OpenCloudOS-Kernel/sound/oss/hal2.c

1560 lines
40 KiB
C

/*
* Driver for A2 audio system used in SGI machines
* Copyright (c) 2001, 2002, 2003 Ladislav Michl <ladis@linux-mips.org>
*
* Based on Ulf Carlsson's code.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Supported devices:
* /dev/dsp standard dsp device, (mostly) OSS compatible
* /dev/mixer standard mixer device, (mostly) OSS compatible
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/sound.h>
#include <linux/soundcard.h>
#include <linux/mutex.h>
#include <asm/io.h>
#include <asm/sgi/hpc3.h>
#include <asm/sgi/ip22.h>
#include "hal2.h"
#if 0
#define DEBUG(args...) printk(args)
#else
#define DEBUG(args...)
#endif
#if 0
#define DEBUG_MIX(args...) printk(args)
#else
#define DEBUG_MIX(args...)
#endif
/*
* Before touching these look how it works. It is a bit unusual I know,
* but it helps to keep things simple. This driver is considered complete
* and I won't add any new features although hardware has many cool
* capabilities.
* (Historical note: HAL2 driver was first written by Ulf Carlsson - ALSA
* 0.3 running with 2.2.x kernel. Then ALSA changed completely and it
* seemed easier to me to write OSS driver from scratch - this one. Now
* when ALSA is official part of 2.6 kernel it's time to write ALSA driver
* using (hopefully) final version of ALSA interface)
*/
#define H2_BLOCK_SIZE 1024
#define H2_ADC_BUFSIZE 8192
#define H2_DAC_BUFSIZE 16834
struct hal2_pbus {
struct hpc3_pbus_dmacregs *pbus;
int pbusnr;
unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */
};
struct hal2_desc {
struct hpc_dma_desc desc;
u32 cnt; /* don't touch, it is also padding */
};
struct hal2_codec {
unsigned char *buffer;
struct hal2_desc *desc;
int desc_count;
int tail, head; /* tail index, head index */
struct hal2_pbus pbus;
unsigned int format; /* Audio data format */
int voices; /* mono/stereo */
unsigned int sample_rate;
unsigned int master; /* Master frequency */
unsigned short mod; /* MOD value */
unsigned short inc; /* INC value */
wait_queue_head_t dma_wait;
spinlock_t lock;
struct mutex sem;
int usecount; /* recording and playback are
* independent */
};
#define H2_MIX_OUTPUT_ATT 0
#define H2_MIX_INPUT_GAIN 1
#define H2_MIXERS 2
struct hal2_mixer {
int modcnt;
unsigned int master;
unsigned int volume[H2_MIXERS];
};
struct hal2_card {
int dev_dsp; /* audio device */
int dev_mixer; /* mixer device */
int dev_midi; /* midi device */
struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */
struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */
struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */
struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */
struct hal2_codec dac;
struct hal2_codec adc;
struct hal2_mixer mixer;
};
#define H2_INDIRECT_WAIT(regs) while (regs->isr & H2_ISR_TSTATUS);
#define H2_READ_ADDR(addr) (addr | (1<<7))
#define H2_WRITE_ADDR(addr) (addr)
static char *hal2str = "HAL2";
/*
* I doubt anyone has a machine with two HAL2 cards. It's possible to
* have two HPC's, so it is probably possible to have two HAL2 cards.
* Try to deal with it, but note that it is not tested.
*/
#define MAXCARDS 2
static struct hal2_card* hal2_card[MAXCARDS];
static const struct {
unsigned char idx:4, avail:1;
} mixtable[SOUND_MIXER_NRDEVICES] = {
[SOUND_MIXER_PCM] = { H2_MIX_OUTPUT_ATT, 1 }, /* voice */
[SOUND_MIXER_MIC] = { H2_MIX_INPUT_GAIN, 1 }, /* mic */
};
#define H2_SUPPORTED_FORMATS (AFMT_S16_LE | AFMT_S16_BE)
static inline void hal2_isr_write(struct hal2_card *hal2, u16 val)
{
hal2->ctl_regs->isr = val;
}
static inline u16 hal2_isr_look(struct hal2_card *hal2)
{
return hal2->ctl_regs->isr;
}
static inline u16 hal2_rev_look(struct hal2_card *hal2)
{
return hal2->ctl_regs->rev;
}
#ifdef HAL2_DUMP_REGS
static u16 hal2_i_look16(struct hal2_card *hal2, u16 addr)
{
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
return regs->idr0;
}
#endif
static u32 hal2_i_look32(struct hal2_card *hal2, u16 addr)
{
u32 ret;
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
ret = regs->idr0 & 0xffff;
regs->iar = H2_READ_ADDR(addr | 0x1);
H2_INDIRECT_WAIT(regs);
ret |= (regs->idr0 & 0xffff) << 16;
return ret;
}
static void hal2_i_write16(struct hal2_card *hal2, u16 addr, u16 val)
{
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->idr0 = val;
regs->idr1 = 0;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_write32(struct hal2_card *hal2, u16 addr, u32 val)
{
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->idr0 = val & 0xffff;
regs->idr1 = val >> 16;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_setbit16(struct hal2_card *hal2, u16 addr, u16 bit)
{
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
regs->idr0 = (regs->idr0 & 0xffff) | bit;
regs->idr1 = 0;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_setbit32(struct hal2_card *hal2, u16 addr, u32 bit)
{
u32 tmp;
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
tmp = (regs->idr0 & 0xffff) | (regs->idr1 << 16) | bit;
regs->idr0 = tmp & 0xffff;
regs->idr1 = tmp >> 16;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_clearbit16(struct hal2_card *hal2, u16 addr, u16 bit)
{
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
regs->idr0 = (regs->idr0 & 0xffff) & ~bit;
regs->idr1 = 0;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
#if 0
static void hal2_i_clearbit32(struct hal2_card *hal2, u16 addr, u32 bit)
{
u32 tmp;
hal2_ctl_regs_t *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
tmp = ((regs->idr0 & 0xffff) | (regs->idr1 << 16)) & ~bit;
regs->idr0 = tmp & 0xffff;
regs->idr1 = tmp >> 16;
regs->idr2 = 0;
regs->idr3 = 0;
regs->iar = H2_WRITE_ADDR(addr);
H2_INDIRECT_WAIT(regs);
}
#endif
#ifdef HAL2_DUMP_REGS
static void hal2_dump_regs(struct hal2_card *hal2)
{
DEBUG("isr: %08hx ", hal2_isr_look(hal2));
DEBUG("rev: %08hx\n", hal2_rev_look(hal2));
DEBUG("relay: %04hx\n", hal2_i_look16(hal2, H2I_RELAY_C));
DEBUG("port en: %04hx ", hal2_i_look16(hal2, H2I_DMA_PORT_EN));
DEBUG("dma end: %04hx ", hal2_i_look16(hal2, H2I_DMA_END));
DEBUG("dma drv: %04hx\n", hal2_i_look16(hal2, H2I_DMA_DRV));
DEBUG("syn ctl: %04hx ", hal2_i_look16(hal2, H2I_SYNTH_C));
DEBUG("aesrx ctl: %04hx ", hal2_i_look16(hal2, H2I_AESRX_C));
DEBUG("aestx ctl: %04hx ", hal2_i_look16(hal2, H2I_AESTX_C));
DEBUG("dac ctl1: %04hx ", hal2_i_look16(hal2, H2I_ADC_C1));
DEBUG("dac ctl2: %08x ", hal2_i_look32(hal2, H2I_ADC_C2));
DEBUG("adc ctl1: %04hx ", hal2_i_look16(hal2, H2I_DAC_C1));
DEBUG("adc ctl2: %08x ", hal2_i_look32(hal2, H2I_DAC_C2));
DEBUG("syn map: %04hx\n", hal2_i_look16(hal2, H2I_SYNTH_MAP_C));
DEBUG("bres1 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES1_C1));
DEBUG("bres1 ctl2: %04x ", hal2_i_look32(hal2, H2I_BRES1_C2));
DEBUG("bres2 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES2_C1));
DEBUG("bres2 ctl2: %04x ", hal2_i_look32(hal2, H2I_BRES2_C2));
DEBUG("bres3 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES3_C1));
DEBUG("bres3 ctl2: %04x\n", hal2_i_look32(hal2, H2I_BRES3_C2));
}
#endif
static struct hal2_card* hal2_dsp_find_card(int minor)
{
int i;
for (i = 0; i < MAXCARDS; i++)
if (hal2_card[i] != NULL && hal2_card[i]->dev_dsp == minor)
return hal2_card[i];
return NULL;
}
static struct hal2_card* hal2_mixer_find_card(int minor)
{
int i;
for (i = 0; i < MAXCARDS; i++)
if (hal2_card[i] != NULL && hal2_card[i]->dev_mixer == minor)
return hal2_card[i];
return NULL;
}
static void hal2_inc_head(struct hal2_codec *codec)
{
codec->head++;
if (codec->head == codec->desc_count)
codec->head = 0;
}
static void hal2_inc_tail(struct hal2_codec *codec)
{
codec->tail++;
if (codec->tail == codec->desc_count)
codec->tail = 0;
}
static void hal2_dac_interrupt(struct hal2_codec *dac)
{
int running;
spin_lock(&dac->lock);
/* if tail buffer contains zero samples DMA stream was already
* stopped */
running = dac->desc[dac->tail].cnt;
dac->desc[dac->tail].cnt = 0;
dac->desc[dac->tail].desc.cntinfo = HPCDMA_XIE | HPCDMA_EOX;
/* we just proccessed empty buffer, don't update tail pointer */
if (running)
hal2_inc_tail(dac);
spin_unlock(&dac->lock);
wake_up(&dac->dma_wait);
}
static void hal2_adc_interrupt(struct hal2_codec *adc)
{
int running;
spin_lock(&adc->lock);
/* if head buffer contains nonzero samples DMA stream was already
* stopped */
running = !adc->desc[adc->head].cnt;
adc->desc[adc->head].cnt = H2_BLOCK_SIZE;
adc->desc[adc->head].desc.cntinfo = HPCDMA_XIE | HPCDMA_EOR;
/* we just proccessed empty buffer, don't update head pointer */
if (running)
hal2_inc_head(adc);
spin_unlock(&adc->lock);
wake_up(&adc->dma_wait);
}
static irqreturn_t hal2_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct hal2_card *hal2 = (struct hal2_card*)dev_id;
irqreturn_t ret = IRQ_NONE;
/* decide what caused this interrupt */
if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
hal2_dac_interrupt(&hal2->dac);
ret = IRQ_HANDLED;
}
if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
hal2_adc_interrupt(&hal2->adc);
ret = IRQ_HANDLED;
}
return ret;
}
static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
{
unsigned short mod;
DEBUG("rate: %d\n", rate);
if (rate < 4000) rate = 4000;
else if (rate > 48000) rate = 48000;
if (44100 % rate < 48000 % rate) {
mod = 4 * 44100 / rate;
codec->master = 44100;
} else {
mod = 4 * 48000 / rate;
codec->master = 48000;
}
codec->inc = 4;
codec->mod = mod;
rate = 4 * codec->master / mod;
DEBUG("real_rate: %d\n", rate);
return rate;
}
static void hal2_set_dac_rate(struct hal2_card *hal2)
{
unsigned int master = hal2->dac.master;
int inc = hal2->dac.inc;
int mod = hal2->dac.mod;
DEBUG("master: %d inc: %d mod: %d\n", master, inc, mod);
hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
hal2_i_write32(hal2, H2I_BRES1_C2, ((0xffff & (inc - mod - 1)) << 16) | inc);
}
static void hal2_set_adc_rate(struct hal2_card *hal2)
{
unsigned int master = hal2->adc.master;
int inc = hal2->adc.inc;
int mod = hal2->adc.mod;
DEBUG("master: %d inc: %d mod: %d\n", master, inc, mod);
hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
hal2_i_write32(hal2, H2I_BRES2_C2, ((0xffff & (inc - mod - 1)) << 16) | inc);
}
static void hal2_setup_dac(struct hal2_card *hal2)
{
unsigned int fifobeg, fifoend, highwater, sample_size;
struct hal2_pbus *pbus = &hal2->dac.pbus;
DEBUG("hal2_setup_dac\n");
/* Now we set up some PBUS information. The PBUS needs information about
* what portion of the fifo it will use. If it's receiving or
* transmitting, and finally whether the stream is little endian or big
* endian. The information is written later, on the start call.
*/
sample_size = 2 * hal2->dac.voices;
/* Fifo should be set to hold exactly four samples. Highwater mark
* should be set to two samples. */
highwater = (sample_size * 2) >> 1; /* halfwords */
fifobeg = 0; /* playback is first */
fifoend = (sample_size * 4) >> 3; /* doublewords */
pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
(highwater << 8) | (fifobeg << 16) | (fifoend << 24) |
(hal2->dac.format & AFMT_S16_LE ? HPC3_PDMACTRL_SEL : 0);
/* We disable everything before we do anything at all */
pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
/* Setup the HAL2 for playback */
hal2_set_dac_rate(hal2);
/* Set endianess */
if (hal2->dac.format & AFMT_S16_LE)
hal2_i_setbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
else
hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
/* Set DMA bus */
hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
/* We are using 1st Bresenham clock generator for playback */
hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
| (1 << H2I_C1_CLKID_SHIFT)
| (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
}
static void hal2_setup_adc(struct hal2_card *hal2)
{
unsigned int fifobeg, fifoend, highwater, sample_size;
struct hal2_pbus *pbus = &hal2->adc.pbus;
DEBUG("hal2_setup_adc\n");
sample_size = 2 * hal2->adc.voices;
highwater = (sample_size * 2) >> 1; /* halfwords */
fifobeg = (4 * 4) >> 3; /* record is second */
fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */
pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
(highwater << 8) | (fifobeg << 16) | (fifoend << 24) |
(hal2->adc.format & AFMT_S16_LE ? HPC3_PDMACTRL_SEL : 0);
pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
/* Setup the HAL2 for record */
hal2_set_adc_rate(hal2);
/* Set endianess */
if (hal2->adc.format & AFMT_S16_LE)
hal2_i_setbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
else
hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
/* Set DMA bus */
hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
/* We are using 2nd Bresenham clock generator for record */
hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
| (2 << H2I_C1_CLKID_SHIFT)
| (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
}
static dma_addr_t hal2_desc_addr(struct hal2_codec *codec, int i)
{
if (--i < 0)
i = codec->desc_count - 1;
return codec->desc[i].desc.pnext;
}
static void hal2_start_dac(struct hal2_card *hal2)
{
struct hal2_codec *dac = &hal2->dac;
struct hal2_pbus *pbus = &dac->pbus;
pbus->pbus->pbdma_dptr = hal2_desc_addr(dac, dac->tail);
pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
/* enable DAC */
hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
}
static void hal2_start_adc(struct hal2_card *hal2)
{
struct hal2_codec *adc = &hal2->adc;
struct hal2_pbus *pbus = &adc->pbus;
pbus->pbus->pbdma_dptr = hal2_desc_addr(adc, adc->head);
pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
/* enable ADC */
hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
}
static inline void hal2_stop_dac(struct hal2_card *hal2)
{
hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
/* The HAL2 itself may remain enabled safely */
}
static inline void hal2_stop_adc(struct hal2_card *hal2)
{
hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
}
static int hal2_alloc_dmabuf(struct hal2_codec *codec, int size,
int count, int cntinfo, int dir)
{
struct hal2_desc *desc, *dma_addr;
int i;
DEBUG("allocating %dk DMA buffer.\n", size / 1024);
codec->buffer = (unsigned char *)__get_free_pages(GFP_KERNEL | GFP_DMA,
get_order(size));
if (!codec->buffer)
return -ENOMEM;
desc = dma_alloc_coherent(NULL, count * sizeof(struct hal2_desc),
(dma_addr_t *)&dma_addr, GFP_KERNEL);
if (!desc) {
free_pages((unsigned long)codec->buffer, get_order(size));
return -ENOMEM;
}
codec->desc = desc;
for (i = 0; i < count; i++) {
desc->desc.pbuf = dma_map_single(NULL,
(void *)(codec->buffer + i * H2_BLOCK_SIZE),
H2_BLOCK_SIZE, dir);
desc->desc.cntinfo = cntinfo;
desc->desc.pnext = (i == count - 1) ?
(u32)dma_addr : (u32)(dma_addr + i + 1);
desc->cnt = 0;
desc++;
}
codec->desc_count = count;
codec->head = codec->tail = 0;
return 0;
}
static int hal2_alloc_dac_dmabuf(struct hal2_codec *codec)
{
return hal2_alloc_dmabuf(codec, H2_DAC_BUFSIZE,
H2_DAC_BUFSIZE / H2_BLOCK_SIZE,
HPCDMA_XIE | HPCDMA_EOX,
DMA_TO_DEVICE);
}
static int hal2_alloc_adc_dmabuf(struct hal2_codec *codec)
{
return hal2_alloc_dmabuf(codec, H2_ADC_BUFSIZE,
H2_ADC_BUFSIZE / H2_BLOCK_SIZE,
HPCDMA_XIE | H2_BLOCK_SIZE,
DMA_TO_DEVICE);
}
static void hal2_free_dmabuf(struct hal2_codec *codec, int size, int dir)
{
dma_addr_t dma_addr;
int i;
dma_addr = codec->desc[codec->desc_count - 1].desc.pnext;
for (i = 0; i < codec->desc_count; i++)
dma_unmap_single(NULL, codec->desc[i].desc.pbuf,
H2_BLOCK_SIZE, dir);
dma_free_coherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
(void *)codec->desc, dma_addr);
free_pages((unsigned long)codec->buffer, get_order(size));
}
static void hal2_free_dac_dmabuf(struct hal2_codec *codec)
{
return hal2_free_dmabuf(codec, H2_DAC_BUFSIZE, DMA_TO_DEVICE);
}
static void hal2_free_adc_dmabuf(struct hal2_codec *codec)
{
return hal2_free_dmabuf(codec, H2_ADC_BUFSIZE, DMA_FROM_DEVICE);
}
/*
* Add 'count' bytes to 'buffer' from DMA ring buffers. Return number of
* bytes added or -EFAULT if copy_from_user failed.
*/
static int hal2_get_buffer(struct hal2_card *hal2, char *buffer, int count)
{
unsigned long flags;
int size, ret = 0;
unsigned char *buf;
struct hal2_desc *tail;
struct hal2_codec *adc = &hal2->adc;
DEBUG("getting %d bytes ", count);
spin_lock_irqsave(&adc->lock, flags);
tail = &adc->desc[adc->tail];
/* enable DMA stream if there are no data */
if (!tail->cnt && !(adc->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT))
hal2_start_adc(hal2);
while (tail->cnt > 0 && count > 0) {
size = min((int)tail->cnt, count);
buf = &adc->buffer[(adc->tail + 1) * H2_BLOCK_SIZE - tail->cnt];
spin_unlock_irqrestore(&adc->lock, flags);
dma_sync_single(NULL, tail->desc.pbuf, size, DMA_FROM_DEVICE);
if (copy_to_user(buffer, buf, size)) {
ret = -EFAULT;
goto out;
}
spin_lock_irqsave(&adc->lock, flags);
tail->cnt -= size;
/* buffer is empty, update tail pointer */
if (tail->cnt == 0) {
tail->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
hal2_inc_tail(adc);
tail = &adc->desc[adc->tail];
/* enable DMA stream again if needed */
if (!(adc->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT))
hal2_start_adc(hal2);
}
buffer += size;
ret += size;
count -= size;
DEBUG("(%d) ", size);
}
spin_unlock_irqrestore(&adc->lock, flags);
out:
DEBUG("\n");
return ret;
}
/*
* Add 'count' bytes from 'buffer' to DMA ring buffers. Return number of
* bytes added or -EFAULT if copy_from_user failed.
*/
static int hal2_add_buffer(struct hal2_card *hal2, char *buffer, int count)
{
unsigned long flags;
unsigned char *buf;
int size, ret = 0;
struct hal2_desc *head;
struct hal2_codec *dac = &hal2->dac;
DEBUG("adding %d bytes ", count);
spin_lock_irqsave(&dac->lock, flags);
head = &dac->desc[dac->head];
while (head->cnt == 0 && count > 0) {
size = min((int)H2_BLOCK_SIZE, count);
buf = &dac->buffer[dac->head * H2_BLOCK_SIZE];
spin_unlock_irqrestore(&dac->lock, flags);
if (copy_from_user(buf, buffer, size)) {
ret = -EFAULT;
goto out;
}
dma_sync_single(NULL, head->desc.pbuf, size, DMA_TO_DEVICE);
spin_lock_irqsave(&dac->lock, flags);
head->desc.cntinfo = size | HPCDMA_XIE;
head->cnt = size;
buffer += size;
ret += size;
count -= size;
hal2_inc_head(dac);
head = &dac->desc[dac->head];
DEBUG("(%d) ", size);
}
if (!(dac->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) && ret > 0)
hal2_start_dac(hal2);
spin_unlock_irqrestore(&dac->lock, flags);
out:
DEBUG("\n");
return ret;
}
#define hal2_reset_dac_pointer(hal2) hal2_reset_pointer(hal2, 1)
#define hal2_reset_adc_pointer(hal2) hal2_reset_pointer(hal2, 0)
static void hal2_reset_pointer(struct hal2_card *hal2, int is_dac)
{
int i;
struct hal2_codec *codec = (is_dac) ? &hal2->dac : &hal2->adc;
DEBUG("hal2_reset_pointer\n");
for (i = 0; i < codec->desc_count; i++) {
codec->desc[i].cnt = 0;
codec->desc[i].desc.cntinfo = HPCDMA_XIE | (is_dac) ?
HPCDMA_EOX : H2_BLOCK_SIZE;
}
codec->head = codec->tail = 0;
}
static int hal2_sync_dac(struct hal2_card *hal2)
{
DECLARE_WAITQUEUE(wait, current);
struct hal2_codec *dac = &hal2->dac;
int ret = 0;
unsigned long flags;
signed long timeout = 1000 * H2_BLOCK_SIZE * 2 * dac->voices *
HZ / dac->sample_rate / 900;
while (dac->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) {
add_wait_queue(&dac->dma_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(timeout);
spin_lock_irqsave(&dac->lock, flags);
if (dac->desc[dac->tail].cnt)
ret = -ETIME;
spin_unlock_irqrestore(&dac->lock, flags);
if (signal_pending(current))
ret = -ERESTARTSYS;
if (ret) {
hal2_stop_dac(hal2);
hal2_reset_dac_pointer(hal2);
}
remove_wait_queue(&dac->dma_wait, &wait);
}
return ret;
}
static int hal2_write_mixer(struct hal2_card *hal2, int index, int vol)
{
unsigned int l, r, tmp;
DEBUG_MIX("mixer %d write\n", index);
if (index >= SOUND_MIXER_NRDEVICES || !mixtable[index].avail)
return -EINVAL;
r = (vol >> 8) & 0xff;
if (r > 100)
r = 100;
l = vol & 0xff;
if (l > 100)
l = 100;
hal2->mixer.volume[mixtable[index].idx] = l | (r << 8);
switch (mixtable[index].idx) {
case H2_MIX_OUTPUT_ATT:
DEBUG_MIX("output attenuator %d,%d\n", l, r);
if (r | l) {
tmp = hal2_i_look32(hal2, H2I_DAC_C2);
tmp &= ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
/* Attenuator has five bits */
l = 31 * (100 - l) / 99;
r = 31 * (100 - r) / 99;
DEBUG_MIX("left: %d, right %d\n", l, r);
tmp |= (l << H2I_C2_L_ATT_SHIFT) & H2I_C2_L_ATT_M;
tmp |= (r << H2I_C2_R_ATT_SHIFT) & H2I_C2_R_ATT_M;
hal2_i_write32(hal2, H2I_DAC_C2, tmp);
} else
hal2_i_setbit32(hal2, H2I_DAC_C2, H2I_C2_MUTE);
break;
case H2_MIX_INPUT_GAIN:
DEBUG_MIX("input gain %d,%d\n", l, r);
tmp = hal2_i_look32(hal2, H2I_ADC_C2);
tmp &= ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
/* Gain control has four bits */
l = 16 * l / 100;
r = 16 * r / 100;
DEBUG_MIX("left: %d, right %d\n", l, r);
tmp |= (l << H2I_C2_L_GAIN_SHIFT) & H2I_C2_L_GAIN_M;
tmp |= (r << H2I_C2_R_GAIN_SHIFT) & H2I_C2_R_GAIN_M;
hal2_i_write32(hal2, H2I_ADC_C2, tmp);
break;
}
return 0;
}
static void hal2_init_mixer(struct hal2_card *hal2)
{
int i;
for (i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (mixtable[i].avail)
hal2->mixer.volume[mixtable[i].idx] = 100 | (100 << 8);
/* disable attenuator */
hal2_i_write32(hal2, H2I_DAC_C2, 0);
/* set max input gain */
hal2_i_write32(hal2, H2I_ADC_C2, H2I_C2_MUTE |
(H2I_C2_L_GAIN_M << H2I_C2_L_GAIN_SHIFT) |
(H2I_C2_R_GAIN_M << H2I_C2_R_GAIN_SHIFT));
/* set max volume */
hal2->mixer.master = 0xff;
hal2->vol_regs->left = 0xff;
hal2->vol_regs->right = 0xff;
}
/*
* XXX: later i'll implement mixer for main volume which will be disabled
* by default. enabling it users will be allowed to have master volume level
* control on panel in their favourite X desktop
*/
static void hal2_volume_control(int direction)
{
unsigned int master = hal2_card[0]->mixer.master;
struct hal2_vol_regs *vol = hal2_card[0]->vol_regs;
/* volume up */
if (direction > 0 && master < 0xff)
master++;
/* volume down */
else if (direction < 0 && master > 0)
master--;
/* TODO: mute/unmute */
vol->left = master;
vol->right = master;
hal2_card[0]->mixer.master = master;
}
static int hal2_mixer_ioctl(struct hal2_card *hal2, unsigned int cmd,
unsigned long arg)
{
int val;
if (cmd == SOUND_MIXER_INFO) {
mixer_info info;
memset(&info, 0, sizeof(info));
strlcpy(info.id, hal2str, sizeof(info.id));
strlcpy(info.name, hal2str, sizeof(info.name));
info.modify_counter = hal2->mixer.modcnt;
if (copy_to_user((void *)arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == SOUND_OLD_MIXER_INFO) {
_old_mixer_info info;
memset(&info, 0, sizeof(info));
strlcpy(info.id, hal2str, sizeof(info.id));
strlcpy(info.name, hal2str, sizeof(info.name));
if (copy_to_user((void *)arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == OSS_GETVERSION)
return put_user(SOUND_VERSION, (int *)arg);
if (_IOC_TYPE(cmd) != 'M' || _IOC_SIZE(cmd) != sizeof(int))
return -EINVAL;
if (_IOC_DIR(cmd) == _IOC_READ) {
switch (_IOC_NR(cmd)) {
/* Give the current record source */
case SOUND_MIXER_RECSRC:
val = 0; /* FIXME */
break;
/* Give the supported mixers, all of them support stereo */
case SOUND_MIXER_DEVMASK:
case SOUND_MIXER_STEREODEVS: {
int i;
for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (mixtable[i].avail)
val |= 1 << i;
break;
}
/* Arg contains a bit for each supported recording source */
case SOUND_MIXER_RECMASK:
val = 0;
break;
case SOUND_MIXER_CAPS:
val = 0;
break;
/* Read a specific mixer */
default: {
int i = _IOC_NR(cmd);
if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].avail)
return -EINVAL;
val = hal2->mixer.volume[mixtable[i].idx];
break;
}
}
return put_user(val, (int *)arg);
}
if (_IOC_DIR(cmd) != (_IOC_WRITE|_IOC_READ))
return -EINVAL;
hal2->mixer.modcnt++;
if (get_user(val, (int *)arg))
return -EFAULT;
switch (_IOC_NR(cmd)) {
/* Arg contains a bit for each recording source */
case SOUND_MIXER_RECSRC:
return 0; /* FIXME */
default:
return hal2_write_mixer(hal2, _IOC_NR(cmd), val);
}
return 0;
}
static int hal2_open_mixdev(struct inode *inode, struct file *file)
{
struct hal2_card *hal2 = hal2_mixer_find_card(iminor(inode));
if (hal2) {
file->private_data = hal2;
return nonseekable_open(inode, file);
}
return -ENODEV;
}
static int hal2_release_mixdev(struct inode *inode, struct file *file)
{
return 0;
}
static int hal2_ioctl_mixdev(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
return hal2_mixer_ioctl((struct hal2_card *)file->private_data, cmd, arg);
}
static int hal2_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
int val;
struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
switch (cmd) {
case OSS_GETVERSION:
return put_user(SOUND_VERSION, (int *)arg);
case SNDCTL_DSP_SYNC:
if (file->f_mode & FMODE_WRITE)
return hal2_sync_dac(hal2);
return 0;
case SNDCTL_DSP_SETDUPLEX:
return 0;
case SNDCTL_DSP_GETCAPS:
return put_user(DSP_CAP_DUPLEX | DSP_CAP_MULTI, (int *)arg);
case SNDCTL_DSP_RESET:
if (file->f_mode & FMODE_READ) {
hal2_stop_adc(hal2);
hal2_reset_adc_pointer(hal2);
}
if (file->f_mode & FMODE_WRITE) {
hal2_stop_dac(hal2);
hal2_reset_dac_pointer(hal2);
}
return 0;
case SNDCTL_DSP_SPEED:
if (get_user(val, (int *)arg))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
hal2_stop_adc(hal2);
val = hal2_compute_rate(&hal2->adc, val);
hal2->adc.sample_rate = val;
hal2_set_adc_rate(hal2);
}
if (file->f_mode & FMODE_WRITE) {
hal2_stop_dac(hal2);
val = hal2_compute_rate(&hal2->dac, val);
hal2->dac.sample_rate = val;
hal2_set_dac_rate(hal2);
}
return put_user(val, (int *)arg);
case SNDCTL_DSP_STEREO:
if (get_user(val, (int *)arg))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
hal2_stop_adc(hal2);
hal2->adc.voices = (val) ? 2 : 1;
hal2_setup_adc(hal2);
}
if (file->f_mode & FMODE_WRITE) {
hal2_stop_dac(hal2);
hal2->dac.voices = (val) ? 2 : 1;
hal2_setup_dac(hal2);
}
return 0;
case SNDCTL_DSP_CHANNELS:
if (get_user(val, (int *)arg))
return -EFAULT;
if (val != 0) {
if (file->f_mode & FMODE_READ) {
hal2_stop_adc(hal2);
hal2->adc.voices = (val == 1) ? 1 : 2;
hal2_setup_adc(hal2);
}
if (file->f_mode & FMODE_WRITE) {
hal2_stop_dac(hal2);
hal2->dac.voices = (val == 1) ? 1 : 2;
hal2_setup_dac(hal2);
}
}
val = -EINVAL;
if (file->f_mode & FMODE_READ)
val = hal2->adc.voices;
if (file->f_mode & FMODE_WRITE)
val = hal2->dac.voices;
return put_user(val, (int *)arg);
case SNDCTL_DSP_GETFMTS: /* Returns a mask */
return put_user(H2_SUPPORTED_FORMATS, (int *)arg);
case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
if (get_user(val, (int *)arg))
return -EFAULT;
if (val != AFMT_QUERY) {
if (!(val & H2_SUPPORTED_FORMATS))
return -EINVAL;
if (file->f_mode & FMODE_READ) {
hal2_stop_adc(hal2);
hal2->adc.format = val;
hal2_setup_adc(hal2);
}
if (file->f_mode & FMODE_WRITE) {
hal2_stop_dac(hal2);
hal2->dac.format = val;
hal2_setup_dac(hal2);
}
} else {
val = -EINVAL;
if (file->f_mode & FMODE_READ)
val = hal2->adc.format;
if (file->f_mode & FMODE_WRITE)
val = hal2->dac.format;
}
return put_user(val, (int *)arg);
case SNDCTL_DSP_POST:
return 0;
case SNDCTL_DSP_GETOSPACE: {
audio_buf_info info;
int i;
unsigned long flags;
struct hal2_codec *dac = &hal2->dac;
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
info.fragments = 0;
spin_lock_irqsave(&dac->lock, flags);
for (i = 0; i < dac->desc_count; i++)
if (dac->desc[i].cnt == 0)
info.fragments++;
spin_unlock_irqrestore(&dac->lock, flags);
info.fragstotal = dac->desc_count;
info.fragsize = H2_BLOCK_SIZE;
info.bytes = info.fragsize * info.fragments;
return copy_to_user((void *)arg, &info, sizeof(info)) ? -EFAULT : 0;
}
case SNDCTL_DSP_GETISPACE: {
audio_buf_info info;
int i;
unsigned long flags;
struct hal2_codec *adc = &hal2->adc;
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
info.fragments = 0;
info.bytes = 0;
spin_lock_irqsave(&adc->lock, flags);
for (i = 0; i < adc->desc_count; i++)
if (adc->desc[i].cnt > 0) {
info.fragments++;
info.bytes += adc->desc[i].cnt;
}
spin_unlock_irqrestore(&adc->lock, flags);
info.fragstotal = adc->desc_count;
info.fragsize = H2_BLOCK_SIZE;
return copy_to_user((void *)arg, &info, sizeof(info)) ? -EFAULT : 0;
}
case SNDCTL_DSP_NONBLOCK:
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_GETBLKSIZE:
return put_user(H2_BLOCK_SIZE, (int *)arg);
case SNDCTL_DSP_SETFRAGMENT:
return 0;
case SOUND_PCM_READ_RATE:
val = -EINVAL;
if (file->f_mode & FMODE_READ)
val = hal2->adc.sample_rate;
if (file->f_mode & FMODE_WRITE)
val = hal2->dac.sample_rate;
return put_user(val, (int *)arg);
case SOUND_PCM_READ_CHANNELS:
val = -EINVAL;
if (file->f_mode & FMODE_READ)
val = hal2->adc.voices;
if (file->f_mode & FMODE_WRITE)
val = hal2->dac.voices;
return put_user(val, (int *)arg);
case SOUND_PCM_READ_BITS:
return put_user(16, (int *)arg);
}
return hal2_mixer_ioctl(hal2, cmd, arg);
}
static ssize_t hal2_read(struct file *file, char *buffer,
size_t count, loff_t *ppos)
{
ssize_t err;
struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
struct hal2_codec *adc = &hal2->adc;
if (!count)
return 0;
if (mutex_lock_interruptible(&adc->sem))
return -EINTR;
if (file->f_flags & O_NONBLOCK) {
err = hal2_get_buffer(hal2, buffer, count);
err = err == 0 ? -EAGAIN : err;
} else {
do {
/* ~10% longer */
signed long timeout = 1000 * H2_BLOCK_SIZE *
2 * adc->voices * HZ / adc->sample_rate / 900;
unsigned long flags;
DECLARE_WAITQUEUE(wait, current);
ssize_t cnt = 0;
err = hal2_get_buffer(hal2, buffer, count);
if (err > 0) {
count -= err;
cnt += err;
buffer += err;
err = cnt;
}
if (count > 0 && err >= 0) {
add_wait_queue(&adc->dma_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(timeout);
spin_lock_irqsave(&adc->lock, flags);
if (!adc->desc[adc->tail].cnt)
err = -EAGAIN;
spin_unlock_irqrestore(&adc->lock, flags);
if (signal_pending(current))
err = -ERESTARTSYS;
remove_wait_queue(&adc->dma_wait, &wait);
if (err < 0) {
hal2_stop_adc(hal2);
hal2_reset_adc_pointer(hal2);
}
}
} while (count > 0 && err >= 0);
}
mutex_unlock(&adc->sem);
return err;
}
static ssize_t hal2_write(struct file *file, const char *buffer,
size_t count, loff_t *ppos)
{
ssize_t err;
char *buf = (char*) buffer;
struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
struct hal2_codec *dac = &hal2->dac;
if (!count)
return 0;
if (mutex_lock_interruptible(&dac->sem))
return -EINTR;
if (file->f_flags & O_NONBLOCK) {
err = hal2_add_buffer(hal2, buf, count);
err = err == 0 ? -EAGAIN : err;
} else {
do {
/* ~10% longer */
signed long timeout = 1000 * H2_BLOCK_SIZE *
2 * dac->voices * HZ / dac->sample_rate / 900;
unsigned long flags;
DECLARE_WAITQUEUE(wait, current);
ssize_t cnt = 0;
err = hal2_add_buffer(hal2, buf, count);
if (err > 0) {
count -= err;
cnt += err;
buf += err;
err = cnt;
}
if (count > 0 && err >= 0) {
add_wait_queue(&dac->dma_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(timeout);
spin_lock_irqsave(&dac->lock, flags);
if (dac->desc[dac->head].cnt)
err = -EAGAIN;
spin_unlock_irqrestore(&dac->lock, flags);
if (signal_pending(current))
err = -ERESTARTSYS;
remove_wait_queue(&dac->dma_wait, &wait);
if (err < 0) {
hal2_stop_dac(hal2);
hal2_reset_dac_pointer(hal2);
}
}
} while (count > 0 && err >= 0);
}
mutex_unlock(&dac->sem);
return err;
}
static unsigned int hal2_poll(struct file *file, struct poll_table_struct *wait)
{
unsigned long flags;
unsigned int mask = 0;
struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
if (file->f_mode & FMODE_READ) {
struct hal2_codec *adc = &hal2->adc;
poll_wait(file, &adc->dma_wait, wait);
spin_lock_irqsave(&adc->lock, flags);
if (adc->desc[adc->tail].cnt > 0)
mask |= POLLIN;
spin_unlock_irqrestore(&adc->lock, flags);
}
if (file->f_mode & FMODE_WRITE) {
struct hal2_codec *dac = &hal2->dac;
poll_wait(file, &dac->dma_wait, wait);
spin_lock_irqsave(&dac->lock, flags);
if (dac->desc[dac->head].cnt == 0)
mask |= POLLOUT;
spin_unlock_irqrestore(&dac->lock, flags);
}
return mask;
}
static int hal2_open(struct inode *inode, struct file *file)
{
int err;
struct hal2_card *hal2 = hal2_dsp_find_card(iminor(inode));
if (!hal2)
return -ENODEV;
file->private_data = hal2;
if (file->f_mode & FMODE_READ) {
struct hal2_codec *adc = &hal2->adc;
if (adc->usecount)
return -EBUSY;
/* OSS spec wanted us to use 8 bit, 8 kHz mono by default,
* but HAL2 can't do 8bit audio */
adc->format = AFMT_S16_BE;
adc->voices = 1;
adc->sample_rate = hal2_compute_rate(adc, 8000);
hal2_set_adc_rate(hal2);
err = hal2_alloc_adc_dmabuf(adc);
if (err)
return err;
hal2_setup_adc(hal2);
adc->usecount++;
}
if (file->f_mode & FMODE_WRITE) {
struct hal2_codec *dac = &hal2->dac;
if (dac->usecount)
return -EBUSY;
dac->format = AFMT_S16_BE;
dac->voices = 1;
dac->sample_rate = hal2_compute_rate(dac, 8000);
hal2_set_dac_rate(hal2);
err = hal2_alloc_dac_dmabuf(dac);
if (err)
return err;
hal2_setup_dac(hal2);
dac->usecount++;
}
return nonseekable_open(inode, file);
}
static int hal2_release(struct inode *inode, struct file *file)
{
struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
if (file->f_mode & FMODE_READ) {
struct hal2_codec *adc = &hal2->adc;
mutex_lock(&adc->sem);
hal2_stop_adc(hal2);
hal2_free_adc_dmabuf(adc);
adc->usecount--;
mutex_unlock(&adc->sem);
}
if (file->f_mode & FMODE_WRITE) {
struct hal2_codec *dac = &hal2->dac;
mutex_lock(&dac->sem);
hal2_sync_dac(hal2);
hal2_free_dac_dmabuf(dac);
dac->usecount--;
mutex_unlock(&dac->sem);
}
return 0;
}
static struct file_operations hal2_audio_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = hal2_read,
.write = hal2_write,
.poll = hal2_poll,
.ioctl = hal2_ioctl,
.open = hal2_open,
.release = hal2_release,
};
static struct file_operations hal2_mixer_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.ioctl = hal2_ioctl_mixdev,
.open = hal2_open_mixdev,
.release = hal2_release_mixdev,
};
static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
int index)
{
codec->pbus.pbusnr = index;
codec->pbus.pbus = &hpc3->pbdma[index];
init_waitqueue_head(&codec->dma_wait);
mutex_init(&codec->sem);
spin_lock_init(&codec->lock);
}
static int hal2_detect(struct hal2_card *hal2)
{
unsigned short board, major, minor;
unsigned short rev;
/* reset HAL2 */
hal2_isr_write(hal2, 0);
/* release reset */
hal2_isr_write(hal2, H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N);
hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
if ((rev = hal2_rev_look(hal2)) & H2_REV_AUDIO_PRESENT)
return -ENODEV;
board = (rev & H2_REV_BOARD_M) >> 12;
major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
minor = (rev & H2_REV_MINOR_CHIP_M);
printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
board, major, minor);
return 0;
}
static int hal2_init_card(struct hal2_card **phal2, struct hpc3_regs *hpc3)
{
int ret = 0;
struct hal2_card *hal2;
hal2 = (struct hal2_card *) kmalloc(sizeof(struct hal2_card), GFP_KERNEL);
if (!hal2)
return -ENOMEM;
memset(hal2, 0, sizeof(struct hal2_card));
hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
if (hal2_detect(hal2) < 0) {
ret = -ENODEV;
goto free_card;
}
hal2_init_codec(&hal2->dac, hpc3, 0);
hal2_init_codec(&hal2->adc, hpc3, 1);
/*
* All DMA channel interfaces in HAL2 are designed to operate with
* PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
* in D5. HAL2 is a 16-bit device which can accept both big and little
* endian format. It assumes that even address bytes are on high
* portion of PBUS (15:8) and assumes that HPC3 is programmed to
* accept a live (unsynchronized) version of P_DREQ_N from HAL2.
*/
#define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
(2 << HPC3_DMACFG_D4R_SHIFT) | \
(2 << HPC3_DMACFG_D5R_SHIFT) | \
(0 << HPC3_DMACFG_D3W_SHIFT) | \
(2 << HPC3_DMACFG_D4W_SHIFT) | \
(2 << HPC3_DMACFG_D5W_SHIFT) | \
HPC3_DMACFG_DS16 | \
HPC3_DMACFG_EVENHI | \
HPC3_DMACFG_RTIME | \
(8 << HPC3_DMACFG_BURST_SHIFT) | \
HPC3_DMACFG_DRQLIVE)
/*
* Ignore what's mentioned in the specification and write value which
* works in The Real World (TM)
*/
hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, SA_SHIRQ,
hal2str, hal2)) {
printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
ret = -EAGAIN;
goto free_card;
}
hal2->dev_dsp = register_sound_dsp(&hal2_audio_fops, -1);
if (hal2->dev_dsp < 0) {
ret = hal2->dev_dsp;
goto free_irq;
}
hal2->dev_mixer = register_sound_mixer(&hal2_mixer_fops, -1);
if (hal2->dev_mixer < 0) {
ret = hal2->dev_mixer;
goto unregister_dsp;
}
hal2_init_mixer(hal2);
*phal2 = hal2;
return 0;
unregister_dsp:
unregister_sound_dsp(hal2->dev_dsp);
free_irq:
free_irq(SGI_HPCDMA_IRQ, hal2);
free_card:
kfree(hal2);
return ret;
}
extern void (*indy_volume_button)(int);
/*
* Assuming only one HAL2 card. Mail me if you ever meet machine with
* more than one.
*/
static int __init init_hal2(void)
{
int i, error;
for (i = 0; i < MAXCARDS; i++)
hal2_card[i] = NULL;
error = hal2_init_card(&hal2_card[0], hpc3c0);
/* let Indy's volume buttons work */
if (!error && !ip22_is_fullhouse())
indy_volume_button = hal2_volume_control;
return error;
}
static void __exit exit_hal2(void)
{
int i;
/* unregister volume butons callback function */
indy_volume_button = NULL;
for (i = 0; i < MAXCARDS; i++)
if (hal2_card[i]) {
free_irq(SGI_HPCDMA_IRQ, hal2_card[i]);
unregister_sound_dsp(hal2_card[i]->dev_dsp);
unregister_sound_mixer(hal2_card[i]->dev_mixer);
kfree(hal2_card[i]);
}
}
module_init(init_hal2);
module_exit(exit_hal2);
MODULE_DESCRIPTION("OSS compatible driver for SGI HAL2 audio");
MODULE_AUTHOR("Ladislav Michl");
MODULE_LICENSE("GPL");