OpenCloudOS-Kernel/drivers/media/cec/cec-adap.c

2116 lines
60 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
*
* Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
*/
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/ktime.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/types.h>
#include <drm/drm_edid.h>
#include "cec-priv.h"
static void cec_fill_msg_report_features(struct cec_adapter *adap,
struct cec_msg *msg,
unsigned int la_idx);
/*
* 400 ms is the time it takes for one 16 byte message to be
* transferred and 5 is the maximum number of retries. Add
* another 100 ms as a margin. So if the transmit doesn't
* finish before that time something is really wrong and we
* have to time out.
*
* This is a sign that something it really wrong and a warning
* will be issued.
*/
#define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
#define call_op(adap, op, arg...) \
(adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
#define call_void_op(adap, op, arg...) \
do { \
if (adap->ops->op) \
adap->ops->op(adap, ## arg); \
} while (0)
static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
{
int i;
for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
if (adap->log_addrs.log_addr[i] == log_addr)
return i;
return -1;
}
static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
{
int i = cec_log_addr2idx(adap, log_addr);
return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
}
u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
unsigned int *offset)
{
unsigned int loc = cec_get_edid_spa_location(edid, size);
if (offset)
*offset = loc;
if (loc == 0)
return CEC_PHYS_ADDR_INVALID;
return (edid[loc] << 8) | edid[loc + 1];
}
EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
/*
* Queue a new event for this filehandle. If ts == 0, then set it
* to the current time.
*
* We keep a queue of at most max_event events where max_event differs
* per event. If the queue becomes full, then drop the oldest event and
* keep track of how many events we've dropped.
*/
void cec_queue_event_fh(struct cec_fh *fh,
const struct cec_event *new_ev, u64 ts)
{
static const u16 max_events[CEC_NUM_EVENTS] = {
1, 1, 800, 800, 8, 8, 8, 8
};
struct cec_event_entry *entry;
unsigned int ev_idx = new_ev->event - 1;
if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
return;
if (ts == 0)
ts = ktime_get_ns();
mutex_lock(&fh->lock);
if (ev_idx < CEC_NUM_CORE_EVENTS)
entry = &fh->core_events[ev_idx];
else
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (entry) {
if (new_ev->event == CEC_EVENT_LOST_MSGS &&
fh->queued_events[ev_idx]) {
entry->ev.lost_msgs.lost_msgs +=
new_ev->lost_msgs.lost_msgs;
goto unlock;
}
entry->ev = *new_ev;
entry->ev.ts = ts;
if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
/* Add new msg at the end of the queue */
list_add_tail(&entry->list, &fh->events[ev_idx]);
fh->queued_events[ev_idx]++;
fh->total_queued_events++;
goto unlock;
}
if (ev_idx >= CEC_NUM_CORE_EVENTS) {
list_add_tail(&entry->list, &fh->events[ev_idx]);
/* drop the oldest event */
entry = list_first_entry(&fh->events[ev_idx],
struct cec_event_entry, list);
list_del(&entry->list);
kfree(entry);
}
}
/* Mark that events were lost */
entry = list_first_entry_or_null(&fh->events[ev_idx],
struct cec_event_entry, list);
if (entry)
entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
unlock:
mutex_unlock(&fh->lock);
wake_up_interruptible(&fh->wait);
}
/* Queue a new event for all open filehandles. */
static void cec_queue_event(struct cec_adapter *adap,
const struct cec_event *ev)
{
u64 ts = ktime_get_ns();
struct cec_fh *fh;
mutex_lock(&adap->devnode.lock);
list_for_each_entry(fh, &adap->devnode.fhs, list)
cec_queue_event_fh(fh, ev, ts);
mutex_unlock(&adap->devnode.lock);
}
/* Notify userspace that the CEC pin changed state at the given time. */
void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
bool dropped_events, ktime_t ts)
{
struct cec_event ev = {
.event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
CEC_EVENT_PIN_CEC_LOW,
.flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
};
struct cec_fh *fh;
mutex_lock(&adap->devnode.lock);
list_for_each_entry(fh, &adap->devnode.fhs, list)
if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
mutex_unlock(&adap->devnode.lock);
}
EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
/* Notify userspace that the HPD pin changed state at the given time. */
void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
{
struct cec_event ev = {
.event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
CEC_EVENT_PIN_HPD_LOW,
};
struct cec_fh *fh;
mutex_lock(&adap->devnode.lock);
list_for_each_entry(fh, &adap->devnode.fhs, list)
cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
mutex_unlock(&adap->devnode.lock);
}
EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
/* Notify userspace that the 5V pin changed state at the given time. */
void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
{
struct cec_event ev = {
.event = is_high ? CEC_EVENT_PIN_5V_HIGH :
CEC_EVENT_PIN_5V_LOW,
};
struct cec_fh *fh;
mutex_lock(&adap->devnode.lock);
list_for_each_entry(fh, &adap->devnode.fhs, list)
cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
mutex_unlock(&adap->devnode.lock);
}
EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
/*
* Queue a new message for this filehandle.
*
* We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
* queue becomes full, then drop the oldest message and keep track
* of how many messages we've dropped.
*/
static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
{
static const struct cec_event ev_lost_msgs = {
.event = CEC_EVENT_LOST_MSGS,
.flags = 0,
{
.lost_msgs = { 1 },
},
};
struct cec_msg_entry *entry;
mutex_lock(&fh->lock);
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (entry) {
entry->msg = *msg;
/* Add new msg at the end of the queue */
list_add_tail(&entry->list, &fh->msgs);
if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
/* All is fine if there is enough room */
fh->queued_msgs++;
mutex_unlock(&fh->lock);
wake_up_interruptible(&fh->wait);
return;
}
/*
* if the message queue is full, then drop the oldest one and
* send a lost message event.
*/
entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
list_del(&entry->list);
kfree(entry);
}
mutex_unlock(&fh->lock);
/*
* We lost a message, either because kmalloc failed or the queue
* was full.
*/
cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
}
/*
* Queue the message for those filehandles that are in monitor mode.
* If valid_la is true (this message is for us or was sent by us),
* then pass it on to any monitoring filehandle. If this message
* isn't for us or from us, then only give it to filehandles that
* are in MONITOR_ALL mode.
*
* This can only happen if the CEC_CAP_MONITOR_ALL capability is
* set and the CEC adapter was placed in 'monitor all' mode.
*/
static void cec_queue_msg_monitor(struct cec_adapter *adap,
const struct cec_msg *msg,
bool valid_la)
{
struct cec_fh *fh;
u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
CEC_MODE_MONITOR_ALL;
mutex_lock(&adap->devnode.lock);
list_for_each_entry(fh, &adap->devnode.fhs, list) {
if (fh->mode_follower >= monitor_mode)
cec_queue_msg_fh(fh, msg);
}
mutex_unlock(&adap->devnode.lock);
}
/*
* Queue the message for follower filehandles.
*/
static void cec_queue_msg_followers(struct cec_adapter *adap,
const struct cec_msg *msg)
{
struct cec_fh *fh;
mutex_lock(&adap->devnode.lock);
list_for_each_entry(fh, &adap->devnode.fhs, list) {
if (fh->mode_follower == CEC_MODE_FOLLOWER)
cec_queue_msg_fh(fh, msg);
}
mutex_unlock(&adap->devnode.lock);
}
/* Notify userspace of an adapter state change. */
static void cec_post_state_event(struct cec_adapter *adap)
{
struct cec_event ev = {
.event = CEC_EVENT_STATE_CHANGE,
};
ev.state_change.phys_addr = adap->phys_addr;
ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
cec_queue_event(adap, &ev);
}
/*
* A CEC transmit (and a possible wait for reply) completed.
* If this was in blocking mode, then complete it, otherwise
* queue the message for userspace to dequeue later.
*
* This function is called with adap->lock held.
*/
static void cec_data_completed(struct cec_data *data)
{
/*
* Delete this transmit from the filehandle's xfer_list since
* we're done with it.
*
* Note that if the filehandle is closed before this transmit
* finished, then the release() function will set data->fh to NULL.
* Without that we would be referring to a closed filehandle.
*/
if (data->fh)
list_del(&data->xfer_list);
if (data->blocking) {
/*
* Someone is blocking so mark the message as completed
* and call complete.
*/
data->completed = true;
complete(&data->c);
} else {
/*
* No blocking, so just queue the message if needed and
* free the memory.
*/
if (data->fh)
cec_queue_msg_fh(data->fh, &data->msg);
kfree(data);
}
}
/*
* A pending CEC transmit needs to be cancelled, either because the CEC
* adapter is disabled or the transmit takes an impossibly long time to
* finish.
*
* This function is called with adap->lock held.
*/
static void cec_data_cancel(struct cec_data *data, u8 tx_status)
{
/*
* It's either the current transmit, or it is a pending
* transmit. Take the appropriate action to clear it.
*/
if (data->adap->transmitting == data) {
data->adap->transmitting = NULL;
} else {
list_del_init(&data->list);
if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
data->adap->transmit_queue_sz--;
}
if (data->msg.tx_status & CEC_TX_STATUS_OK) {
data->msg.rx_ts = ktime_get_ns();
data->msg.rx_status = CEC_RX_STATUS_ABORTED;
} else {
data->msg.tx_ts = ktime_get_ns();
data->msg.tx_status |= tx_status |
CEC_TX_STATUS_MAX_RETRIES;
data->msg.tx_error_cnt++;
data->attempts = 0;
}
/* Queue transmitted message for monitoring purposes */
cec_queue_msg_monitor(data->adap, &data->msg, 1);
cec_data_completed(data);
}
/*
* Flush all pending transmits and cancel any pending timeout work.
*
* This function is called with adap->lock held.
*/
static void cec_flush(struct cec_adapter *adap)
{
struct cec_data *data, *n;
/*
* If the adapter is disabled, or we're asked to stop,
* then cancel any pending transmits.
*/
while (!list_empty(&adap->transmit_queue)) {
data = list_first_entry(&adap->transmit_queue,
struct cec_data, list);
cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
}
if (adap->transmitting)
cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED);
/* Cancel the pending timeout work. */
list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
if (cancel_delayed_work(&data->work))
cec_data_cancel(data, CEC_TX_STATUS_OK);
/*
* If cancel_delayed_work returned false, then
* the cec_wait_timeout function is running,
* which will call cec_data_completed. So no
* need to do anything special in that case.
*/
}
}
/*
* Main CEC state machine
*
* Wait until the thread should be stopped, or we are not transmitting and
* a new transmit message is queued up, in which case we start transmitting
* that message. When the adapter finished transmitting the message it will
* call cec_transmit_done().
*
* If the adapter is disabled, then remove all queued messages instead.
*
* If the current transmit times out, then cancel that transmit.
*/
int cec_thread_func(void *_adap)
{
struct cec_adapter *adap = _adap;
for (;;) {
unsigned int signal_free_time;
struct cec_data *data;
bool timeout = false;
u8 attempts;
if (adap->transmitting) {
int err;
/*
* We are transmitting a message, so add a timeout
* to prevent the state machine to get stuck waiting
* for this message to finalize and add a check to
* see if the adapter is disabled in which case the
* transmit should be canceled.
*/
err = wait_event_interruptible_timeout(adap->kthread_waitq,
(adap->needs_hpd &&
(!adap->is_configured && !adap->is_configuring)) ||
kthread_should_stop() ||
(!adap->transmit_in_progress &&
!list_empty(&adap->transmit_queue)),
msecs_to_jiffies(CEC_XFER_TIMEOUT_MS));
timeout = err == 0;
} else {
/* Otherwise we just wait for something to happen. */
wait_event_interruptible(adap->kthread_waitq,
kthread_should_stop() ||
(!adap->transmit_in_progress &&
!list_empty(&adap->transmit_queue)));
}
mutex_lock(&adap->lock);
if ((adap->needs_hpd &&
(!adap->is_configured && !adap->is_configuring)) ||
kthread_should_stop()) {
cec_flush(adap);
goto unlock;
}
if (adap->transmitting && timeout) {
/*
* If we timeout, then log that. Normally this does
* not happen and it is an indication of a faulty CEC
* adapter driver, or the CEC bus is in some weird
* state. On rare occasions it can happen if there is
* so much traffic on the bus that the adapter was
* unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s).
*/
pr_warn("cec-%s: message %*ph timed out\n", adap->name,
adap->transmitting->msg.len,
adap->transmitting->msg.msg);
adap->transmit_in_progress = false;
adap->tx_timeouts++;
/* Just give up on this. */
cec_data_cancel(adap->transmitting,
CEC_TX_STATUS_TIMEOUT);
goto unlock;
}
/*
* If we are still transmitting, or there is nothing new to
* transmit, then just continue waiting.
*/
if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
goto unlock;
/* Get a new message to transmit */
data = list_first_entry(&adap->transmit_queue,
struct cec_data, list);
list_del_init(&data->list);
adap->transmit_queue_sz--;
/* Make this the current transmitting message */
adap->transmitting = data;
/*
* Suggested number of attempts as per the CEC 2.0 spec:
* 4 attempts is the default, except for 'secondary poll
* messages', i.e. poll messages not sent during the adapter
* configuration phase when it allocates logical addresses.
*/
if (data->msg.len == 1 && adap->is_configured)
attempts = 2;
else
attempts = 4;
/* Set the suggested signal free time */
if (data->attempts) {
/* should be >= 3 data bit periods for a retry */
signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
} else if (adap->last_initiator !=
cec_msg_initiator(&data->msg)) {
/* should be >= 5 data bit periods for new initiator */
signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
adap->last_initiator = cec_msg_initiator(&data->msg);
} else {
/*
* should be >= 7 data bit periods for sending another
* frame immediately after another.
*/
signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
}
if (data->attempts == 0)
data->attempts = attempts;
/* Tell the adapter to transmit, cancel on error */
if (adap->ops->adap_transmit(adap, data->attempts,
signal_free_time, &data->msg))
cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
else
adap->transmit_in_progress = true;
unlock:
mutex_unlock(&adap->lock);
if (kthread_should_stop())
break;
}
return 0;
}
/*
* Called by the CEC adapter if a transmit finished.
*/
void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
u8 error_cnt, ktime_t ts)
{
struct cec_data *data;
struct cec_msg *msg;
unsigned int attempts_made = arb_lost_cnt + nack_cnt +
low_drive_cnt + error_cnt;
dprintk(2, "%s: status 0x%02x\n", __func__, status);
if (attempts_made < 1)
attempts_made = 1;
mutex_lock(&adap->lock);
data = adap->transmitting;
if (!data) {
/*
* This might happen if a transmit was issued and the cable is
* unplugged while the transmit is ongoing. Ignore this
* transmit in that case.
*/
if (!adap->transmit_in_progress)
dprintk(1, "%s was called without an ongoing transmit!\n",
__func__);
adap->transmit_in_progress = false;
goto wake_thread;
}
adap->transmit_in_progress = false;
msg = &data->msg;
/* Drivers must fill in the status! */
WARN_ON(status == 0);
msg->tx_ts = ktime_to_ns(ts);
msg->tx_status |= status;
msg->tx_arb_lost_cnt += arb_lost_cnt;
msg->tx_nack_cnt += nack_cnt;
msg->tx_low_drive_cnt += low_drive_cnt;
msg->tx_error_cnt += error_cnt;
/* Mark that we're done with this transmit */
adap->transmitting = NULL;
/*
* If there are still retry attempts left and there was an error and
* the hardware didn't signal that it retried itself (by setting
* CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
*/
if (data->attempts > attempts_made &&
!(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) {
/* Retry this message */
data->attempts -= attempts_made;
if (msg->timeout)
dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
msg->len, msg->msg, data->attempts, msg->reply);
else
dprintk(2, "retransmit: %*ph (attempts: %d)\n",
msg->len, msg->msg, data->attempts);
/* Add the message in front of the transmit queue */
list_add(&data->list, &adap->transmit_queue);
adap->transmit_queue_sz++;
goto wake_thread;
}
data->attempts = 0;
/* Always set CEC_TX_STATUS_MAX_RETRIES on error */
if (!(status & CEC_TX_STATUS_OK))
msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
/* Queue transmitted message for monitoring purposes */
cec_queue_msg_monitor(adap, msg, 1);
if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
msg->timeout) {
/*
* Queue the message into the wait queue if we want to wait
* for a reply.
*/
list_add_tail(&data->list, &adap->wait_queue);
schedule_delayed_work(&data->work,
msecs_to_jiffies(msg->timeout));
} else {
/* Otherwise we're done */
cec_data_completed(data);
}
wake_thread:
/*
* Wake up the main thread to see if another message is ready
* for transmitting or to retry the current message.
*/
wake_up_interruptible(&adap->kthread_waitq);
mutex_unlock(&adap->lock);
}
EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
u8 status, ktime_t ts)
{
switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
case CEC_TX_STATUS_OK:
cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
return;
case CEC_TX_STATUS_ARB_LOST:
cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
return;
case CEC_TX_STATUS_NACK:
cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
return;
case CEC_TX_STATUS_LOW_DRIVE:
cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
return;
case CEC_TX_STATUS_ERROR:
cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
return;
default:
/* Should never happen */
WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
return;
}
}
EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
/*
* Called when waiting for a reply times out.
*/
static void cec_wait_timeout(struct work_struct *work)
{
struct cec_data *data = container_of(work, struct cec_data, work.work);
struct cec_adapter *adap = data->adap;
mutex_lock(&adap->lock);
/*
* Sanity check in case the timeout and the arrival of the message
* happened at the same time.
*/
if (list_empty(&data->list))
goto unlock;
/* Mark the message as timed out */
list_del_init(&data->list);
data->msg.rx_ts = ktime_get_ns();
data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
cec_data_completed(data);
unlock:
mutex_unlock(&adap->lock);
}
/*
* Transmit a message. The fh argument may be NULL if the transmit is not
* associated with a specific filehandle.
*
* This function is called with adap->lock held.
*/
int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
struct cec_fh *fh, bool block)
{
struct cec_data *data;
msg->rx_ts = 0;
msg->tx_ts = 0;
msg->rx_status = 0;
msg->tx_status = 0;
msg->tx_arb_lost_cnt = 0;
msg->tx_nack_cnt = 0;
msg->tx_low_drive_cnt = 0;
msg->tx_error_cnt = 0;
msg->sequence = 0;
if (msg->reply && msg->timeout == 0) {
/* Make sure the timeout isn't 0. */
msg->timeout = 1000;
}
if (msg->timeout)
msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS;
else
msg->flags = 0;
if (msg->len > 1 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
msg->msg[2] = adap->phys_addr >> 8;
msg->msg[3] = adap->phys_addr & 0xff;
}
/* Sanity checks */
if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
return -EINVAL;
}
memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
if (msg->timeout)
dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
__func__, msg->len, msg->msg, msg->reply,
!block ? ", nb" : "");
else
dprintk(2, "%s: %*ph%s\n",
__func__, msg->len, msg->msg, !block ? " (nb)" : "");
if (msg->timeout && msg->len == 1) {
dprintk(1, "%s: can't reply to poll msg\n", __func__);
return -EINVAL;
}
if (msg->len == 1) {
if (cec_msg_destination(msg) == 0xf) {
dprintk(1, "%s: invalid poll message\n", __func__);
return -EINVAL;
}
if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
/*
* If the destination is a logical address our adapter
* has already claimed, then just NACK this.
* It depends on the hardware what it will do with a
* POLL to itself (some OK this), so it is just as
* easy to handle it here so the behavior will be
* consistent.
*/
msg->tx_ts = ktime_get_ns();
msg->tx_status = CEC_TX_STATUS_NACK |
CEC_TX_STATUS_MAX_RETRIES;
msg->tx_nack_cnt = 1;
msg->sequence = ++adap->sequence;
if (!msg->sequence)
msg->sequence = ++adap->sequence;
return 0;
}
}
if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
cec_has_log_addr(adap, cec_msg_destination(msg))) {
dprintk(1, "%s: destination is the adapter itself\n", __func__);
return -EINVAL;
}
if (msg->len > 1 && adap->is_configured &&
!cec_has_log_addr(adap, cec_msg_initiator(msg))) {
dprintk(1, "%s: initiator has unknown logical address %d\n",
__func__, cec_msg_initiator(msg));
return -EINVAL;
}
if (!adap->is_configured && !adap->is_configuring) {
if (adap->needs_hpd || msg->msg[0] != 0xf0) {
dprintk(1, "%s: adapter is unconfigured\n", __func__);
return -ENONET;
}
if (msg->reply) {
dprintk(1, "%s: invalid msg->reply\n", __func__);
return -EINVAL;
}
}
if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
dprintk(2, "%s: transmit queue full\n", __func__);
return -EBUSY;
}
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
msg->sequence = ++adap->sequence;
if (!msg->sequence)
msg->sequence = ++adap->sequence;
data->msg = *msg;
data->fh = fh;
data->adap = adap;
data->blocking = block;
init_completion(&data->c);
INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
if (fh)
list_add_tail(&data->xfer_list, &fh->xfer_list);
list_add_tail(&data->list, &adap->transmit_queue);
adap->transmit_queue_sz++;
if (!adap->transmitting)
wake_up_interruptible(&adap->kthread_waitq);
/* All done if we don't need to block waiting for completion */
if (!block)
return 0;
/*
* Release the lock and wait, retake the lock afterwards.
*/
mutex_unlock(&adap->lock);
wait_for_completion_killable(&data->c);
if (!data->completed)
cancel_delayed_work_sync(&data->work);
mutex_lock(&adap->lock);
/* Cancel the transmit if it was interrupted */
if (!data->completed)
cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
/* The transmit completed (possibly with an error) */
*msg = data->msg;
kfree(data);
return 0;
}
/* Helper function to be used by drivers and this framework. */
int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
bool block)
{
int ret;
mutex_lock(&adap->lock);
ret = cec_transmit_msg_fh(adap, msg, NULL, block);
mutex_unlock(&adap->lock);
return ret;
}
EXPORT_SYMBOL_GPL(cec_transmit_msg);
/*
* I don't like forward references but without this the low-level
* cec_received_msg() function would come after a bunch of high-level
* CEC protocol handling functions. That was very confusing.
*/
static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
bool is_reply);
#define DIRECTED 0x80
#define BCAST1_4 0x40
#define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */
#define BCAST (BCAST1_4 | BCAST2_0)
#define BOTH (BCAST | DIRECTED)
/*
* Specify minimum length and whether the message is directed, broadcast
* or both. Messages that do not match the criteria are ignored as per
* the CEC specification.
*/
static const u8 cec_msg_size[256] = {
[CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
[CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
[CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
[CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
[CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
[CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
[CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
[CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
[CEC_MSG_STANDBY] = 2 | BOTH,
[CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
[CEC_MSG_RECORD_ON] = 3 | DIRECTED,
[CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
[CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
[CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
[CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
[CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
[CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
[CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
[CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
[CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
[CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
[CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
[CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
[CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
[CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
[CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
[CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
[CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
[CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
[CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
[CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
[CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
[CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
[CEC_MSG_PLAY] = 3 | DIRECTED,
[CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
[CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
[CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
[CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
[CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
[CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
[CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
[CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
[CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
[CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
[CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
[CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
[CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
[CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
[CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
[CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
[CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
[CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
[CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
[CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
[CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
[CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
[CEC_MSG_ABORT] = 2 | DIRECTED,
[CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
[CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
[CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
[CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
[CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
[CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
[CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
[CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
[CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
[CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
[CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
[CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
[CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
[CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
[CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
[CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
[CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
[CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
};
/* Called by the CEC adapter if a message is received */
void cec_received_msg_ts(struct cec_adapter *adap,
struct cec_msg *msg, ktime_t ts)
{
struct cec_data *data;
u8 msg_init = cec_msg_initiator(msg);
u8 msg_dest = cec_msg_destination(msg);
u8 cmd = msg->msg[1];
bool is_reply = false;
bool valid_la = true;
u8 min_len = 0;
if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
return;
/*
* Some CEC adapters will receive the messages that they transmitted.
* This test filters out those messages by checking if we are the
* initiator, and just returning in that case.
*
* Note that this won't work if this is an Unregistered device.
*
* It is bad practice if the hardware receives the message that it
* transmitted and luckily most CEC adapters behave correctly in this
* respect.
*/
if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
cec_has_log_addr(adap, msg_init))
return;
msg->rx_ts = ktime_to_ns(ts);
msg->rx_status = CEC_RX_STATUS_OK;
msg->sequence = msg->reply = msg->timeout = 0;
msg->tx_status = 0;
msg->tx_ts = 0;
msg->tx_arb_lost_cnt = 0;
msg->tx_nack_cnt = 0;
msg->tx_low_drive_cnt = 0;
msg->tx_error_cnt = 0;
msg->flags = 0;
memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
mutex_lock(&adap->lock);
dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
adap->last_initiator = 0xff;
/* Check if this message was for us (directed or broadcast). */
if (!cec_msg_is_broadcast(msg))
valid_la = cec_has_log_addr(adap, msg_dest);
/*
* Check if the length is not too short or if the message is a
* broadcast message where a directed message was expected or
* vice versa. If so, then the message has to be ignored (according
* to section CEC 7.3 and CEC 12.2).
*/
if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
u8 dir_fl = cec_msg_size[cmd] & BOTH;
min_len = cec_msg_size[cmd] & 0x1f;
if (msg->len < min_len)
valid_la = false;
else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
valid_la = false;
else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST1_4))
valid_la = false;
else if (cec_msg_is_broadcast(msg) &&
adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0 &&
!(dir_fl & BCAST2_0))
valid_la = false;
}
if (valid_la && min_len) {
/* These messages have special length requirements */
switch (cmd) {
case CEC_MSG_TIMER_STATUS:
if (msg->msg[2] & 0x10) {
switch (msg->msg[2] & 0xf) {
case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
if (msg->len < 5)
valid_la = false;
break;
}
} else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
if (msg->len < 5)
valid_la = false;
}
break;
case CEC_MSG_RECORD_ON:
switch (msg->msg[2]) {
case CEC_OP_RECORD_SRC_OWN:
break;
case CEC_OP_RECORD_SRC_DIGITAL:
if (msg->len < 10)
valid_la = false;
break;
case CEC_OP_RECORD_SRC_ANALOG:
if (msg->len < 7)
valid_la = false;
break;
case CEC_OP_RECORD_SRC_EXT_PLUG:
if (msg->len < 4)
valid_la = false;
break;
case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
if (msg->len < 5)
valid_la = false;
break;
}
break;
}
}
/* It's a valid message and not a poll or CDC message */
if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
bool abort = cmd == CEC_MSG_FEATURE_ABORT;
/* The aborted command is in msg[2] */
if (abort)
cmd = msg->msg[2];
/*
* Walk over all transmitted messages that are waiting for a
* reply.
*/
list_for_each_entry(data, &adap->wait_queue, list) {
struct cec_msg *dst = &data->msg;
/*
* The *only* CEC message that has two possible replies
* is CEC_MSG_INITIATE_ARC.
* In this case allow either of the two replies.
*/
if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
(cmd == CEC_MSG_REPORT_ARC_INITIATED ||
cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
(dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
dst->reply = cmd;
/* Does the command match? */
if ((abort && cmd != dst->msg[1]) ||
(!abort && cmd != dst->reply))
continue;
/* Does the addressing match? */
if (msg_init != cec_msg_destination(dst) &&
!cec_msg_is_broadcast(dst))
continue;
/* We got a reply */
memcpy(dst->msg, msg->msg, msg->len);
dst->len = msg->len;
dst->rx_ts = msg->rx_ts;
dst->rx_status = msg->rx_status;
if (abort)
dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
msg->flags = dst->flags;
/* Remove it from the wait_queue */
list_del_init(&data->list);
/* Cancel the pending timeout work */
if (!cancel_delayed_work(&data->work)) {
mutex_unlock(&adap->lock);
flush_scheduled_work();
mutex_lock(&adap->lock);
}
/*
* Mark this as a reply, provided someone is still
* waiting for the answer.
*/
if (data->fh)
is_reply = true;
cec_data_completed(data);
break;
}
}
mutex_unlock(&adap->lock);
/* Pass the message on to any monitoring filehandles */
cec_queue_msg_monitor(adap, msg, valid_la);
/* We're done if it is not for us or a poll message */
if (!valid_la || msg->len <= 1)
return;
if (adap->log_addrs.log_addr_mask == 0)
return;
/*
* Process the message on the protocol level. If is_reply is true,
* then cec_receive_notify() won't pass on the reply to the listener(s)
* since that was already done by cec_data_completed() above.
*/
cec_receive_notify(adap, msg, is_reply);
}
EXPORT_SYMBOL_GPL(cec_received_msg_ts);
/* Logical Address Handling */
/*
* Attempt to claim a specific logical address.
*
* This function is called with adap->lock held.
*/
static int cec_config_log_addr(struct cec_adapter *adap,
unsigned int idx,
unsigned int log_addr)
{
struct cec_log_addrs *las = &adap->log_addrs;
struct cec_msg msg = { };
const unsigned int max_retries = 2;
unsigned int i;
int err;
if (cec_has_log_addr(adap, log_addr))
return 0;
/* Send poll message */
msg.len = 1;
msg.msg[0] = (log_addr << 4) | log_addr;
for (i = 0; i < max_retries; i++) {
err = cec_transmit_msg_fh(adap, &msg, NULL, true);
/*
* While trying to poll the physical address was reset
* and the adapter was unconfigured, so bail out.
*/
if (!adap->is_configuring)
return -EINTR;
if (err)
return err;
/*
* The message was aborted due to a disconnect or
* unconfigure, just bail out.
*/
if (msg.tx_status & CEC_TX_STATUS_ABORTED)
return -EINTR;
if (msg.tx_status & CEC_TX_STATUS_OK)
return 0;
if (msg.tx_status & CEC_TX_STATUS_NACK)
break;
/*
* Retry up to max_retries times if the message was neither
* OKed or NACKed. This can happen due to e.g. a Lost
* Arbitration condition.
*/
}
/*
* If we are unable to get an OK or a NACK after max_retries attempts
* (and note that each attempt already consists of four polls), then
* then we assume that something is really weird and that it is not a
* good idea to try and claim this logical address.
*/
if (i == max_retries)
return 0;
/*
* Message not acknowledged, so this logical
* address is free to use.
*/
err = adap->ops->adap_log_addr(adap, log_addr);
if (err)
return err;
las->log_addr[idx] = log_addr;
las->log_addr_mask |= 1 << log_addr;
adap->phys_addrs[log_addr] = adap->phys_addr;
return 1;
}
/*
* Unconfigure the adapter: clear all logical addresses and send
* the state changed event.
*
* This function is called with adap->lock held.
*/
static void cec_adap_unconfigure(struct cec_adapter *adap)
{
if (!adap->needs_hpd ||
adap->phys_addr != CEC_PHYS_ADDR_INVALID)
WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID));
adap->log_addrs.log_addr_mask = 0;
adap->is_configuring = false;
adap->is_configured = false;
memset(adap->phys_addrs, 0xff, sizeof(adap->phys_addrs));
cec_flush(adap);
wake_up_interruptible(&adap->kthread_waitq);
cec_post_state_event(adap);
}
/*
* Attempt to claim the required logical addresses.
*/
static int cec_config_thread_func(void *arg)
{
/* The various LAs for each type of device */
static const u8 tv_log_addrs[] = {
CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
CEC_LOG_ADDR_INVALID
};
static const u8 record_log_addrs[] = {
CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
CEC_LOG_ADDR_RECORD_3,
CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
CEC_LOG_ADDR_INVALID
};
static const u8 tuner_log_addrs[] = {
CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
CEC_LOG_ADDR_INVALID
};
static const u8 playback_log_addrs[] = {
CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
CEC_LOG_ADDR_PLAYBACK_3,
CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
CEC_LOG_ADDR_INVALID
};
static const u8 audiosystem_log_addrs[] = {
CEC_LOG_ADDR_AUDIOSYSTEM,
CEC_LOG_ADDR_INVALID
};
static const u8 specific_use_log_addrs[] = {
CEC_LOG_ADDR_SPECIFIC,
CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
CEC_LOG_ADDR_INVALID
};
static const u8 *type2addrs[6] = {
[CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
[CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
[CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
[CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
[CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
};
static const u16 type2mask[] = {
[CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
[CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
[CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
[CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
[CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
};
struct cec_adapter *adap = arg;
struct cec_log_addrs *las = &adap->log_addrs;
int err;
int i, j;
mutex_lock(&adap->lock);
dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
las->log_addr_mask = 0;
if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
goto configured;
for (i = 0; i < las->num_log_addrs; i++) {
unsigned int type = las->log_addr_type[i];
const u8 *la_list;
u8 last_la;
/*
* The TV functionality can only map to physical address 0.
* For any other address, try the Specific functionality
* instead as per the spec.
*/
if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
type = CEC_LOG_ADDR_TYPE_SPECIFIC;
la_list = type2addrs[type];
last_la = las->log_addr[i];
las->log_addr[i] = CEC_LOG_ADDR_INVALID;
if (last_la == CEC_LOG_ADDR_INVALID ||
last_la == CEC_LOG_ADDR_UNREGISTERED ||
!((1 << last_la) & type2mask[type]))
last_la = la_list[0];
err = cec_config_log_addr(adap, i, last_la);
if (err > 0) /* Reused last LA */
continue;
if (err < 0)
goto unconfigure;
for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
/* Tried this one already, skip it */
if (la_list[j] == last_la)
continue;
/* The backup addresses are CEC 2.0 specific */
if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
las->cec_version < CEC_OP_CEC_VERSION_2_0)
continue;
err = cec_config_log_addr(adap, i, la_list[j]);
if (err == 0) /* LA is in use */
continue;
if (err < 0)
goto unconfigure;
/* Done, claimed an LA */
break;
}
if (la_list[j] == CEC_LOG_ADDR_INVALID)
dprintk(1, "could not claim LA %d\n", i);
}
if (adap->log_addrs.log_addr_mask == 0 &&
!(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
goto unconfigure;
configured:
if (adap->log_addrs.log_addr_mask == 0) {
/* Fall back to unregistered */
las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
las->log_addr_mask = 1 << las->log_addr[0];
for (i = 1; i < las->num_log_addrs; i++)
las->log_addr[i] = CEC_LOG_ADDR_INVALID;
}
for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
las->log_addr[i] = CEC_LOG_ADDR_INVALID;
adap->is_configured = true;
adap->is_configuring = false;
cec_post_state_event(adap);
/*
* Now post the Report Features and Report Physical Address broadcast
* messages. Note that these are non-blocking transmits, meaning that
* they are just queued up and once adap->lock is unlocked the main
* thread will kick in and start transmitting these.
*
* If after this function is done (but before one or more of these
* messages are actually transmitted) the CEC adapter is unconfigured,
* then any remaining messages will be dropped by the main thread.
*/
for (i = 0; i < las->num_log_addrs; i++) {
struct cec_msg msg = {};
if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
(las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
continue;
msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
/* Report Features must come first according to CEC 2.0 */
if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
cec_fill_msg_report_features(adap, &msg, i);
cec_transmit_msg_fh(adap, &msg, NULL, false);
}
/* Report Physical Address */
cec_msg_report_physical_addr(&msg, adap->phys_addr,
las->primary_device_type[i]);
dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
las->log_addr[i],
cec_phys_addr_exp(adap->phys_addr));
cec_transmit_msg_fh(adap, &msg, NULL, false);
/* Report Vendor ID */
if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
cec_msg_device_vendor_id(&msg,
adap->log_addrs.vendor_id);
cec_transmit_msg_fh(adap, &msg, NULL, false);
}
}
adap->kthread_config = NULL;
complete(&adap->config_completion);
mutex_unlock(&adap->lock);
return 0;
unconfigure:
for (i = 0; i < las->num_log_addrs; i++)
las->log_addr[i] = CEC_LOG_ADDR_INVALID;
cec_adap_unconfigure(adap);
adap->kthread_config = NULL;
mutex_unlock(&adap->lock);
complete(&adap->config_completion);
return 0;
}
/*
* Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
* logical addresses.
*
* This function is called with adap->lock held.
*/
static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
{
if (WARN_ON(adap->is_configuring || adap->is_configured))
return;
init_completion(&adap->config_completion);
/* Ready to kick off the thread */
adap->is_configuring = true;
adap->kthread_config = kthread_run(cec_config_thread_func, adap,
"ceccfg-%s", adap->name);
if (IS_ERR(adap->kthread_config)) {
adap->kthread_config = NULL;
} else if (block) {
mutex_unlock(&adap->lock);
wait_for_completion(&adap->config_completion);
mutex_lock(&adap->lock);
}
}
/* Set a new physical address and send an event notifying userspace of this.
*
* This function is called with adap->lock held.
*/
void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
{
if (phys_addr == adap->phys_addr)
return;
if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered)
return;
dprintk(1, "new physical address %x.%x.%x.%x\n",
cec_phys_addr_exp(phys_addr));
if (phys_addr == CEC_PHYS_ADDR_INVALID ||
adap->phys_addr != CEC_PHYS_ADDR_INVALID) {
adap->phys_addr = CEC_PHYS_ADDR_INVALID;
cec_post_state_event(adap);
cec_adap_unconfigure(adap);
/* Disabling monitor all mode should always succeed */
if (adap->monitor_all_cnt)
WARN_ON(call_op(adap, adap_monitor_all_enable, false));
mutex_lock(&adap->devnode.lock);
if (adap->needs_hpd || list_empty(&adap->devnode.fhs)) {
WARN_ON(adap->ops->adap_enable(adap, false));
adap->transmit_in_progress = false;
wake_up_interruptible(&adap->kthread_waitq);
}
mutex_unlock(&adap->devnode.lock);
if (phys_addr == CEC_PHYS_ADDR_INVALID)
return;
}
mutex_lock(&adap->devnode.lock);
adap->last_initiator = 0xff;
adap->transmit_in_progress = false;
if ((adap->needs_hpd || list_empty(&adap->devnode.fhs)) &&
adap->ops->adap_enable(adap, true)) {
mutex_unlock(&adap->devnode.lock);
return;
}
if (adap->monitor_all_cnt &&
call_op(adap, adap_monitor_all_enable, true)) {
if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
WARN_ON(adap->ops->adap_enable(adap, false));
mutex_unlock(&adap->devnode.lock);
return;
}
mutex_unlock(&adap->devnode.lock);
adap->phys_addr = phys_addr;
cec_post_state_event(adap);
if (adap->log_addrs.num_log_addrs)
cec_claim_log_addrs(adap, block);
}
void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
{
if (IS_ERR_OR_NULL(adap))
return;
mutex_lock(&adap->lock);
__cec_s_phys_addr(adap, phys_addr, block);
mutex_unlock(&adap->lock);
}
EXPORT_SYMBOL_GPL(cec_s_phys_addr);
void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
const struct edid *edid)
{
u16 pa = CEC_PHYS_ADDR_INVALID;
if (edid && edid->extensions)
pa = cec_get_edid_phys_addr((const u8 *)edid,
EDID_LENGTH * (edid->extensions + 1), NULL);
cec_s_phys_addr(adap, pa, false);
}
EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
/*
* Called from either the ioctl or a driver to set the logical addresses.
*
* This function is called with adap->lock held.
*/
int __cec_s_log_addrs(struct cec_adapter *adap,
struct cec_log_addrs *log_addrs, bool block)
{
u16 type_mask = 0;
int i;
if (adap->devnode.unregistered)
return -ENODEV;
if (!log_addrs || log_addrs->num_log_addrs == 0) {
cec_adap_unconfigure(adap);
adap->log_addrs.num_log_addrs = 0;
for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
adap->log_addrs.osd_name[0] = '\0';
adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
return 0;
}
if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
/*
* Sanitize log_addrs fields if a CDC-Only device is
* requested.
*/
log_addrs->num_log_addrs = 1;
log_addrs->osd_name[0] = '\0';
log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
/*
* This is just an internal convention since a CDC-Only device
* doesn't have to be a switch. But switches already use
* unregistered, so it makes some kind of sense to pick this
* as the primary device. Since a CDC-Only device never sends
* any 'normal' CEC messages this primary device type is never
* sent over the CEC bus.
*/
log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
log_addrs->all_device_types[0] = 0;
log_addrs->features[0][0] = 0;
log_addrs->features[0][1] = 0;
}
/* Ensure the osd name is 0-terminated */
log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
/* Sanity checks */
if (log_addrs->num_log_addrs > adap->available_log_addrs) {
dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
return -EINVAL;
}
/*
* Vendor ID is a 24 bit number, so check if the value is
* within the correct range.
*/
if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
(log_addrs->vendor_id & 0xff000000) != 0) {
dprintk(1, "invalid vendor ID\n");
return -EINVAL;
}
if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
dprintk(1, "invalid CEC version\n");
return -EINVAL;
}
if (log_addrs->num_log_addrs > 1)
for (i = 0; i < log_addrs->num_log_addrs; i++)
if (log_addrs->log_addr_type[i] ==
CEC_LOG_ADDR_TYPE_UNREGISTERED) {
dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
return -EINVAL;
}
for (i = 0; i < log_addrs->num_log_addrs; i++) {
const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
u8 *features = log_addrs->features[i];
bool op_is_dev_features = false;
unsigned j;
log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
if (type_mask & (1 << log_addrs->log_addr_type[i])) {
dprintk(1, "duplicate logical address type\n");
return -EINVAL;
}
type_mask |= 1 << log_addrs->log_addr_type[i];
if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
(type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
/* Record already contains the playback functionality */
dprintk(1, "invalid record + playback combination\n");
return -EINVAL;
}
if (log_addrs->primary_device_type[i] >
CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
dprintk(1, "unknown primary device type\n");
return -EINVAL;
}
if (log_addrs->primary_device_type[i] == 2) {
dprintk(1, "invalid primary device type\n");
return -EINVAL;
}
if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
dprintk(1, "unknown logical address type\n");
return -EINVAL;
}
for (j = 0; j < feature_sz; j++) {
if ((features[j] & 0x80) == 0) {
if (op_is_dev_features)
break;
op_is_dev_features = true;
}
}
if (!op_is_dev_features || j == feature_sz) {
dprintk(1, "malformed features\n");
return -EINVAL;
}
/* Zero unused part of the feature array */
memset(features + j + 1, 0, feature_sz - j - 1);
}
if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
if (log_addrs->num_log_addrs > 2) {
dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
return -EINVAL;
}
if (log_addrs->num_log_addrs == 2) {
if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
(1 << CEC_LOG_ADDR_TYPE_TV)))) {
dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
return -EINVAL;
}
if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
(1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
return -EINVAL;
}
}
}
/* Zero unused LAs */
for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
log_addrs->primary_device_type[i] = 0;
log_addrs->log_addr_type[i] = 0;
log_addrs->all_device_types[i] = 0;
memset(log_addrs->features[i], 0,
sizeof(log_addrs->features[i]));
}
log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
adap->log_addrs = *log_addrs;
if (adap->phys_addr != CEC_PHYS_ADDR_INVALID)
cec_claim_log_addrs(adap, block);
return 0;
}
int cec_s_log_addrs(struct cec_adapter *adap,
struct cec_log_addrs *log_addrs, bool block)
{
int err;
mutex_lock(&adap->lock);
err = __cec_s_log_addrs(adap, log_addrs, block);
mutex_unlock(&adap->lock);
return err;
}
EXPORT_SYMBOL_GPL(cec_s_log_addrs);
/* High-level core CEC message handling */
/* Fill in the Report Features message */
static void cec_fill_msg_report_features(struct cec_adapter *adap,
struct cec_msg *msg,
unsigned int la_idx)
{
const struct cec_log_addrs *las = &adap->log_addrs;
const u8 *features = las->features[la_idx];
bool op_is_dev_features = false;
unsigned int idx;
/* Report Features */
msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
msg->len = 4;
msg->msg[1] = CEC_MSG_REPORT_FEATURES;
msg->msg[2] = adap->log_addrs.cec_version;
msg->msg[3] = las->all_device_types[la_idx];
/* Write RC Profiles first, then Device Features */
for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
msg->msg[msg->len++] = features[idx];
if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
if (op_is_dev_features)
break;
op_is_dev_features = true;
}
}
}
/* Transmit the Feature Abort message */
static int cec_feature_abort_reason(struct cec_adapter *adap,
struct cec_msg *msg, u8 reason)
{
struct cec_msg tx_msg = { };
/*
* Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
* message!
*/
if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
return 0;
/* Don't Feature Abort messages from 'Unregistered' */
if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
return 0;
cec_msg_set_reply_to(&tx_msg, msg);
cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
return cec_transmit_msg(adap, &tx_msg, false);
}
static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
{
return cec_feature_abort_reason(adap, msg,
CEC_OP_ABORT_UNRECOGNIZED_OP);
}
static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
{
return cec_feature_abort_reason(adap, msg,
CEC_OP_ABORT_REFUSED);
}
/*
* Called when a CEC message is received. This function will do any
* necessary core processing. The is_reply bool is true if this message
* is a reply to an earlier transmit.
*
* The message is either a broadcast message or a valid directed message.
*/
static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
bool is_reply)
{
bool is_broadcast = cec_msg_is_broadcast(msg);
u8 dest_laddr = cec_msg_destination(msg);
u8 init_laddr = cec_msg_initiator(msg);
u8 devtype = cec_log_addr2dev(adap, dest_laddr);
int la_idx = cec_log_addr2idx(adap, dest_laddr);
bool from_unregistered = init_laddr == 0xf;
struct cec_msg tx_cec_msg = { };
dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
/* If this is a CDC-Only device, then ignore any non-CDC messages */
if (cec_is_cdc_only(&adap->log_addrs) &&
msg->msg[1] != CEC_MSG_CDC_MESSAGE)
return 0;
if (adap->ops->received) {
/* Allow drivers to process the message first */
if (adap->ops->received(adap, msg) != -ENOMSG)
return 0;
}
/*
* REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
* CEC_MSG_USER_CONTROL_RELEASED messages always have to be
* handled by the CEC core, even if the passthrough mode is on.
* The others are just ignored if passthrough mode is on.
*/
switch (msg->msg[1]) {
case CEC_MSG_GET_CEC_VERSION:
case CEC_MSG_ABORT:
case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
case CEC_MSG_GIVE_OSD_NAME:
/*
* These messages reply with a directed message, so ignore if
* the initiator is Unregistered.
*/
if (!adap->passthrough && from_unregistered)
return 0;
/* Fall through */
case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
case CEC_MSG_GIVE_FEATURES:
case CEC_MSG_GIVE_PHYSICAL_ADDR:
/*
* Skip processing these messages if the passthrough mode
* is on.
*/
if (adap->passthrough)
goto skip_processing;
/* Ignore if addressing is wrong */
if (is_broadcast)
return 0;
break;
case CEC_MSG_USER_CONTROL_PRESSED:
case CEC_MSG_USER_CONTROL_RELEASED:
/* Wrong addressing mode: don't process */
if (is_broadcast || from_unregistered)
goto skip_processing;
break;
case CEC_MSG_REPORT_PHYSICAL_ADDR:
/*
* This message is always processed, regardless of the
* passthrough setting.
*
* Exception: don't process if wrong addressing mode.
*/
if (!is_broadcast)
goto skip_processing;
break;
default:
break;
}
cec_msg_set_reply_to(&tx_cec_msg, msg);
switch (msg->msg[1]) {
/* The following messages are processed but still passed through */
case CEC_MSG_REPORT_PHYSICAL_ADDR: {
u16 pa = (msg->msg[2] << 8) | msg->msg[3];
if (!from_unregistered)
adap->phys_addrs[init_laddr] = pa;
dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
cec_phys_addr_exp(pa), init_laddr);
break;
}
case CEC_MSG_USER_CONTROL_PRESSED:
if (!(adap->capabilities & CEC_CAP_RC) ||
!(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
break;
#ifdef CONFIG_MEDIA_CEC_RC
switch (msg->msg[2]) {
/*
* Play function, this message can have variable length
* depending on the specific play function that is used.
*/
case 0x60:
if (msg->len == 2)
rc_keydown(adap->rc, RC_PROTO_CEC,
msg->msg[2], 0);
else
rc_keydown(adap->rc, RC_PROTO_CEC,
msg->msg[2] << 8 | msg->msg[3], 0);
break;
/*
* Other function messages that are not handled.
* Currently the RC framework does not allow to supply an
* additional parameter to a keypress. These "keys" contain
* other information such as channel number, an input number
* etc.
* For the time being these messages are not processed by the
* framework and are simply forwarded to the user space.
*/
case 0x56: case 0x57:
case 0x67: case 0x68: case 0x69: case 0x6a:
break;
default:
rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
break;
}
#endif
break;
case CEC_MSG_USER_CONTROL_RELEASED:
if (!(adap->capabilities & CEC_CAP_RC) ||
!(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
break;
#ifdef CONFIG_MEDIA_CEC_RC
rc_keyup(adap->rc);
#endif
break;
/*
* The remaining messages are only processed if the passthrough mode
* is off.
*/
case CEC_MSG_GET_CEC_VERSION:
cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
return cec_transmit_msg(adap, &tx_cec_msg, false);
case CEC_MSG_GIVE_PHYSICAL_ADDR:
/* Do nothing for CEC switches using addr 15 */
if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
return 0;
cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
return cec_transmit_msg(adap, &tx_cec_msg, false);
case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
return cec_feature_abort(adap, msg);
cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
return cec_transmit_msg(adap, &tx_cec_msg, false);
case CEC_MSG_ABORT:
/* Do nothing for CEC switches */
if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
return 0;
return cec_feature_refused(adap, msg);
case CEC_MSG_GIVE_OSD_NAME: {
if (adap->log_addrs.osd_name[0] == 0)
return cec_feature_abort(adap, msg);
cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
return cec_transmit_msg(adap, &tx_cec_msg, false);
}
case CEC_MSG_GIVE_FEATURES:
if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
return cec_feature_abort(adap, msg);
cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
return cec_transmit_msg(adap, &tx_cec_msg, false);
default:
/*
* Unprocessed messages are aborted if userspace isn't doing
* any processing either.
*/
if (!is_broadcast && !is_reply && !adap->follower_cnt &&
!adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
return cec_feature_abort(adap, msg);
break;
}
skip_processing:
/* If this was a reply, then we're done, unless otherwise specified */
if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
return 0;
/*
* Send to the exclusive follower if there is one, otherwise send
* to all followers.
*/
if (adap->cec_follower)
cec_queue_msg_fh(adap->cec_follower, msg);
else
cec_queue_msg_followers(adap, msg);
return 0;
}
/*
* Helper functions to keep track of the 'monitor all' use count.
*
* These functions are called with adap->lock held.
*/
int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
{
int ret = 0;
if (adap->monitor_all_cnt == 0)
ret = call_op(adap, adap_monitor_all_enable, 1);
if (ret == 0)
adap->monitor_all_cnt++;
return ret;
}
void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
{
adap->monitor_all_cnt--;
if (adap->monitor_all_cnt == 0)
WARN_ON(call_op(adap, adap_monitor_all_enable, 0));
}
/*
* Helper functions to keep track of the 'monitor pin' use count.
*
* These functions are called with adap->lock held.
*/
int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
{
int ret = 0;
if (adap->monitor_pin_cnt == 0)
ret = call_op(adap, adap_monitor_pin_enable, 1);
if (ret == 0)
adap->monitor_pin_cnt++;
return ret;
}
void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
{
adap->monitor_pin_cnt--;
if (adap->monitor_pin_cnt == 0)
WARN_ON(call_op(adap, adap_monitor_pin_enable, 0));
}
#ifdef CONFIG_DEBUG_FS
/*
* Log the current state of the CEC adapter.
* Very useful for debugging.
*/
int cec_adap_status(struct seq_file *file, void *priv)
{
struct cec_adapter *adap = dev_get_drvdata(file->private);
struct cec_data *data;
mutex_lock(&adap->lock);
seq_printf(file, "configured: %d\n", adap->is_configured);
seq_printf(file, "configuring: %d\n", adap->is_configuring);
seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
cec_phys_addr_exp(adap->phys_addr));
seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
if (adap->cec_follower)
seq_printf(file, "has CEC follower%s\n",
adap->passthrough ? " (in passthrough mode)" : "");
if (adap->cec_initiator)
seq_puts(file, "has CEC initiator\n");
if (adap->monitor_all_cnt)
seq_printf(file, "file handles in Monitor All mode: %u\n",
adap->monitor_all_cnt);
if (adap->tx_timeouts) {
seq_printf(file, "transmit timeouts: %u\n",
adap->tx_timeouts);
adap->tx_timeouts = 0;
}
data = adap->transmitting;
if (data)
seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
data->msg.len, data->msg.msg, data->msg.reply,
data->msg.timeout);
seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
list_for_each_entry(data, &adap->transmit_queue, list) {
seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
data->msg.len, data->msg.msg, data->msg.reply,
data->msg.timeout);
}
list_for_each_entry(data, &adap->wait_queue, list) {
seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
data->msg.len, data->msg.msg, data->msg.reply,
data->msg.timeout);
}
call_void_op(adap, adap_status, file);
mutex_unlock(&adap->lock);
return 0;
}
#endif