to_dma_addr(src_window, src_offset,
|
|
&src_contig_bytes,
|
|
&src_win_iter);
|
|
dst_dma_addr = scif_off_to_dma_addr(dst_window, dst_offset,
|
|
&dst_contig_bytes,
|
|
&dst_win_iter);
|
|
loop_len = min(src_contig_bytes, dst_contig_bytes);
|
|
loop_len = min(loop_len, remaining_len);
|
|
if (work->ordered && !(remaining_len - loop_len)) {
|
|
/*
|
|
* Break up the last chunk of the transfer into two
|
|
* steps to ensure that the last byte in step 2 is
|
|
* updated last.
|
|
*/
|
|
/* Step 1) DMA: Body Length - 1 */
|
|
tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
|
|
src_dma_addr,
|
|
loop_len - 1,
|
|
DMA_PREP_FENCE);
|
|
if (!tx) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
cookie = tx->tx_submit(tx);
|
|
if (dma_submit_error(cookie)) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
src_offset += (loop_len - 1);
|
|
dst_offset += (loop_len - 1);
|
|
src_dma_addr += (loop_len - 1);
|
|
dst_dma_addr += (loop_len - 1);
|
|
remaining_len -= (loop_len - 1);
|
|
loop_len = remaining_len;
|
|
|
|
/* Step 2) DMA: 1 BYTES */
|
|
tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
|
|
src_dma_addr, loop_len, 0);
|
|
if (!tx) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
cookie = tx->tx_submit(tx);
|
|
if (dma_submit_error(cookie)) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
dma_async_issue_pending(chan);
|
|
} else {
|
|
tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
|
|
src_dma_addr, loop_len, 0);
|
|
if (!tx) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
cookie = tx->tx_submit(tx);
|
|
if (dma_submit_error(cookie)) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
}
|
|
src_offset += loop_len;
|
|
dst_offset += loop_len;
|
|
remaining_len -= loop_len;
|
|
}
|
|
return ret;
|
|
err:
|
|
dev_err(scif_info.mdev.this_device,
|
|
"%s %d Desc Prog Failed ret %d\n",
|
|
__func__, __LINE__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* scif_rma_list_dma_copy_aligned:
|
|
*
|
|
* Traverse all the windows and perform DMA copy.
|
|
*/
|
|
static int scif_rma_list_dma_copy_aligned(struct scif_copy_work *work,
|
|
struct dma_chan *chan)
|
|
{
|
|
dma_addr_t src_dma_addr, dst_dma_addr;
|
|
size_t loop_len, remaining_len, tail_len, src_contig_bytes = 0;
|
|
size_t dst_contig_bytes = 0;
|
|
int src_cache_off;
|
|
s64 end_src_offset, end_dst_offset;
|
|
struct scif_window_iter src_win_iter;
|
|
struct scif_window_iter dst_win_iter;
|
|
void *src_virt, *dst_virt;
|
|
struct scif_window *src_window = work->src_window;
|
|
struct scif_window *dst_window = work->dst_window;
|
|
s64 src_offset = work->src_offset, dst_offset = work->dst_offset;
|
|
int ret = 0;
|
|
struct dma_async_tx_descriptor *tx;
|
|
struct dma_device *dev = chan->device;
|
|
dma_cookie_t cookie;
|
|
|
|
remaining_len = work->len;
|
|
scif_init_window_iter(src_window, &src_win_iter);
|
|
scif_init_window_iter(dst_window, &dst_win_iter);
|
|
|
|
src_cache_off = src_offset & (L1_CACHE_BYTES - 1);
|
|
if (src_cache_off != 0) {
|
|
/* Head */
|
|
loop_len = L1_CACHE_BYTES - src_cache_off;
|
|
loop_len = min(loop_len, remaining_len);
|
|
src_dma_addr = __scif_off_to_dma_addr(src_window, src_offset);
|
|
dst_dma_addr = __scif_off_to_dma_addr(dst_window, dst_offset);
|
|
if (src_window->type == SCIF_WINDOW_SELF)
|
|
src_virt = _get_local_va(src_offset, src_window,
|
|
loop_len);
|
|
else
|
|
src_virt = ioremap_remote(src_offset, src_window,
|
|
loop_len,
|
|
work->remote_dev, NULL);
|
|
if (!src_virt)
|
|
return -ENOMEM;
|
|
if (dst_window->type == SCIF_WINDOW_SELF)
|
|
dst_virt = _get_local_va(dst_offset, dst_window,
|
|
loop_len);
|
|
else
|
|
dst_virt = ioremap_remote(dst_offset, dst_window,
|
|
loop_len,
|
|
work->remote_dev, NULL);
|
|
if (!dst_virt) {
|
|
if (src_window->type != SCIF_WINDOW_SELF)
|
|
iounmap_remote(src_virt, loop_len, work);
|
|
return -ENOMEM;
|
|
}
|
|
if (src_window->type == SCIF_WINDOW_SELF)
|
|
scif_unaligned_cpy_toio(dst_virt, src_virt, loop_len,
|
|
remaining_len == loop_len ?
|
|
work->ordered : false);
|
|
else
|
|
scif_unaligned_cpy_fromio(dst_virt, src_virt, loop_len,
|
|
remaining_len == loop_len ?
|
|
work->ordered : false);
|
|
if (src_window->type != SCIF_WINDOW_SELF)
|
|
iounmap_remote(src_virt, loop_len, work);
|
|
if (dst_window->type != SCIF_WINDOW_SELF)
|
|
iounmap_remote(dst_virt, loop_len, work);
|
|
src_offset += loop_len;
|
|
dst_offset += loop_len;
|
|
remaining_len -= loop_len;
|
|
}
|
|
|
|
end_src_offset = src_window->offset +
|
|
(src_window->nr_pages << PAGE_SHIFT);
|
|
end_dst_offset = dst_window->offset +
|
|
(dst_window->nr_pages << PAGE_SHIFT);
|
|
tail_len = remaining_len & (L1_CACHE_BYTES - 1);
|
|
remaining_len -= tail_len;
|
|
while (remaining_len) {
|
|
if (src_offset == end_src_offset) {
|
|
src_window = list_next_entry(src_window, list);
|
|
end_src_offset = src_window->offset +
|
|
(src_window->nr_pages << PAGE_SHIFT);
|
|
scif_init_window_iter(src_window, &src_win_iter);
|
|
}
|
|
if (dst_offset == end_dst_offset) {
|
|
dst_window = list_next_entry(dst_window, list);
|
|
end_dst_offset = dst_window->offset +
|
|
(dst_window->nr_pages << PAGE_SHIFT);
|
|
scif_init_window_iter(dst_window, &dst_win_iter);
|
|
}
|
|
|
|
/* compute dma addresses for transfer */
|
|
src_dma_addr = scif_off_to_dma_addr(src_window, src_offset,
|
|
&src_contig_bytes,
|
|
&src_win_iter);
|
|
dst_dma_addr = scif_off_to_dma_addr(dst_window, dst_offset,
|
|
&dst_contig_bytes,
|
|
&dst_win_iter);
|
|
loop_len = min(src_contig_bytes, dst_contig_bytes);
|
|
loop_len = min(loop_len, remaining_len);
|
|
if (work->ordered && !tail_len &&
|
|
!(remaining_len - loop_len)) {
|
|
/*
|
|
* Break up the last chunk of the transfer into two
|
|
* steps. if there is no tail to gurantee DMA ordering.
|
|
* Passing SCIF_DMA_POLLING inserts a status update
|
|
* descriptor in step 1 which acts as a double sided
|
|
* synchronization fence for the DMA engine to ensure
|
|
* that the last cache line in step 2 is updated last.
|
|
*/
|
|
/* Step 1) DMA: Body Length - L1_CACHE_BYTES. */
|
|
tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
|
|
src_dma_addr,
|
|
loop_len -
|
|
L1_CACHE_BYTES,
|
|
DMA_PREP_FENCE);
|
|
if (!tx) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
cookie = tx->tx_submit(tx);
|
|
if (dma_submit_error(cookie)) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
dma_async_issue_pending(chan);
|
|
src_offset += (loop_len - L1_CACHE_BYTES);
|
|
dst_offset += (loop_len - L1_CACHE_BYTES);
|
|
src_dma_addr += (loop_len - L1_CACHE_BYTES);
|
|
dst_dma_addr += (loop_len - L1_CACHE_BYTES);
|
|
remaining_len -= (loop_len - L1_CACHE_BYTES);
|
|
loop_len = remaining_len;
|
|
|
|
/* Step 2) DMA: L1_CACHE_BYTES */
|
|
tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
|
|
src_dma_addr,
|
|
loop_len, 0);
|
|
if (!tx) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
cookie = tx->tx_submit(tx);
|
|
if (dma_submit_error(cookie)) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
dma_async_issue_pending(chan);
|
|
} else {
|
|
tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
|
|
src_dma_addr,
|
|
loop_len, 0);
|
|
if (!tx) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
cookie = tx->tx_submit(tx);
|
|
if (dma_submit_error(cookie)) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
dma_async_issue_pending(chan);
|
|
}
|
|
src_offset += loop_len;
|
|
dst_offset += loop_len;
|
|
remaining_len -= loop_len;
|
|
}
|
|
remaining_len = tail_len;
|
|
if (remaining_len) {
|
|
loop_len = remaining_len;
|
|
if (src_offset == end_src_offset)
|
|
src_window = list_next_entry(src_window, list);
|
|
if (dst_offset == end_dst_offset)
|
|
dst_window = list_next_entry(dst_window, list);
|
|
|
|
src_dma_addr = __scif_off_to_dma_addr(src_window, src_offset);
|
|
dst_dma_addr = __scif_off_to_dma_addr(dst_window, dst_offset);
|
|
/*
|
|
* The CPU copy for the tail bytes must be initiated only once
|
|
* previous DMA transfers for this endpoint have completed to
|
|
* guarantee ordering.
|
|
*/
|
|
if (work->ordered) {
|
|
struct scif_dev *rdev = work->remote_dev;
|
|
|
|
ret = scif_drain_dma_poll(rdev->sdev, chan);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
if (src_window->type == SCIF_WINDOW_SELF)
|
|
src_virt = _get_local_va(src_offset, src_window,
|
|
loop_len);
|
|
else
|
|
src_virt = ioremap_remote(src_offset, src_window,
|
|
loop_len,
|
|
work->remote_dev, NULL);
|
|
if (!src_virt)
|
|
return -ENOMEM;
|
|
|
|
if (dst_window->type == SCIF_WINDOW_SELF)
|
|
dst_virt = _get_local_va(dst_offset, dst_window,
|
|
loop_len);
|
|
else
|
|
dst_virt = ioremap_remote(dst_offset, dst_window,
|
|
loop_len,
|
|
work->remote_dev, NULL);
|
|
if (!dst_virt) {
|
|
if (src_window->type != SCIF_WINDOW_SELF)
|
|
iounmap_remote(src_virt, loop_len, work);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (src_window->type == SCIF_WINDOW_SELF)
|
|
scif_unaligned_cpy_toio(dst_virt, src_virt, loop_len,
|
|
work->ordered);
|
|
else
|
|
scif_unaligned_cpy_fromio(dst_virt, src_virt,
|
|
loop_len, work->ordered);
|
|
if (src_window->type != SCIF_WINDOW_SELF)
|
|
iounmap_remote(src_virt, loop_len, work);
|
|
|
|
if (dst_window->type != SCIF_WINDOW_SELF)
|
|
iounmap_remote(dst_virt, loop_len, work);
|
|
remaining_len -= loop_len;
|
|
}
|
|
return ret;
|
|
err:
|
|
dev_err(scif_info.mdev.this_device,
|
|
"%s %d Desc Prog Failed ret %d\n",
|
|
__func__, __LINE__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* scif_rma_list_cpu_copy:
|
|
*
|
|
* Traverse all the windows and perform CPU copy.
|
|
*/
|
|
static int scif_rma_list_cpu_copy(struct scif_copy_work *work)
|
|
{
|
|
void *src_virt, *dst_virt;
|
|
size_t loop_len, remaining_len;
|
|
int src_page_off, dst_page_off;
|
|
s64 src_offset = work->src_offset, dst_offset = work->dst_offset;
|
|
struct scif_window *src_window = work->src_window;
|
|
struct scif_window *dst_window = work->dst_window;
|
|
s64 end_src_offset, end_dst_offset;
|
|
int ret = 0;
|
|
struct scif_window_iter src_win_iter;
|
|
struct scif_window_iter dst_win_iter;
|
|
|
|
remaining_len = work->len;
|
|
|
|
scif_init_window_iter(src_window, &src_win_iter);
|
|
scif_init_window_iter(dst_window, &dst_win_iter);
|
|
while (remaining_len) {
|
|
src_page_off = src_offset & ~PAGE_MASK;
|
|
dst_page_off = dst_offset & ~PAGE_MASK;
|
|
loop_len = min(PAGE_SIZE -
|
|
max(src_page_off, dst_page_off),
|
|
remaining_len);
|
|
|
|
if (src_window->type == SCIF_WINDOW_SELF)
|
|
src_virt = _get_local_va(src_offset, src_window,
|
|
loop_len);
|
|
else
|
|
src_virt = ioremap_remote(src_offset, src_window,
|
|
loop_len,
|
|
work->remote_dev,
|
|
&src_win_iter);
|
|
if (!src_virt) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
if (dst_window->type == SCIF_WINDOW_SELF)
|
|
dst_virt = _get_local_va(dst_offset, dst_window,
|
|
loop_len);
|
|
else
|
|
dst_virt = ioremap_remote(dst_offset, dst_window,
|
|
loop_len,
|
|
work->remote_dev,
|
|
&dst_win_iter);
|
|
if (!dst_virt) {
|
|
if (src_window->type == SCIF_WINDOW_PEER)
|
|
iounmap_remote(src_virt, loop_len, work);
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
if (work->loopback) {
|
|
memcpy(dst_virt, src_virt, loop_len);
|
|
} else {
|
|
if (src_window->type == SCIF_WINDOW_SELF)
|
|
memcpy_toio((void __iomem __force *)dst_virt,
|
|
src_virt, loop_len);
|
|
else
|
|
memcpy_fromio(dst_virt,
|
|
(void __iomem __force *)src_virt,
|
|
loop_len);
|
|
}
|
|
if (src_window->type == SCIF_WINDOW_PEER)
|
|
iounmap_remote(src_virt, loop_len, work);
|
|
|
|
if (dst_window->type == SCIF_WINDOW_PEER)
|
|
iounmap_remote(dst_virt, loop_len, work);
|
|
|
|
src_offset += loop_len;
|
|
dst_offset += loop_len;
|
|
remaining_len -= loop_len;
|
|
if (remaining_len) {
|
|
end_src_offset = src_window->offset +
|
|
(src_window->nr_pages << PAGE_SHIFT);
|
|
end_dst_offset = dst_window->offset +
|
|
(dst_window->nr_pages << PAGE_SHIFT);
|
|
if (src_offset == end_src_offset) {
|
|
src_window = list_next_entry(src_window, list);
|
|
scif_init_window_iter(src_window,
|
|
&src_win_iter);
|
|
}
|
|
if (dst_offset == end_dst_offset) {
|
|
dst_window = list_next_entry(dst_window, list);
|
|
scif_init_window_iter(dst_window,
|
|
&dst_win_iter);
|
|
}
|
|
}
|
|
}
|
|
error:
|
|
return ret;
|
|
}
|
|
|
|
static int scif_rma_list_dma_copy_wrapper(struct scif_endpt *epd,
|
|
struct scif_copy_work *work,
|
|
struct dma_chan *chan, off_t loffset)
|
|
{
|
|
int src_cache_off, dst_cache_off;
|
|
s64 src_offset = work->src_offset, dst_offset = work->dst_offset;
|
|
u8 *temp = NULL;
|
|
bool src_local = true;
|
|
struct scif_dma_comp_cb *comp_cb;
|
|
int err;
|
|
|
|
if (is_dma_copy_aligned(chan->device, 1, 1, 1))
|
|
return _scif_rma_list_dma_copy_aligned(work, chan);
|
|
|
|
src_cache_off = src_offset & (L1_CACHE_BYTES - 1);
|
|
dst_cache_off = dst_offset & (L1_CACHE_BYTES - 1);
|
|
|
|
if (dst_cache_off == src_cache_off)
|
|
return scif_rma_list_dma_copy_aligned(work, chan);
|
|
|
|
if (work->loopback)
|
|
return scif_rma_list_cpu_copy(work);
|
|
src_local = work->src_window->type == SCIF_WINDOW_SELF;
|
|
|
|
/* Allocate dma_completion cb */
|
|
comp_cb = kzalloc(sizeof(*comp_cb), GFP_KERNEL);
|
|
if (!comp_cb)
|
|
goto error;
|
|
|
|
work->comp_cb = comp_cb;
|
|
comp_cb->cb_cookie = comp_cb;
|
|
comp_cb->dma_completion_func = &scif_rma_completion_cb;
|
|
|
|
if (work->len + (L1_CACHE_BYTES << 1) < SCIF_KMEM_UNALIGNED_BUF_SIZE) {
|
|
comp_cb->is_cache = false;
|
|
/* Allocate padding bytes to align to a cache line */
|
|
temp = kmalloc(work->len + (L1_CACHE_BYTES << 1),
|
|
GFP_KERNEL);
|
|
if (!temp)
|
|
goto free_comp_cb;
|
|
comp_cb->temp_buf_to_free = temp;
|
|
/* kmalloc(..) does not guarantee cache line alignment */
|
|
if (!IS_ALIGNED((u64)temp, L1_CACHE_BYTES))
|
|
temp = PTR_ALIGN(temp, L1_CACHE_BYTES);
|
|
} else {
|
|
comp_cb->is_cache = true;
|
|
temp = kmem_cache_alloc(unaligned_cache, GFP_KERNEL);
|
|
if (!temp)
|
|
goto free_comp_cb;
|
|
comp_cb->temp_buf_to_free = temp;
|
|
}
|
|
|
|
if (src_local) {
|
|
temp += dst_cache_off;
|
|
scif_rma_local_cpu_copy(work->src_offset, work->src_window,
|
|
temp, work->len, true);
|
|
} else {
|
|
comp_cb->dst_window = work->dst_window;
|
|
comp_cb->dst_offset = work->dst_offset;
|
|
work->src_offset = work->src_offset - src_cache_off;
|
|
comp_cb->len = work->len;
|
|
work->len = ALIGN(work->len + src_cache_off, L1_CACHE_BYTES);
|
|
comp_cb->header_padding = src_cache_off;
|
|
}
|
|
comp_cb->temp_buf = temp;
|
|
|
|
err = scif_map_single(&comp_cb->temp_phys, temp,
|
|
work->remote_dev, SCIF_KMEM_UNALIGNED_BUF_SIZE);
|
|
if (err)
|
|
goto free_temp_buf;
|
|
comp_cb->sdev = work->remote_dev;
|
|
if (scif_rma_list_dma_copy_unaligned(work, temp, chan, src_local) < 0)
|
|
goto free_temp_buf;
|
|
if (!src_local)
|
|
work->fence_type = SCIF_DMA_INTR;
|
|
return 0;
|
|
free_temp_buf:
|
|
if (comp_cb->is_cache)
|
|
kmem_cache_free(unaligned_cache, comp_cb->temp_buf_to_free);
|
|
else
|
|
kfree(comp_cb->temp_buf_to_free);
|
|
free_comp_cb:
|
|
kfree(comp_cb);
|
|
error:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* scif_rma_copy:
|
|
* @epd: end point descriptor.
|
|
* @loffset: offset in local registered address space to/from which to copy
|
|
* @addr: user virtual address to/from which to copy
|
|
* @len: length of range to copy
|
|
* @roffset: offset in remote registered address space to/from which to copy
|
|
* @flags: flags
|
|
* @dir: LOCAL->REMOTE or vice versa.
|
|
* @last_chunk: true if this is the last chunk of a larger transfer
|
|
*
|
|
* Validate parameters, check if src/dst registered ranges requested for copy
|
|
* are valid and initiate either CPU or DMA copy.
|
|
*/
|
|
static int scif_rma_copy(scif_epd_t epd, off_t loffset, unsigned long addr,
|
|
size_t len, off_t roffset, int flags,
|
|
enum scif_rma_dir dir, bool last_chunk)
|
|
{
|
|
struct scif_endpt *ep = (struct scif_endpt *)epd;
|
|
struct scif_rma_req remote_req;
|
|
struct scif_rma_req req;
|
|
struct scif_window *local_window = NULL;
|
|
struct scif_window *remote_window = NULL;
|
|
struct scif_copy_work copy_work;
|
|
bool loopback;
|
|
int err = 0;
|
|
struct dma_chan *chan;
|
|
struct scif_mmu_notif *mmn = NULL;
|
|
bool cache = false;
|
|
struct device *spdev;
|
|
|
|
err = scif_verify_epd(ep);
|
|
if (err)
|
|
return err;
|
|
|
|
if (flags && !(flags & (SCIF_RMA_USECPU | SCIF_RMA_USECACHE |
|
|
SCIF_RMA_SYNC | SCIF_RMA_ORDERED)))
|
|
return -EINVAL;
|
|
|
|
loopback = scifdev_self(ep->remote_dev) ? true : false;
|
|
copy_work.fence_type = ((flags & SCIF_RMA_SYNC) && last_chunk) ?
|
|
SCIF_DMA_POLL : 0;
|
|
copy_work.ordered = !!((flags & SCIF_RMA_ORDERED) && last_chunk);
|
|
|
|
/* Use CPU for Mgmt node <-> Mgmt node copies */
|
|
if (loopback && scif_is_mgmt_node()) {
|
|
flags |= SCIF_RMA_USECPU;
|
|
copy_work.fence_type = 0x0;
|
|
}
|
|
|
|
cache = scif_is_set_reg_cache(flags);
|
|
|
|
remote_req.out_window = &remote_window;
|
|
remote_req.offset = roffset;
|
|
remote_req.nr_bytes = len;
|
|
/*
|
|
* If transfer is from local to remote then the remote window
|
|
* must be writeable and vice versa.
|
|
*/
|
|
remote_req.prot = dir == SCIF_LOCAL_TO_REMOTE ? VM_WRITE : VM_READ;
|
|
remote_req.type = SCIF_WINDOW_PARTIAL;
|
|
remote_req.head = &ep->rma_info.remote_reg_list;
|
|
|
|
spdev = scif_get_peer_dev(ep->remote_dev);
|
|
if (IS_ERR(spdev)) {
|
|
err = PTR_ERR(spdev);
|
|
return err;
|
|
}
|
|
|
|
if (addr && cache) {
|
|
mutex_lock(&ep->rma_info.mmn_lock);
|
|
mmn = scif_find_mmu_notifier(current->mm, &ep->rma_info);
|
|
if (!mmn)
|
|
mmn = scif_add_mmu_notifier(current->mm, ep);
|
|
mutex_unlock(&ep->rma_info.mmn_lock);
|
|
if (IS_ERR(mmn)) {
|
|
scif_put_peer_dev(spdev);
|
|
return PTR_ERR(mmn);
|
|
}
|
|
cache = cache && !scif_rma_tc_can_cache(ep, len);
|
|
}
|
|
mutex_lock(&ep->rma_info.rma_lock);
|
|
if (addr) {
|
|
req.out_window = &local_window;
|
|
req.nr_bytes = ALIGN(len + (addr & ~PAGE_MASK),
|
|
PAGE_SIZE);
|
|
req.va_for_temp = addr & PAGE_MASK;
|
|
req.prot = (dir == SCIF_LOCAL_TO_REMOTE ?
|
|
VM_READ : VM_WRITE | VM_READ);
|
|
/* Does a valid local window exist? */
|
|
if (mmn) {
|
|
spin_lock(&ep->rma_info.tc_lock);
|
|
req.head = &mmn->tc_reg_list;
|
|
err = scif_query_tcw(ep, &req);
|
|
spin_unlock(&ep->rma_info.tc_lock);
|
|
}
|
|
if (!mmn || err) {
|
|
err = scif_register_temp(epd, req.va_for_temp,
|
|
req.nr_bytes, req.prot,
|
|
&loffset, &local_window);
|
|
if (err) {
|
|
mutex_unlock(&ep->rma_info.rma_lock);
|
|
goto error;
|
|
}
|
|
if (!cache)
|
|
goto skip_cache;
|
|
atomic_inc(&ep->rma_info.tcw_refcount);
|
|
atomic_add_return(local_window->nr_pages,
|
|
&ep->rma_info.tcw_total_pages);
|
|
if (mmn) {
|
|
spin_lock(&ep->rma_info.tc_lock);
|
|
scif_insert_tcw(local_window,
|
|
&mmn->tc_reg_list);
|
|
spin_unlock(&ep->rma_info.tc_lock);
|
|
}
|
|
}
|
|
skip_cache:
|
|
loffset = local_window->offset +
|
|
(addr - local_window->va_for_temp);
|
|
} else {
|
|
req.out_window = &local_window;
|
|
req.offset = loffset;
|
|
/*
|
|
* If transfer is from local to remote then the self window
|
|
* must be readable and vice versa.
|
|
*/
|
|
req.prot = dir == SCIF_LOCAL_TO_REMOTE ? VM_READ : VM_WRITE;
|
|
req.nr_bytes = len;
|
|
req.type = SCIF_WINDOW_PARTIAL;
|
|
req.head = &ep->rma_info.reg_list;
|
|
/* Does a valid local window exist? */
|
|
err = scif_query_window(&req);
|
|
if (err) {
|
|
mutex_unlock(&ep->rma_info.rma_lock);
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
/* Does a valid remote window exist? */
|
|
err = scif_query_window(&remote_req);
|
|
if (err) {
|
|
mutex_unlock(&ep->rma_info.rma_lock);
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Prepare copy_work for submitting work to the DMA kernel thread
|
|
* or CPU copy routine.
|
|
*/
|
|
copy_work.len = len;
|
|
copy_work.loopback = loopback;
|
|
copy_work.remote_dev = ep->remote_dev;
|
|
if (dir == SCIF_LOCAL_TO_REMOTE) {
|
|
copy_work.src_offset = loffset;
|
|
copy_work.src_window = local_window;
|
|
copy_work.dst_offset = roffset;
|
|
copy_work.dst_window = remote_window;
|
|
} else {
|
|
copy_work.src_offset = roffset;
|
|
copy_work.src_window = remote_window;
|
|
copy_work.dst_offset = loffset;
|
|
copy_work.dst_window = local_window;
|
|
}
|
|
|
|
if (flags & SCIF_RMA_USECPU) {
|
|
scif_rma_list_cpu_copy(©_work);
|
|
} else {
|
|
chan = ep->rma_info.dma_chan;
|
|
err = scif_rma_list_dma_copy_wrapper(epd, ©_work,
|
|
chan, loffset);
|
|
}
|
|
if (addr && !cache)
|
|
atomic_inc(&ep->rma_info.tw_refcount);
|
|
|
|
mutex_unlock(&ep->rma_info.rma_lock);
|
|
|
|
if (last_chunk) {
|
|
struct scif_dev *rdev = ep->remote_dev;
|
|
|
|
if (copy_work.fence_type == SCIF_DMA_POLL)
|
|
err = scif_drain_dma_poll(rdev->sdev,
|
|
ep->rma_info.dma_chan);
|
|
else if (copy_work.fence_type == SCIF_DMA_INTR)
|
|
err = scif_drain_dma_intr(rdev->sdev,
|
|
ep->rma_info.dma_chan);
|
|
}
|
|
|
|
if (addr && !cache)
|
|
scif_queue_for_cleanup(local_window, &scif_info.rma);
|
|
scif_put_peer_dev(spdev);
|
|
return err;
|
|
error:
|
|
if (err) {
|
|
if (addr && local_window && !cache)
|
|
scif_destroy_window(ep, local_window);
|
|
dev_err(scif_info.mdev.this_device,
|
|
"%s %d err %d len 0x%lx\n",
|
|
__func__, __LINE__, err, len);
|
|
}
|
|
scif_put_peer_dev(spdev);
|
|
return err;
|
|
}
|
|
|
|
int scif_readfrom(scif_epd_t epd, off_t loffset, size_t len,
|
|
off_t roffset, int flags)
|
|
{
|
|
int err;
|
|
|
|
dev_dbg(scif_info.mdev.this_device,
|
|
"SCIFAPI readfrom: ep %p loffset 0x%lx len 0x%lx offset 0x%lx flags 0x%x\n",
|
|
epd, loffset, len, roffset, flags);
|
|
if (scif_unaligned(loffset, roffset)) {
|
|
while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) {
|
|
err = scif_rma_copy(epd, loffset, 0x0,
|
|
SCIF_MAX_UNALIGNED_BUF_SIZE,
|
|
roffset, flags,
|
|
SCIF_REMOTE_TO_LOCAL, false);
|
|
if (err)
|
|
goto readfrom_err;
|
|
loffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
|
|
roffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
|
|
len -= SCIF_MAX_UNALIGNED_BUF_SIZE;
|
|
}
|
|
}
|
|
err = scif_rma_copy(epd, loffset, 0x0, len,
|
|
roffset, flags, SCIF_REMOTE_TO_LOCAL, true);
|
|
readfrom_err:
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scif_readfrom);
|
|
|
|
int scif_writeto(scif_epd_t epd, off_t loffset, size_t len,
|
|
off_t roffset, int flags)
|
|
{
|
|
int err;
|
|
|
|
dev_dbg(scif_info.mdev.this_device,
|
|
"SCIFAPI writeto: ep %p loffset 0x%lx len 0x%lx roffset 0x%lx flags 0x%x\n",
|
|
epd, loffset, len, roffset, flags);
|
|
if (scif_unaligned(loffset, roffset)) {
|
|
while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) {
|
|
err = scif_rma_copy(epd, loffset, 0x0,
|
|
SCIF_MAX_UNALIGNED_BUF_SIZE,
|
|
roffset, flags,
|
|
SCIF_LOCAL_TO_REMOTE, false);
|
|
if (err)
|
|
goto writeto_err;
|
|
loffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
|
|
roffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
|
|
len -= SCIF_MAX_UNALIGNED_BUF_SIZE;
|
|
}
|
|
}
|
|
err = scif_rma_copy(epd, loffset, 0x0, len,
|
|
roffset, flags, SCIF_LOCAL_TO_REMOTE, true);
|
|
writeto_err:
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scif_writeto);
|
|
|
|
int scif_vreadfrom(scif_epd_t epd, void *addr, size_t len,
|
|
off_t roffset, int flags)
|
|
{
|
|
int err;
|
|
|
|
dev_dbg(scif_info.mdev.this_device,
|
|
"SCIFAPI vreadfrom: ep %p addr %p len 0x%lx roffset 0x%lx flags 0x%x\n",
|
|
epd, addr, len, roffset, flags);
|
|
if (scif_unaligned((off_t __force)addr, roffset)) {
|
|
if (len > SCIF_MAX_UNALIGNED_BUF_SIZE)
|
|
flags &= ~SCIF_RMA_USECACHE;
|
|
|
|
while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) {
|
|
err = scif_rma_copy(epd, 0, (u64)addr,
|
|
SCIF_MAX_UNALIGNED_BUF_SIZE,
|
|
roffset, flags,
|
|
SCIF_REMOTE_TO_LOCAL, false);
|
|
if (err)
|
|
goto vreadfrom_err;
|
|
addr += SCIF_MAX_UNALIGNED_BUF_SIZE;
|
|
roffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
|
|
len -= SCIF_MAX_UNALIGNED_BUF_SIZE;
|
|
}
|
|
}
|
|
err = scif_rma_copy(epd, 0, (u64)addr, len,
|
|
roffset, flags, SCIF_REMOTE_TO_LOCAL, true);
|
|
vreadfrom_err:
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scif_vreadfrom);
|
|
|
|
int scif_vwriteto(scif_epd_t epd, void *addr, size_t len,
|
|
off_t roffset, int flags)
|
|
{
|
|
int err;
|
|
|
|
dev_dbg(scif_info.mdev.this_device,
|
|
"SCIFAPI vwriteto: ep %p addr %p len 0x%lx roffset 0x%lx flags 0x%x\n",
|
|
epd, addr, len, roffset, flags);
|
|
if (scif_unaligned((off_t __force)addr, roffset)) {
|
|
if (len > SCIF_MAX_UNALIGNED_BUF_SIZE)
|
|
flags &= ~SCIF_RMA_USECACHE;
|
|
|
|
while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) {
|
|
err = scif_rma_copy(epd, 0, (u64)addr,
|
|
SCIF_MAX_UNALIGNED_BUF_SIZE,
|
|
roffset, flags,
|
|
SCIF_LOCAL_TO_REMOTE, false);
|
|
if (err)
|
|
goto vwriteto_err;
|
|
addr += SCIF_MAX_UNALIGNED_BUF_SIZE;
|
|
roffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
|
|
len -= SCIF_MAX_UNALIGNED_BUF_SIZE;
|
|
}
|
|
}
|
|
err = scif_rma_copy(epd, 0, (u64)addr, len,
|
|
roffset, flags, SCIF_LOCAL_TO_REMOTE, true);
|
|
vwriteto_err:
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scif_vwriteto);
|