349 lines
8.6 KiB
C
349 lines
8.6 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
// Copyright (c) 2016-2017 Hisilicon Limited.
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/dma-direction.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/slab.h>
|
|
#include "hclgevf_cmd.h"
|
|
#include "hclgevf_main.h"
|
|
#include "hnae3.h"
|
|
|
|
#define hclgevf_is_csq(ring) ((ring)->flag & HCLGEVF_TYPE_CSQ)
|
|
#define hclgevf_ring_to_dma_dir(ring) (hclgevf_is_csq(ring) ? \
|
|
DMA_TO_DEVICE : DMA_FROM_DEVICE)
|
|
#define cmq_ring_to_dev(ring) (&(ring)->dev->pdev->dev)
|
|
|
|
static int hclgevf_ring_space(struct hclgevf_cmq_ring *ring)
|
|
{
|
|
int ntc = ring->next_to_clean;
|
|
int ntu = ring->next_to_use;
|
|
int used;
|
|
|
|
used = (ntu - ntc + ring->desc_num) % ring->desc_num;
|
|
|
|
return ring->desc_num - used - 1;
|
|
}
|
|
|
|
static int hclgevf_cmd_csq_clean(struct hclgevf_hw *hw)
|
|
{
|
|
struct hclgevf_cmq_ring *csq = &hw->cmq.csq;
|
|
u16 ntc = csq->next_to_clean;
|
|
struct hclgevf_desc *desc;
|
|
int clean = 0;
|
|
u32 head;
|
|
|
|
desc = &csq->desc[ntc];
|
|
head = hclgevf_read_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG);
|
|
while (head != ntc) {
|
|
memset(desc, 0, sizeof(*desc));
|
|
ntc++;
|
|
if (ntc == csq->desc_num)
|
|
ntc = 0;
|
|
desc = &csq->desc[ntc];
|
|
clean++;
|
|
}
|
|
csq->next_to_clean = ntc;
|
|
|
|
return clean;
|
|
}
|
|
|
|
static bool hclgevf_cmd_csq_done(struct hclgevf_hw *hw)
|
|
{
|
|
u32 head;
|
|
|
|
head = hclgevf_read_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG);
|
|
|
|
return head == hw->cmq.csq.next_to_use;
|
|
}
|
|
|
|
static bool hclgevf_is_special_opcode(u16 opcode)
|
|
{
|
|
u16 spec_opcode[] = {0x30, 0x31, 0x32};
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(spec_opcode); i++) {
|
|
if (spec_opcode[i] == opcode)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int hclgevf_alloc_cmd_desc(struct hclgevf_cmq_ring *ring)
|
|
{
|
|
int size = ring->desc_num * sizeof(struct hclgevf_desc);
|
|
|
|
ring->desc = kzalloc(size, GFP_KERNEL);
|
|
if (!ring->desc)
|
|
return -ENOMEM;
|
|
|
|
ring->desc_dma_addr = dma_map_single(cmq_ring_to_dev(ring), ring->desc,
|
|
size, DMA_BIDIRECTIONAL);
|
|
|
|
if (dma_mapping_error(cmq_ring_to_dev(ring), ring->desc_dma_addr)) {
|
|
ring->desc_dma_addr = 0;
|
|
kfree(ring->desc);
|
|
ring->desc = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void hclgevf_free_cmd_desc(struct hclgevf_cmq_ring *ring)
|
|
{
|
|
dma_unmap_single(cmq_ring_to_dev(ring), ring->desc_dma_addr,
|
|
ring->desc_num * sizeof(ring->desc[0]),
|
|
hclgevf_ring_to_dma_dir(ring));
|
|
|
|
ring->desc_dma_addr = 0;
|
|
kfree(ring->desc);
|
|
ring->desc = NULL;
|
|
}
|
|
|
|
static int hclgevf_init_cmd_queue(struct hclgevf_dev *hdev,
|
|
struct hclgevf_cmq_ring *ring)
|
|
{
|
|
struct hclgevf_hw *hw = &hdev->hw;
|
|
int ring_type = ring->flag;
|
|
u32 reg_val;
|
|
int ret;
|
|
|
|
ring->desc_num = HCLGEVF_NIC_CMQ_DESC_NUM;
|
|
spin_lock_init(&ring->lock);
|
|
ring->next_to_clean = 0;
|
|
ring->next_to_use = 0;
|
|
ring->dev = hdev;
|
|
|
|
/* allocate CSQ/CRQ descriptor */
|
|
ret = hclgevf_alloc_cmd_desc(ring);
|
|
if (ret) {
|
|
dev_err(&hdev->pdev->dev, "failed(%d) to alloc %s desc\n", ret,
|
|
(ring_type == HCLGEVF_TYPE_CSQ) ? "CSQ" : "CRQ");
|
|
return ret;
|
|
}
|
|
|
|
/* initialize the hardware registers with csq/crq dma-address,
|
|
* descriptor number, head & tail pointers
|
|
*/
|
|
switch (ring_type) {
|
|
case HCLGEVF_TYPE_CSQ:
|
|
reg_val = (u32)ring->desc_dma_addr;
|
|
hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_L_REG, reg_val);
|
|
reg_val = (u32)((ring->desc_dma_addr >> 31) >> 1);
|
|
hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_H_REG, reg_val);
|
|
|
|
reg_val = (ring->desc_num >> HCLGEVF_NIC_CMQ_DESC_NUM_S);
|
|
reg_val |= HCLGEVF_NIC_CMQ_ENABLE;
|
|
hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_DEPTH_REG, reg_val);
|
|
|
|
hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_TAIL_REG, 0);
|
|
hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG, 0);
|
|
break;
|
|
case HCLGEVF_TYPE_CRQ:
|
|
reg_val = (u32)ring->desc_dma_addr;
|
|
hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_L_REG, reg_val);
|
|
reg_val = (u32)((ring->desc_dma_addr >> 31) >> 1);
|
|
hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_H_REG, reg_val);
|
|
|
|
reg_val = (ring->desc_num >> HCLGEVF_NIC_CMQ_DESC_NUM_S);
|
|
reg_val |= HCLGEVF_NIC_CMQ_ENABLE;
|
|
hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_DEPTH_REG, reg_val);
|
|
|
|
hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_TAIL_REG, 0);
|
|
hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_HEAD_REG, 0);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void hclgevf_cmd_setup_basic_desc(struct hclgevf_desc *desc,
|
|
enum hclgevf_opcode_type opcode, bool is_read)
|
|
{
|
|
memset(desc, 0, sizeof(struct hclgevf_desc));
|
|
desc->opcode = cpu_to_le16(opcode);
|
|
desc->flag = cpu_to_le16(HCLGEVF_CMD_FLAG_NO_INTR |
|
|
HCLGEVF_CMD_FLAG_IN);
|
|
if (is_read)
|
|
desc->flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_WR);
|
|
else
|
|
desc->flag &= cpu_to_le16(~HCLGEVF_CMD_FLAG_WR);
|
|
}
|
|
|
|
/* hclgevf_cmd_send - send command to command queue
|
|
* @hw: pointer to the hw struct
|
|
* @desc: prefilled descriptor for describing the command
|
|
* @num : the number of descriptors to be sent
|
|
*
|
|
* This is the main send command for command queue, it
|
|
* sends the queue, cleans the queue, etc
|
|
*/
|
|
int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclgevf_desc *desc, int num)
|
|
{
|
|
struct hclgevf_dev *hdev = (struct hclgevf_dev *)hw->hdev;
|
|
struct hclgevf_desc *desc_to_use;
|
|
bool complete = false;
|
|
u32 timeout = 0;
|
|
int handle = 0;
|
|
int status = 0;
|
|
u16 retval;
|
|
u16 opcode;
|
|
int ntc;
|
|
|
|
spin_lock_bh(&hw->cmq.csq.lock);
|
|
|
|
if (num > hclgevf_ring_space(&hw->cmq.csq)) {
|
|
spin_unlock_bh(&hw->cmq.csq.lock);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Record the location of desc in the ring for this time
|
|
* which will be use for hardware to write back
|
|
*/
|
|
ntc = hw->cmq.csq.next_to_use;
|
|
opcode = le16_to_cpu(desc[0].opcode);
|
|
while (handle < num) {
|
|
desc_to_use = &hw->cmq.csq.desc[hw->cmq.csq.next_to_use];
|
|
*desc_to_use = desc[handle];
|
|
(hw->cmq.csq.next_to_use)++;
|
|
if (hw->cmq.csq.next_to_use == hw->cmq.csq.desc_num)
|
|
hw->cmq.csq.next_to_use = 0;
|
|
handle++;
|
|
}
|
|
|
|
/* Write to hardware */
|
|
hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_TAIL_REG,
|
|
hw->cmq.csq.next_to_use);
|
|
|
|
/* If the command is sync, wait for the firmware to write back,
|
|
* if multi descriptors to be sent, use the first one to check
|
|
*/
|
|
if (HCLGEVF_SEND_SYNC(le16_to_cpu(desc->flag))) {
|
|
do {
|
|
if (hclgevf_cmd_csq_done(hw))
|
|
break;
|
|
udelay(1);
|
|
timeout++;
|
|
} while (timeout < hw->cmq.tx_timeout);
|
|
}
|
|
|
|
if (hclgevf_cmd_csq_done(hw)) {
|
|
complete = true;
|
|
handle = 0;
|
|
|
|
while (handle < num) {
|
|
/* Get the result of hardware write back */
|
|
desc_to_use = &hw->cmq.csq.desc[ntc];
|
|
desc[handle] = *desc_to_use;
|
|
|
|
if (likely(!hclgevf_is_special_opcode(opcode)))
|
|
retval = le16_to_cpu(desc[handle].retval);
|
|
else
|
|
retval = le16_to_cpu(desc[0].retval);
|
|
|
|
if ((enum hclgevf_cmd_return_status)retval ==
|
|
HCLGEVF_CMD_EXEC_SUCCESS)
|
|
status = 0;
|
|
else
|
|
status = -EIO;
|
|
hw->cmq.last_status = (enum hclgevf_cmd_status)retval;
|
|
ntc++;
|
|
handle++;
|
|
if (ntc == hw->cmq.csq.desc_num)
|
|
ntc = 0;
|
|
}
|
|
}
|
|
|
|
if (!complete)
|
|
status = -EAGAIN;
|
|
|
|
/* Clean the command send queue */
|
|
handle = hclgevf_cmd_csq_clean(hw);
|
|
if (handle != num) {
|
|
dev_warn(&hdev->pdev->dev,
|
|
"cleaned %d, need to clean %d\n", handle, num);
|
|
}
|
|
|
|
spin_unlock_bh(&hw->cmq.csq.lock);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int hclgevf_cmd_query_firmware_version(struct hclgevf_hw *hw,
|
|
u32 *version)
|
|
{
|
|
struct hclgevf_query_version_cmd *resp;
|
|
struct hclgevf_desc desc;
|
|
int status;
|
|
|
|
resp = (struct hclgevf_query_version_cmd *)desc.data;
|
|
|
|
hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_FW_VER, 1);
|
|
status = hclgevf_cmd_send(hw, &desc, 1);
|
|
if (!status)
|
|
*version = le32_to_cpu(resp->firmware);
|
|
|
|
return status;
|
|
}
|
|
|
|
int hclgevf_cmd_init(struct hclgevf_dev *hdev)
|
|
{
|
|
u32 version;
|
|
int ret;
|
|
|
|
/* setup Tx write back timeout */
|
|
hdev->hw.cmq.tx_timeout = HCLGEVF_CMDQ_TX_TIMEOUT;
|
|
|
|
/* setup queue CSQ/CRQ rings */
|
|
hdev->hw.cmq.csq.flag = HCLGEVF_TYPE_CSQ;
|
|
ret = hclgevf_init_cmd_queue(hdev, &hdev->hw.cmq.csq);
|
|
if (ret) {
|
|
dev_err(&hdev->pdev->dev,
|
|
"failed(%d) to initialize CSQ ring\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
hdev->hw.cmq.crq.flag = HCLGEVF_TYPE_CRQ;
|
|
ret = hclgevf_init_cmd_queue(hdev, &hdev->hw.cmq.crq);
|
|
if (ret) {
|
|
dev_err(&hdev->pdev->dev,
|
|
"failed(%d) to initialize CRQ ring\n", ret);
|
|
goto err_csq;
|
|
}
|
|
|
|
/* initialize the pointers of async rx queue of mailbox */
|
|
hdev->arq.hdev = hdev;
|
|
hdev->arq.head = 0;
|
|
hdev->arq.tail = 0;
|
|
hdev->arq.count = 0;
|
|
|
|
/* get firmware version */
|
|
ret = hclgevf_cmd_query_firmware_version(&hdev->hw, &version);
|
|
if (ret) {
|
|
dev_err(&hdev->pdev->dev,
|
|
"failed(%d) to query firmware version\n", ret);
|
|
goto err_crq;
|
|
}
|
|
hdev->fw_version = version;
|
|
|
|
dev_info(&hdev->pdev->dev, "The firmware version is %08x\n", version);
|
|
|
|
return 0;
|
|
err_crq:
|
|
hclgevf_free_cmd_desc(&hdev->hw.cmq.crq);
|
|
err_csq:
|
|
hclgevf_free_cmd_desc(&hdev->hw.cmq.csq);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void hclgevf_cmd_uninit(struct hclgevf_dev *hdev)
|
|
{
|
|
hclgevf_free_cmd_desc(&hdev->hw.cmq.csq);
|
|
hclgevf_free_cmd_desc(&hdev->hw.cmq.crq);
|
|
}
|