OpenCloudOS-Kernel/drivers/block/zram/zram_drv.c

1488 lines
35 KiB
C

/*
* Compressed RAM block device
*
* Copyright (C) 2008, 2009, 2010 Nitin Gupta
* 2012, 2013 Minchan Kim
*
* This code is released using a dual license strategy: BSD/GPL
* You can choose the licence that better fits your requirements.
*
* Released under the terms of 3-clause BSD License
* Released under the terms of GNU General Public License Version 2.0
*
*/
#define KMSG_COMPONENT "zram"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/device.h>
#include <linux/genhd.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/vmalloc.h>
#include <linux/err.h>
#include <linux/idr.h>
#include <linux/sysfs.h>
#include "zram_drv.h"
static DEFINE_IDR(zram_index_idr);
/* idr index must be protected */
static DEFINE_MUTEX(zram_index_mutex);
static int zram_major;
static const char *default_compressor = "lzo";
/* Module params (documentation at end) */
static unsigned int num_devices = 1;
static inline void deprecated_attr_warn(const char *name)
{
pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
task_pid_nr(current),
current->comm,
name,
"See zram documentation.");
}
#define ZRAM_ATTR_RO(name) \
static ssize_t name##_show(struct device *d, \
struct device_attribute *attr, char *b) \
{ \
struct zram *zram = dev_to_zram(d); \
\
deprecated_attr_warn(__stringify(name)); \
return scnprintf(b, PAGE_SIZE, "%llu\n", \
(u64)atomic64_read(&zram->stats.name)); \
} \
static DEVICE_ATTR_RO(name);
static inline bool init_done(struct zram *zram)
{
return zram->disksize;
}
static inline struct zram *dev_to_zram(struct device *dev)
{
return (struct zram *)dev_to_disk(dev)->private_data;
}
/* flag operations require table entry bit_spin_lock() being held */
static int zram_test_flag(struct zram_meta *meta, u32 index,
enum zram_pageflags flag)
{
return meta->table[index].value & BIT(flag);
}
static void zram_set_flag(struct zram_meta *meta, u32 index,
enum zram_pageflags flag)
{
meta->table[index].value |= BIT(flag);
}
static void zram_clear_flag(struct zram_meta *meta, u32 index,
enum zram_pageflags flag)
{
meta->table[index].value &= ~BIT(flag);
}
static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
{
return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
}
static void zram_set_obj_size(struct zram_meta *meta,
u32 index, size_t size)
{
unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
}
static inline bool is_partial_io(struct bio_vec *bvec)
{
return bvec->bv_len != PAGE_SIZE;
}
/*
* Check if request is within bounds and aligned on zram logical blocks.
*/
static inline bool valid_io_request(struct zram *zram,
sector_t start, unsigned int size)
{
u64 end, bound;
/* unaligned request */
if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
return false;
if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
return false;
end = start + (size >> SECTOR_SHIFT);
bound = zram->disksize >> SECTOR_SHIFT;
/* out of range range */
if (unlikely(start >= bound || end > bound || start > end))
return false;
/* I/O request is valid */
return true;
}
static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
{
if (*offset + bvec->bv_len >= PAGE_SIZE)
(*index)++;
*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
}
static inline void update_used_max(struct zram *zram,
const unsigned long pages)
{
unsigned long old_max, cur_max;
old_max = atomic_long_read(&zram->stats.max_used_pages);
do {
cur_max = old_max;
if (pages > cur_max)
old_max = atomic_long_cmpxchg(
&zram->stats.max_used_pages, cur_max, pages);
} while (old_max != cur_max);
}
static bool page_zero_filled(void *ptr)
{
unsigned int pos;
unsigned long *page;
page = (unsigned long *)ptr;
for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
if (page[pos])
return false;
}
return true;
}
static void handle_zero_page(struct bio_vec *bvec)
{
struct page *page = bvec->bv_page;
void *user_mem;
user_mem = kmap_atomic(page);
if (is_partial_io(bvec))
memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
else
clear_page(user_mem);
kunmap_atomic(user_mem);
flush_dcache_page(page);
}
static ssize_t initstate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 val;
struct zram *zram = dev_to_zram(dev);
down_read(&zram->init_lock);
val = init_done(zram);
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%u\n", val);
}
static ssize_t disksize_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct zram *zram = dev_to_zram(dev);
return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
}
static ssize_t orig_data_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct zram *zram = dev_to_zram(dev);
deprecated_attr_warn("orig_data_size");
return scnprintf(buf, PAGE_SIZE, "%llu\n",
(u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
}
static ssize_t mem_used_total_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u64 val = 0;
struct zram *zram = dev_to_zram(dev);
deprecated_attr_warn("mem_used_total");
down_read(&zram->init_lock);
if (init_done(zram)) {
struct zram_meta *meta = zram->meta;
val = zs_get_total_pages(meta->mem_pool);
}
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
}
static ssize_t mem_limit_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u64 val;
struct zram *zram = dev_to_zram(dev);
deprecated_attr_warn("mem_limit");
down_read(&zram->init_lock);
val = zram->limit_pages;
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
}
static ssize_t mem_limit_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
u64 limit;
char *tmp;
struct zram *zram = dev_to_zram(dev);
limit = memparse(buf, &tmp);
if (buf == tmp) /* no chars parsed, invalid input */
return -EINVAL;
down_write(&zram->init_lock);
zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
up_write(&zram->init_lock);
return len;
}
static ssize_t mem_used_max_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u64 val = 0;
struct zram *zram = dev_to_zram(dev);
deprecated_attr_warn("mem_used_max");
down_read(&zram->init_lock);
if (init_done(zram))
val = atomic_long_read(&zram->stats.max_used_pages);
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
}
static ssize_t mem_used_max_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
int err;
unsigned long val;
struct zram *zram = dev_to_zram(dev);
err = kstrtoul(buf, 10, &val);
if (err || val != 0)
return -EINVAL;
down_read(&zram->init_lock);
if (init_done(zram)) {
struct zram_meta *meta = zram->meta;
atomic_long_set(&zram->stats.max_used_pages,
zs_get_total_pages(meta->mem_pool));
}
up_read(&zram->init_lock);
return len;
}
/*
* We switched to per-cpu streams and this attr is not needed anymore.
* However, we will keep it around for some time, because:
* a) we may revert per-cpu streams in the future
* b) it's visible to user space and we need to follow our 2 years
* retirement rule; but we already have a number of 'soon to be
* altered' attrs, so max_comp_streams need to wait for the next
* layoff cycle.
*/
static ssize_t max_comp_streams_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
}
static ssize_t max_comp_streams_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
return len;
}
static ssize_t comp_algorithm_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
size_t sz;
struct zram *zram = dev_to_zram(dev);
down_read(&zram->init_lock);
sz = zcomp_available_show(zram->compressor, buf);
up_read(&zram->init_lock);
return sz;
}
static ssize_t comp_algorithm_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct zram *zram = dev_to_zram(dev);
char compressor[CRYPTO_MAX_ALG_NAME];
size_t sz;
strlcpy(compressor, buf, sizeof(compressor));
/* ignore trailing newline */
sz = strlen(compressor);
if (sz > 0 && compressor[sz - 1] == '\n')
compressor[sz - 1] = 0x00;
if (!zcomp_available_algorithm(compressor))
return -EINVAL;
down_write(&zram->init_lock);
if (init_done(zram)) {
up_write(&zram->init_lock);
pr_info("Can't change algorithm for initialized device\n");
return -EBUSY;
}
strlcpy(zram->compressor, compressor, sizeof(compressor));
up_write(&zram->init_lock);
return len;
}
static ssize_t compact_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct zram *zram = dev_to_zram(dev);
struct zram_meta *meta;
down_read(&zram->init_lock);
if (!init_done(zram)) {
up_read(&zram->init_lock);
return -EINVAL;
}
meta = zram->meta;
zs_compact(meta->mem_pool);
up_read(&zram->init_lock);
return len;
}
static ssize_t io_stat_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct zram *zram = dev_to_zram(dev);
ssize_t ret;
down_read(&zram->init_lock);
ret = scnprintf(buf, PAGE_SIZE,
"%8llu %8llu %8llu %8llu\n",
(u64)atomic64_read(&zram->stats.failed_reads),
(u64)atomic64_read(&zram->stats.failed_writes),
(u64)atomic64_read(&zram->stats.invalid_io),
(u64)atomic64_read(&zram->stats.notify_free));
up_read(&zram->init_lock);
return ret;
}
static ssize_t mm_stat_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct zram *zram = dev_to_zram(dev);
struct zs_pool_stats pool_stats;
u64 orig_size, mem_used = 0;
long max_used;
ssize_t ret;
memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
down_read(&zram->init_lock);
if (init_done(zram)) {
mem_used = zs_get_total_pages(zram->meta->mem_pool);
zs_pool_stats(zram->meta->mem_pool, &pool_stats);
}
orig_size = atomic64_read(&zram->stats.pages_stored);
max_used = atomic_long_read(&zram->stats.max_used_pages);
ret = scnprintf(buf, PAGE_SIZE,
"%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
orig_size << PAGE_SHIFT,
(u64)atomic64_read(&zram->stats.compr_data_size),
mem_used << PAGE_SHIFT,
zram->limit_pages << PAGE_SHIFT,
max_used << PAGE_SHIFT,
(u64)atomic64_read(&zram->stats.zero_pages),
pool_stats.pages_compacted);
up_read(&zram->init_lock);
return ret;
}
static ssize_t debug_stat_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int version = 1;
struct zram *zram = dev_to_zram(dev);
ssize_t ret;
down_read(&zram->init_lock);
ret = scnprintf(buf, PAGE_SIZE,
"version: %d\n%8llu\n",
version,
(u64)atomic64_read(&zram->stats.writestall));
up_read(&zram->init_lock);
return ret;
}
static DEVICE_ATTR_RO(io_stat);
static DEVICE_ATTR_RO(mm_stat);
static DEVICE_ATTR_RO(debug_stat);
ZRAM_ATTR_RO(num_reads);
ZRAM_ATTR_RO(num_writes);
ZRAM_ATTR_RO(failed_reads);
ZRAM_ATTR_RO(failed_writes);
ZRAM_ATTR_RO(invalid_io);
ZRAM_ATTR_RO(notify_free);
ZRAM_ATTR_RO(zero_pages);
ZRAM_ATTR_RO(compr_data_size);
static inline bool zram_meta_get(struct zram *zram)
{
if (atomic_inc_not_zero(&zram->refcount))
return true;
return false;
}
static inline void zram_meta_put(struct zram *zram)
{
atomic_dec(&zram->refcount);
}
static void zram_meta_free(struct zram_meta *meta, u64 disksize)
{
size_t num_pages = disksize >> PAGE_SHIFT;
size_t index;
/* Free all pages that are still in this zram device */
for (index = 0; index < num_pages; index++) {
unsigned long handle = meta->table[index].handle;
if (!handle)
continue;
zs_free(meta->mem_pool, handle);
}
zs_destroy_pool(meta->mem_pool);
vfree(meta->table);
kfree(meta);
}
static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
{
size_t num_pages;
struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
if (!meta)
return NULL;
num_pages = disksize >> PAGE_SHIFT;
meta->table = vzalloc(num_pages * sizeof(*meta->table));
if (!meta->table) {
pr_err("Error allocating zram address table\n");
goto out_error;
}
meta->mem_pool = zs_create_pool(pool_name);
if (!meta->mem_pool) {
pr_err("Error creating memory pool\n");
goto out_error;
}
return meta;
out_error:
vfree(meta->table);
kfree(meta);
return NULL;
}
/*
* To protect concurrent access to the same index entry,
* caller should hold this table index entry's bit_spinlock to
* indicate this index entry is accessing.
*/
static void zram_free_page(struct zram *zram, size_t index)
{
struct zram_meta *meta = zram->meta;
unsigned long handle = meta->table[index].handle;
if (unlikely(!handle)) {
/*
* No memory is allocated for zero filled pages.
* Simply clear zero page flag.
*/
if (zram_test_flag(meta, index, ZRAM_ZERO)) {
zram_clear_flag(meta, index, ZRAM_ZERO);
atomic64_dec(&zram->stats.zero_pages);
}
return;
}
zs_free(meta->mem_pool, handle);
atomic64_sub(zram_get_obj_size(meta, index),
&zram->stats.compr_data_size);
atomic64_dec(&zram->stats.pages_stored);
meta->table[index].handle = 0;
zram_set_obj_size(meta, index, 0);
}
static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
{
int ret = 0;
unsigned char *cmem;
struct zram_meta *meta = zram->meta;
unsigned long handle;
unsigned int size;
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
handle = meta->table[index].handle;
size = zram_get_obj_size(meta, index);
if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
clear_page(mem);
return 0;
}
cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
if (size == PAGE_SIZE) {
copy_page(mem, cmem);
} else {
struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
ret = zcomp_decompress(zstrm, cmem, size, mem);
zcomp_stream_put(zram->comp);
}
zs_unmap_object(meta->mem_pool, handle);
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
/* Should NEVER happen. Return bio error if it does. */
if (unlikely(ret)) {
pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
return ret;
}
return 0;
}
static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
u32 index, int offset)
{
int ret;
struct page *page;
unsigned char *user_mem, *uncmem = NULL;
struct zram_meta *meta = zram->meta;
page = bvec->bv_page;
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
if (unlikely(!meta->table[index].handle) ||
zram_test_flag(meta, index, ZRAM_ZERO)) {
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
handle_zero_page(bvec);
return 0;
}
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
if (is_partial_io(bvec))
/* Use a temporary buffer to decompress the page */
uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
user_mem = kmap_atomic(page);
if (!is_partial_io(bvec))
uncmem = user_mem;
if (!uncmem) {
pr_err("Unable to allocate temp memory\n");
ret = -ENOMEM;
goto out_cleanup;
}
ret = zram_decompress_page(zram, uncmem, index);
/* Should NEVER happen. Return bio error if it does. */
if (unlikely(ret))
goto out_cleanup;
if (is_partial_io(bvec))
memcpy(user_mem + bvec->bv_offset, uncmem + offset,
bvec->bv_len);
flush_dcache_page(page);
ret = 0;
out_cleanup:
kunmap_atomic(user_mem);
if (is_partial_io(bvec))
kfree(uncmem);
return ret;
}
static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
int offset)
{
int ret = 0;
unsigned int clen;
unsigned long handle = 0;
struct page *page;
unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
struct zram_meta *meta = zram->meta;
struct zcomp_strm *zstrm = NULL;
unsigned long alloced_pages;
page = bvec->bv_page;
if (is_partial_io(bvec)) {
/*
* This is a partial IO. We need to read the full page
* before to write the changes.
*/
uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
if (!uncmem) {
ret = -ENOMEM;
goto out;
}
ret = zram_decompress_page(zram, uncmem, index);
if (ret)
goto out;
}
compress_again:
user_mem = kmap_atomic(page);
if (is_partial_io(bvec)) {
memcpy(uncmem + offset, user_mem + bvec->bv_offset,
bvec->bv_len);
kunmap_atomic(user_mem);
user_mem = NULL;
} else {
uncmem = user_mem;
}
if (page_zero_filled(uncmem)) {
if (user_mem)
kunmap_atomic(user_mem);
/* Free memory associated with this sector now. */
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
zram_free_page(zram, index);
zram_set_flag(meta, index, ZRAM_ZERO);
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
atomic64_inc(&zram->stats.zero_pages);
ret = 0;
goto out;
}
zstrm = zcomp_stream_get(zram->comp);
ret = zcomp_compress(zstrm, uncmem, &clen);
if (!is_partial_io(bvec)) {
kunmap_atomic(user_mem);
user_mem = NULL;
uncmem = NULL;
}
if (unlikely(ret)) {
pr_err("Compression failed! err=%d\n", ret);
goto out;
}
src = zstrm->buffer;
if (unlikely(clen > max_zpage_size)) {
clen = PAGE_SIZE;
if (is_partial_io(bvec))
src = uncmem;
}
/*
* handle allocation has 2 paths:
* a) fast path is executed with preemption disabled (for
* per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
* since we can't sleep;
* b) slow path enables preemption and attempts to allocate
* the page with __GFP_DIRECT_RECLAIM bit set. we have to
* put per-cpu compression stream and, thus, to re-do
* the compression once handle is allocated.
*
* if we have a 'non-null' handle here then we are coming
* from the slow path and handle has already been allocated.
*/
if (!handle)
handle = zs_malloc(meta->mem_pool, clen,
__GFP_KSWAPD_RECLAIM |
__GFP_NOWARN |
__GFP_HIGHMEM |
__GFP_MOVABLE);
if (!handle) {
zcomp_stream_put(zram->comp);
zstrm = NULL;
atomic64_inc(&zram->stats.writestall);
handle = zs_malloc(meta->mem_pool, clen,
GFP_NOIO | __GFP_HIGHMEM |
__GFP_MOVABLE);
if (handle)
goto compress_again;
pr_err("Error allocating memory for compressed page: %u, size=%u\n",
index, clen);
ret = -ENOMEM;
goto out;
}
alloced_pages = zs_get_total_pages(meta->mem_pool);
update_used_max(zram, alloced_pages);
if (zram->limit_pages && alloced_pages > zram->limit_pages) {
zs_free(meta->mem_pool, handle);
ret = -ENOMEM;
goto out;
}
cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
src = kmap_atomic(page);
copy_page(cmem, src);
kunmap_atomic(src);
} else {
memcpy(cmem, src, clen);
}
zcomp_stream_put(zram->comp);
zstrm = NULL;
zs_unmap_object(meta->mem_pool, handle);
/*
* Free memory associated with this sector
* before overwriting unused sectors.
*/
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
zram_free_page(zram, index);
meta->table[index].handle = handle;
zram_set_obj_size(meta, index, clen);
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
/* Update stats */
atomic64_add(clen, &zram->stats.compr_data_size);
atomic64_inc(&zram->stats.pages_stored);
out:
if (zstrm)
zcomp_stream_put(zram->comp);
if (is_partial_io(bvec))
kfree(uncmem);
return ret;
}
/*
* zram_bio_discard - handler on discard request
* @index: physical block index in PAGE_SIZE units
* @offset: byte offset within physical block
*/
static void zram_bio_discard(struct zram *zram, u32 index,
int offset, struct bio *bio)
{
size_t n = bio->bi_iter.bi_size;
struct zram_meta *meta = zram->meta;
/*
* zram manages data in physical block size units. Because logical block
* size isn't identical with physical block size on some arch, we
* could get a discard request pointing to a specific offset within a
* certain physical block. Although we can handle this request by
* reading that physiclal block and decompressing and partially zeroing
* and re-compressing and then re-storing it, this isn't reasonable
* because our intent with a discard request is to save memory. So
* skipping this logical block is appropriate here.
*/
if (offset) {
if (n <= (PAGE_SIZE - offset))
return;
n -= (PAGE_SIZE - offset);
index++;
}
while (n >= PAGE_SIZE) {
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
zram_free_page(zram, index);
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
atomic64_inc(&zram->stats.notify_free);
index++;
n -= PAGE_SIZE;
}
}
static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
int offset, bool is_write)
{
unsigned long start_time = jiffies;
int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
int ret;
generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT,
&zram->disk->part0);
if (!is_write) {
atomic64_inc(&zram->stats.num_reads);
ret = zram_bvec_read(zram, bvec, index, offset);
} else {
atomic64_inc(&zram->stats.num_writes);
ret = zram_bvec_write(zram, bvec, index, offset);
}
generic_end_io_acct(rw_acct, &zram->disk->part0, start_time);
if (unlikely(ret)) {
if (!is_write)
atomic64_inc(&zram->stats.failed_reads);
else
atomic64_inc(&zram->stats.failed_writes);
}
return ret;
}
static void __zram_make_request(struct zram *zram, struct bio *bio)
{
int offset;
u32 index;
struct bio_vec bvec;
struct bvec_iter iter;
index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
offset = (bio->bi_iter.bi_sector &
(SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
zram_bio_discard(zram, index, offset, bio);
bio_endio(bio);
return;
}
bio_for_each_segment(bvec, bio, iter) {
int max_transfer_size = PAGE_SIZE - offset;
if (bvec.bv_len > max_transfer_size) {
/*
* zram_bvec_rw() can only make operation on a single
* zram page. Split the bio vector.
*/
struct bio_vec bv;
bv.bv_page = bvec.bv_page;
bv.bv_len = max_transfer_size;
bv.bv_offset = bvec.bv_offset;
if (zram_bvec_rw(zram, &bv, index, offset,
op_is_write(bio_op(bio))) < 0)
goto out;
bv.bv_len = bvec.bv_len - max_transfer_size;
bv.bv_offset += max_transfer_size;
if (zram_bvec_rw(zram, &bv, index + 1, 0,
op_is_write(bio_op(bio))) < 0)
goto out;
} else
if (zram_bvec_rw(zram, &bvec, index, offset,
op_is_write(bio_op(bio))) < 0)
goto out;
update_position(&index, &offset, &bvec);
}
bio_endio(bio);
return;
out:
bio_io_error(bio);
}
/*
* Handler function for all zram I/O requests.
*/
static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
{
struct zram *zram = queue->queuedata;
if (unlikely(!zram_meta_get(zram)))
goto error;
blk_queue_split(queue, &bio, queue->bio_split);
if (!valid_io_request(zram, bio->bi_iter.bi_sector,
bio->bi_iter.bi_size)) {
atomic64_inc(&zram->stats.invalid_io);
goto put_zram;
}
__zram_make_request(zram, bio);
zram_meta_put(zram);
return BLK_QC_T_NONE;
put_zram:
zram_meta_put(zram);
error:
bio_io_error(bio);
return BLK_QC_T_NONE;
}
static void zram_slot_free_notify(struct block_device *bdev,
unsigned long index)
{
struct zram *zram;
struct zram_meta *meta;
zram = bdev->bd_disk->private_data;
meta = zram->meta;
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
zram_free_page(zram, index);
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
atomic64_inc(&zram->stats.notify_free);
}
static int zram_rw_page(struct block_device *bdev, sector_t sector,
struct page *page, bool is_write)
{
int offset, err = -EIO;
u32 index;
struct zram *zram;
struct bio_vec bv;
zram = bdev->bd_disk->private_data;
if (unlikely(!zram_meta_get(zram)))
goto out;
if (!valid_io_request(zram, sector, PAGE_SIZE)) {
atomic64_inc(&zram->stats.invalid_io);
err = -EINVAL;
goto put_zram;
}
index = sector >> SECTORS_PER_PAGE_SHIFT;
offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
bv.bv_page = page;
bv.bv_len = PAGE_SIZE;
bv.bv_offset = 0;
err = zram_bvec_rw(zram, &bv, index, offset, is_write);
put_zram:
zram_meta_put(zram);
out:
/*
* If I/O fails, just return error(ie, non-zero) without
* calling page_endio.
* It causes resubmit the I/O with bio request by upper functions
* of rw_page(e.g., swap_readpage, __swap_writepage) and
* bio->bi_end_io does things to handle the error
* (e.g., SetPageError, set_page_dirty and extra works).
*/
if (err == 0)
page_endio(page, is_write, 0);
return err;
}
static void zram_reset_device(struct zram *zram)
{
struct zram_meta *meta;
struct zcomp *comp;
u64 disksize;
down_write(&zram->init_lock);
zram->limit_pages = 0;
if (!init_done(zram)) {
up_write(&zram->init_lock);
return;
}
meta = zram->meta;
comp = zram->comp;
disksize = zram->disksize;
/*
* Refcount will go down to 0 eventually and r/w handler
* cannot handle further I/O so it will bail out by
* check zram_meta_get.
*/
zram_meta_put(zram);
/*
* We want to free zram_meta in process context to avoid
* deadlock between reclaim path and any other locks.
*/
wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
/* Reset stats */
memset(&zram->stats, 0, sizeof(zram->stats));
zram->disksize = 0;
set_capacity(zram->disk, 0);
part_stat_set_all(&zram->disk->part0, 0);
up_write(&zram->init_lock);
/* I/O operation under all of CPU are done so let's free */
zram_meta_free(meta, disksize);
zcomp_destroy(comp);
}
static ssize_t disksize_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
u64 disksize;
struct zcomp *comp;
struct zram_meta *meta;
struct zram *zram = dev_to_zram(dev);
int err;
disksize = memparse(buf, NULL);
if (!disksize)
return -EINVAL;
disksize = PAGE_ALIGN(disksize);
meta = zram_meta_alloc(zram->disk->disk_name, disksize);
if (!meta)
return -ENOMEM;
comp = zcomp_create(zram->compressor);
if (IS_ERR(comp)) {
pr_err("Cannot initialise %s compressing backend\n",
zram->compressor);
err = PTR_ERR(comp);
goto out_free_meta;
}
down_write(&zram->init_lock);
if (init_done(zram)) {
pr_info("Cannot change disksize for initialized device\n");
err = -EBUSY;
goto out_destroy_comp;
}
init_waitqueue_head(&zram->io_done);
atomic_set(&zram->refcount, 1);
zram->meta = meta;
zram->comp = comp;
zram->disksize = disksize;
set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
up_write(&zram->init_lock);
/*
* Revalidate disk out of the init_lock to avoid lockdep splat.
* It's okay because disk's capacity is protected by init_lock
* so that revalidate_disk always sees up-to-date capacity.
*/
revalidate_disk(zram->disk);
return len;
out_destroy_comp:
up_write(&zram->init_lock);
zcomp_destroy(comp);
out_free_meta:
zram_meta_free(meta, disksize);
return err;
}
static ssize_t reset_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
int ret;
unsigned short do_reset;
struct zram *zram;
struct block_device *bdev;
ret = kstrtou16(buf, 10, &do_reset);
if (ret)
return ret;
if (!do_reset)
return -EINVAL;
zram = dev_to_zram(dev);
bdev = bdget_disk(zram->disk, 0);
if (!bdev)
return -ENOMEM;
mutex_lock(&bdev->bd_mutex);
/* Do not reset an active device or claimed device */
if (bdev->bd_openers || zram->claim) {
mutex_unlock(&bdev->bd_mutex);
bdput(bdev);
return -EBUSY;
}
/* From now on, anyone can't open /dev/zram[0-9] */
zram->claim = true;
mutex_unlock(&bdev->bd_mutex);
/* Make sure all the pending I/O are finished */
fsync_bdev(bdev);
zram_reset_device(zram);
revalidate_disk(zram->disk);
bdput(bdev);
mutex_lock(&bdev->bd_mutex);
zram->claim = false;
mutex_unlock(&bdev->bd_mutex);
return len;
}
static int zram_open(struct block_device *bdev, fmode_t mode)
{
int ret = 0;
struct zram *zram;
WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
zram = bdev->bd_disk->private_data;
/* zram was claimed to reset so open request fails */
if (zram->claim)
ret = -EBUSY;
return ret;
}
static const struct block_device_operations zram_devops = {
.open = zram_open,
.swap_slot_free_notify = zram_slot_free_notify,
.rw_page = zram_rw_page,
.owner = THIS_MODULE
};
static DEVICE_ATTR_WO(compact);
static DEVICE_ATTR_RW(disksize);
static DEVICE_ATTR_RO(initstate);
static DEVICE_ATTR_WO(reset);
static DEVICE_ATTR_RO(orig_data_size);
static DEVICE_ATTR_RO(mem_used_total);
static DEVICE_ATTR_RW(mem_limit);
static DEVICE_ATTR_RW(mem_used_max);
static DEVICE_ATTR_RW(max_comp_streams);
static DEVICE_ATTR_RW(comp_algorithm);
static struct attribute *zram_disk_attrs[] = {
&dev_attr_disksize.attr,
&dev_attr_initstate.attr,
&dev_attr_reset.attr,
&dev_attr_num_reads.attr,
&dev_attr_num_writes.attr,
&dev_attr_failed_reads.attr,
&dev_attr_failed_writes.attr,
&dev_attr_compact.attr,
&dev_attr_invalid_io.attr,
&dev_attr_notify_free.attr,
&dev_attr_zero_pages.attr,
&dev_attr_orig_data_size.attr,
&dev_attr_compr_data_size.attr,
&dev_attr_mem_used_total.attr,
&dev_attr_mem_limit.attr,
&dev_attr_mem_used_max.attr,
&dev_attr_max_comp_streams.attr,
&dev_attr_comp_algorithm.attr,
&dev_attr_io_stat.attr,
&dev_attr_mm_stat.attr,
&dev_attr_debug_stat.attr,
NULL,
};
static struct attribute_group zram_disk_attr_group = {
.attrs = zram_disk_attrs,
};
/*
* Allocate and initialize new zram device. the function returns
* '>= 0' device_id upon success, and negative value otherwise.
*/
static int zram_add(void)
{
struct zram *zram;
struct request_queue *queue;
int ret, device_id;
zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
if (!zram)
return -ENOMEM;
ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
if (ret < 0)
goto out_free_dev;
device_id = ret;
init_rwsem(&zram->init_lock);
queue = blk_alloc_queue(GFP_KERNEL);
if (!queue) {
pr_err("Error allocating disk queue for device %d\n",
device_id);
ret = -ENOMEM;
goto out_free_idr;
}
blk_queue_make_request(queue, zram_make_request);
/* gendisk structure */
zram->disk = alloc_disk(1);
if (!zram->disk) {
pr_err("Error allocating disk structure for device %d\n",
device_id);
ret = -ENOMEM;
goto out_free_queue;
}
zram->disk->major = zram_major;
zram->disk->first_minor = device_id;
zram->disk->fops = &zram_devops;
zram->disk->queue = queue;
zram->disk->queue->queuedata = zram;
zram->disk->private_data = zram;
snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
set_capacity(zram->disk, 0);
/* zram devices sort of resembles non-rotational disks */
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
/*
* To ensure that we always get PAGE_SIZE aligned
* and n*PAGE_SIZED sized I/O requests.
*/
blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
blk_queue_logical_block_size(zram->disk->queue,
ZRAM_LOGICAL_BLOCK_SIZE);
blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
/*
* zram_bio_discard() will clear all logical blocks if logical block
* size is identical with physical block size(PAGE_SIZE). But if it is
* different, we will skip discarding some parts of logical blocks in
* the part of the request range which isn't aligned to physical block
* size. So we can't ensure that all discarded logical blocks are
* zeroed.
*/
if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
zram->disk->queue->limits.discard_zeroes_data = 1;
else
zram->disk->queue->limits.discard_zeroes_data = 0;
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
add_disk(zram->disk);
ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
&zram_disk_attr_group);
if (ret < 0) {
pr_err("Error creating sysfs group for device %d\n",
device_id);
goto out_free_disk;
}
strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
zram->meta = NULL;
pr_info("Added device: %s\n", zram->disk->disk_name);
return device_id;
out_free_disk:
del_gendisk(zram->disk);
put_disk(zram->disk);
out_free_queue:
blk_cleanup_queue(queue);
out_free_idr:
idr_remove(&zram_index_idr, device_id);
out_free_dev:
kfree(zram);
return ret;
}
static int zram_remove(struct zram *zram)
{
struct block_device *bdev;
bdev = bdget_disk(zram->disk, 0);
if (!bdev)
return -ENOMEM;
mutex_lock(&bdev->bd_mutex);
if (bdev->bd_openers || zram->claim) {
mutex_unlock(&bdev->bd_mutex);
bdput(bdev);
return -EBUSY;
}
zram->claim = true;
mutex_unlock(&bdev->bd_mutex);
/*
* Remove sysfs first, so no one will perform a disksize
* store while we destroy the devices. This also helps during
* hot_remove -- zram_reset_device() is the last holder of
* ->init_lock, no later/concurrent disksize_store() or any
* other sysfs handlers are possible.
*/
sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
&zram_disk_attr_group);
/* Make sure all the pending I/O are finished */
fsync_bdev(bdev);
zram_reset_device(zram);
bdput(bdev);
pr_info("Removed device: %s\n", zram->disk->disk_name);
blk_cleanup_queue(zram->disk->queue);
del_gendisk(zram->disk);
put_disk(zram->disk);
kfree(zram);
return 0;
}
/* zram-control sysfs attributes */
static ssize_t hot_add_show(struct class *class,
struct class_attribute *attr,
char *buf)
{
int ret;
mutex_lock(&zram_index_mutex);
ret = zram_add();
mutex_unlock(&zram_index_mutex);
if (ret < 0)
return ret;
return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
}
static ssize_t hot_remove_store(struct class *class,
struct class_attribute *attr,
const char *buf,
size_t count)
{
struct zram *zram;
int ret, dev_id;
/* dev_id is gendisk->first_minor, which is `int' */
ret = kstrtoint(buf, 10, &dev_id);
if (ret)
return ret;
if (dev_id < 0)
return -EINVAL;
mutex_lock(&zram_index_mutex);
zram = idr_find(&zram_index_idr, dev_id);
if (zram) {
ret = zram_remove(zram);
idr_remove(&zram_index_idr, dev_id);
} else {
ret = -ENODEV;
}
mutex_unlock(&zram_index_mutex);
return ret ? ret : count;
}
static struct class_attribute zram_control_class_attrs[] = {
__ATTR_RO(hot_add),
__ATTR_WO(hot_remove),
__ATTR_NULL,
};
static struct class zram_control_class = {
.name = "zram-control",
.owner = THIS_MODULE,
.class_attrs = zram_control_class_attrs,
};
static int zram_remove_cb(int id, void *ptr, void *data)
{
zram_remove(ptr);
return 0;
}
static void destroy_devices(void)
{
class_unregister(&zram_control_class);
idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
idr_destroy(&zram_index_idr);
unregister_blkdev(zram_major, "zram");
}
static int __init zram_init(void)
{
int ret;
ret = class_register(&zram_control_class);
if (ret) {
pr_err("Unable to register zram-control class\n");
return ret;
}
zram_major = register_blkdev(0, "zram");
if (zram_major <= 0) {
pr_err("Unable to get major number\n");
class_unregister(&zram_control_class);
return -EBUSY;
}
while (num_devices != 0) {
mutex_lock(&zram_index_mutex);
ret = zram_add();
mutex_unlock(&zram_index_mutex);
if (ret < 0)
goto out_error;
num_devices--;
}
return 0;
out_error:
destroy_devices();
return ret;
}
static void __exit zram_exit(void)
{
destroy_devices();
}
module_init(zram_init);
module_exit(zram_exit);
module_param(num_devices, uint, 0);
MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
MODULE_DESCRIPTION("Compressed RAM Block Device");