OpenCloudOS-Kernel/drivers/gpu/drm/omapdrm/omap_dmm_tiler.c

1059 lines
26 KiB
C

/*
* DMM IOMMU driver support functions for TI OMAP processors.
*
* Author: Rob Clark <rob@ti.com>
* Andy Gross <andy.gross@ti.com>
*
* Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/platform_device.h> /* platform_device() */
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/vmalloc.h>
#include <linux/wait.h>
#include "omap_dmm_tiler.h"
#include "omap_dmm_priv.h"
#define DMM_DRIVER_NAME "dmm"
/* mappings for associating views to luts */
static struct tcm *containers[TILFMT_NFORMATS];
static struct dmm *omap_dmm;
#if defined(CONFIG_OF)
static const struct of_device_id dmm_of_match[];
#endif
/* global spinlock for protecting lists */
static DEFINE_SPINLOCK(list_lock);
/* Geometry table */
#define GEOM(xshift, yshift, bytes_per_pixel) { \
.x_shft = (xshift), \
.y_shft = (yshift), \
.cpp = (bytes_per_pixel), \
.slot_w = 1 << (SLOT_WIDTH_BITS - (xshift)), \
.slot_h = 1 << (SLOT_HEIGHT_BITS - (yshift)), \
}
static const struct {
uint32_t x_shft; /* unused X-bits (as part of bpp) */
uint32_t y_shft; /* unused Y-bits (as part of bpp) */
uint32_t cpp; /* bytes/chars per pixel */
uint32_t slot_w; /* width of each slot (in pixels) */
uint32_t slot_h; /* height of each slot (in pixels) */
} geom[TILFMT_NFORMATS] = {
[TILFMT_8BIT] = GEOM(0, 0, 1),
[TILFMT_16BIT] = GEOM(0, 1, 2),
[TILFMT_32BIT] = GEOM(1, 1, 4),
[TILFMT_PAGE] = GEOM(SLOT_WIDTH_BITS, SLOT_HEIGHT_BITS, 1),
};
/* lookup table for registers w/ per-engine instances */
static const uint32_t reg[][4] = {
[PAT_STATUS] = {DMM_PAT_STATUS__0, DMM_PAT_STATUS__1,
DMM_PAT_STATUS__2, DMM_PAT_STATUS__3},
[PAT_DESCR] = {DMM_PAT_DESCR__0, DMM_PAT_DESCR__1,
DMM_PAT_DESCR__2, DMM_PAT_DESCR__3},
};
static u32 dmm_read(struct dmm *dmm, u32 reg)
{
return readl(dmm->base + reg);
}
static void dmm_write(struct dmm *dmm, u32 val, u32 reg)
{
writel(val, dmm->base + reg);
}
/* simple allocator to grab next 16 byte aligned memory from txn */
static void *alloc_dma(struct dmm_txn *txn, size_t sz, dma_addr_t *pa)
{
void *ptr;
struct refill_engine *engine = txn->engine_handle;
/* dmm programming requires 16 byte aligned addresses */
txn->current_pa = round_up(txn->current_pa, 16);
txn->current_va = (void *)round_up((long)txn->current_va, 16);
ptr = txn->current_va;
*pa = txn->current_pa;
txn->current_pa += sz;
txn->current_va += sz;
BUG_ON((txn->current_va - engine->refill_va) > REFILL_BUFFER_SIZE);
return ptr;
}
/* check status and spin until wait_mask comes true */
static int wait_status(struct refill_engine *engine, uint32_t wait_mask)
{
struct dmm *dmm = engine->dmm;
uint32_t r = 0, err, i;
i = DMM_FIXED_RETRY_COUNT;
while (true) {
r = dmm_read(dmm, reg[PAT_STATUS][engine->id]);
err = r & DMM_PATSTATUS_ERR;
if (err)
return -EFAULT;
if ((r & wait_mask) == wait_mask)
break;
if (--i == 0)
return -ETIMEDOUT;
udelay(1);
}
return 0;
}
static void release_engine(struct refill_engine *engine)
{
unsigned long flags;
spin_lock_irqsave(&list_lock, flags);
list_add(&engine->idle_node, &omap_dmm->idle_head);
spin_unlock_irqrestore(&list_lock, flags);
atomic_inc(&omap_dmm->engine_counter);
wake_up_interruptible(&omap_dmm->engine_queue);
}
static irqreturn_t omap_dmm_irq_handler(int irq, void *arg)
{
struct dmm *dmm = arg;
uint32_t status = dmm_read(dmm, DMM_PAT_IRQSTATUS);
int i;
/* ack IRQ */
dmm_write(dmm, status, DMM_PAT_IRQSTATUS);
for (i = 0; i < dmm->num_engines; i++) {
if (status & DMM_IRQSTAT_LST) {
if (dmm->engines[i].async)
release_engine(&dmm->engines[i]);
complete(&dmm->engines[i].compl);
}
status >>= 8;
}
return IRQ_HANDLED;
}
/**
* Get a handle for a DMM transaction
*/
static struct dmm_txn *dmm_txn_init(struct dmm *dmm, struct tcm *tcm)
{
struct dmm_txn *txn = NULL;
struct refill_engine *engine = NULL;
int ret;
unsigned long flags;
/* wait until an engine is available */
ret = wait_event_interruptible(omap_dmm->engine_queue,
atomic_add_unless(&omap_dmm->engine_counter, -1, 0));
if (ret)
return ERR_PTR(ret);
/* grab an idle engine */
spin_lock_irqsave(&list_lock, flags);
if (!list_empty(&dmm->idle_head)) {
engine = list_entry(dmm->idle_head.next, struct refill_engine,
idle_node);
list_del(&engine->idle_node);
}
spin_unlock_irqrestore(&list_lock, flags);
BUG_ON(!engine);
txn = &engine->txn;
engine->tcm = tcm;
txn->engine_handle = engine;
txn->last_pat = NULL;
txn->current_va = engine->refill_va;
txn->current_pa = engine->refill_pa;
return txn;
}
/**
* Add region to DMM transaction. If pages or pages[i] is NULL, then the
* corresponding slot is cleared (ie. dummy_pa is programmed)
*/
static void dmm_txn_append(struct dmm_txn *txn, struct pat_area *area,
struct page **pages, uint32_t npages, uint32_t roll)
{
dma_addr_t pat_pa = 0, data_pa = 0;
uint32_t *data;
struct pat *pat;
struct refill_engine *engine = txn->engine_handle;
int columns = (1 + area->x1 - area->x0);
int rows = (1 + area->y1 - area->y0);
int i = columns*rows;
pat = alloc_dma(txn, sizeof(struct pat), &pat_pa);
if (txn->last_pat)
txn->last_pat->next_pa = (uint32_t)pat_pa;
pat->area = *area;
/* adjust Y coordinates based off of container parameters */
pat->area.y0 += engine->tcm->y_offset;
pat->area.y1 += engine->tcm->y_offset;
pat->ctrl = (struct pat_ctrl){
.start = 1,
.lut_id = engine->tcm->lut_id,
};
data = alloc_dma(txn, 4*i, &data_pa);
/* FIXME: what if data_pa is more than 32-bit ? */
pat->data_pa = data_pa;
while (i--) {
int n = i + roll;
if (n >= npages)
n -= npages;
data[i] = (pages && pages[n]) ?
page_to_phys(pages[n]) : engine->dmm->dummy_pa;
}
txn->last_pat = pat;
return;
}
/**
* Commit the DMM transaction.
*/
static int dmm_txn_commit(struct dmm_txn *txn, bool wait)
{
int ret = 0;
struct refill_engine *engine = txn->engine_handle;
struct dmm *dmm = engine->dmm;
if (!txn->last_pat) {
dev_err(engine->dmm->dev, "need at least one txn\n");
ret = -EINVAL;
goto cleanup;
}
txn->last_pat->next_pa = 0;
/* write to PAT_DESCR to clear out any pending transaction */
dmm_write(dmm, 0x0, reg[PAT_DESCR][engine->id]);
/* wait for engine ready: */
ret = wait_status(engine, DMM_PATSTATUS_READY);
if (ret) {
ret = -EFAULT;
goto cleanup;
}
/* mark whether it is async to denote list management in IRQ handler */
engine->async = wait ? false : true;
reinit_completion(&engine->compl);
/* verify that the irq handler sees the 'async' and completion value */
smp_mb();
/* kick reload */
dmm_write(dmm, engine->refill_pa, reg[PAT_DESCR][engine->id]);
if (wait) {
if (!wait_for_completion_timeout(&engine->compl,
msecs_to_jiffies(100))) {
dev_err(dmm->dev, "timed out waiting for done\n");
ret = -ETIMEDOUT;
}
}
cleanup:
/* only place engine back on list if we are done with it */
if (ret || wait)
release_engine(engine);
return ret;
}
/*
* DMM programming
*/
static int fill(struct tcm_area *area, struct page **pages,
uint32_t npages, uint32_t roll, bool wait)
{
int ret = 0;
struct tcm_area slice, area_s;
struct dmm_txn *txn;
/*
* FIXME
*
* Asynchronous fill does not work reliably, as the driver does not
* handle errors in the async code paths. The fill operation may
* silently fail, leading to leaking DMM engines, which may eventually
* lead to deadlock if we run out of DMM engines.
*
* For now, always set 'wait' so that we only use sync fills. Async
* fills should be fixed, or alternatively we could decide to only
* support sync fills and so the whole async code path could be removed.
*/
wait = true;
txn = dmm_txn_init(omap_dmm, area->tcm);
if (IS_ERR_OR_NULL(txn))
return -ENOMEM;
tcm_for_each_slice(slice, *area, area_s) {
struct pat_area p_area = {
.x0 = slice.p0.x, .y0 = slice.p0.y,
.x1 = slice.p1.x, .y1 = slice.p1.y,
};
dmm_txn_append(txn, &p_area, pages, npages, roll);
roll += tcm_sizeof(slice);
}
ret = dmm_txn_commit(txn, wait);
return ret;
}
/*
* Pin/unpin
*/
/* note: slots for which pages[i] == NULL are filled w/ dummy page
*/
int tiler_pin(struct tiler_block *block, struct page **pages,
uint32_t npages, uint32_t roll, bool wait)
{
int ret;
ret = fill(&block->area, pages, npages, roll, wait);
if (ret)
tiler_unpin(block);
return ret;
}
int tiler_unpin(struct tiler_block *block)
{
return fill(&block->area, NULL, 0, 0, false);
}
/*
* Reserve/release
*/
struct tiler_block *tiler_reserve_2d(enum tiler_fmt fmt, uint16_t w,
uint16_t h, uint16_t align)
{
struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL);
u32 min_align = 128;
int ret;
unsigned long flags;
size_t slot_bytes;
BUG_ON(!validfmt(fmt));
/* convert width/height to slots */
w = DIV_ROUND_UP(w, geom[fmt].slot_w);
h = DIV_ROUND_UP(h, geom[fmt].slot_h);
/* convert alignment to slots */
slot_bytes = geom[fmt].slot_w * geom[fmt].cpp;
min_align = max(min_align, slot_bytes);
align = (align > min_align) ? ALIGN(align, min_align) : min_align;
align /= slot_bytes;
block->fmt = fmt;
ret = tcm_reserve_2d(containers[fmt], w, h, align, -1, slot_bytes,
&block->area);
if (ret) {
kfree(block);
return ERR_PTR(-ENOMEM);
}
/* add to allocation list */
spin_lock_irqsave(&list_lock, flags);
list_add(&block->alloc_node, &omap_dmm->alloc_head);
spin_unlock_irqrestore(&list_lock, flags);
return block;
}
struct tiler_block *tiler_reserve_1d(size_t size)
{
struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL);
int num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
unsigned long flags;
if (!block)
return ERR_PTR(-ENOMEM);
block->fmt = TILFMT_PAGE;
if (tcm_reserve_1d(containers[TILFMT_PAGE], num_pages,
&block->area)) {
kfree(block);
return ERR_PTR(-ENOMEM);
}
spin_lock_irqsave(&list_lock, flags);
list_add(&block->alloc_node, &omap_dmm->alloc_head);
spin_unlock_irqrestore(&list_lock, flags);
return block;
}
/* note: if you have pin'd pages, you should have already unpin'd first! */
int tiler_release(struct tiler_block *block)
{
int ret = tcm_free(&block->area);
unsigned long flags;
if (block->area.tcm)
dev_err(omap_dmm->dev, "failed to release block\n");
spin_lock_irqsave(&list_lock, flags);
list_del(&block->alloc_node);
spin_unlock_irqrestore(&list_lock, flags);
kfree(block);
return ret;
}
/*
* Utils
*/
/* calculate the tiler space address of a pixel in a view orientation...
* below description copied from the display subsystem section of TRM:
*
* When the TILER is addressed, the bits:
* [28:27] = 0x0 for 8-bit tiled
* 0x1 for 16-bit tiled
* 0x2 for 32-bit tiled
* 0x3 for page mode
* [31:29] = 0x0 for 0-degree view
* 0x1 for 180-degree view + mirroring
* 0x2 for 0-degree view + mirroring
* 0x3 for 180-degree view
* 0x4 for 270-degree view + mirroring
* 0x5 for 270-degree view
* 0x6 for 90-degree view
* 0x7 for 90-degree view + mirroring
* Otherwise the bits indicated the corresponding bit address to access
* the SDRAM.
*/
static u32 tiler_get_address(enum tiler_fmt fmt, u32 orient, u32 x, u32 y)
{
u32 x_bits, y_bits, tmp, x_mask, y_mask, alignment;
x_bits = CONT_WIDTH_BITS - geom[fmt].x_shft;
y_bits = CONT_HEIGHT_BITS - geom[fmt].y_shft;
alignment = geom[fmt].x_shft + geom[fmt].y_shft;
/* validate coordinate */
x_mask = MASK(x_bits);
y_mask = MASK(y_bits);
if (x < 0 || x > x_mask || y < 0 || y > y_mask) {
DBG("invalid coords: %u < 0 || %u > %u || %u < 0 || %u > %u",
x, x, x_mask, y, y, y_mask);
return 0;
}
/* account for mirroring */
if (orient & MASK_X_INVERT)
x ^= x_mask;
if (orient & MASK_Y_INVERT)
y ^= y_mask;
/* get coordinate address */
if (orient & MASK_XY_FLIP)
tmp = ((x << y_bits) + y);
else
tmp = ((y << x_bits) + x);
return TIL_ADDR((tmp << alignment), orient, fmt);
}
dma_addr_t tiler_ssptr(struct tiler_block *block)
{
BUG_ON(!validfmt(block->fmt));
return TILVIEW_8BIT + tiler_get_address(block->fmt, 0,
block->area.p0.x * geom[block->fmt].slot_w,
block->area.p0.y * geom[block->fmt].slot_h);
}
dma_addr_t tiler_tsptr(struct tiler_block *block, uint32_t orient,
uint32_t x, uint32_t y)
{
struct tcm_pt *p = &block->area.p0;
BUG_ON(!validfmt(block->fmt));
return tiler_get_address(block->fmt, orient,
(p->x * geom[block->fmt].slot_w) + x,
(p->y * geom[block->fmt].slot_h) + y);
}
void tiler_align(enum tiler_fmt fmt, uint16_t *w, uint16_t *h)
{
BUG_ON(!validfmt(fmt));
*w = round_up(*w, geom[fmt].slot_w);
*h = round_up(*h, geom[fmt].slot_h);
}
uint32_t tiler_stride(enum tiler_fmt fmt, uint32_t orient)
{
BUG_ON(!validfmt(fmt));
if (orient & MASK_XY_FLIP)
return 1 << (CONT_HEIGHT_BITS + geom[fmt].x_shft);
else
return 1 << (CONT_WIDTH_BITS + geom[fmt].y_shft);
}
size_t tiler_size(enum tiler_fmt fmt, uint16_t w, uint16_t h)
{
tiler_align(fmt, &w, &h);
return geom[fmt].cpp * w * h;
}
size_t tiler_vsize(enum tiler_fmt fmt, uint16_t w, uint16_t h)
{
BUG_ON(!validfmt(fmt));
return round_up(geom[fmt].cpp * w, PAGE_SIZE) * h;
}
uint32_t tiler_get_cpu_cache_flags(void)
{
return omap_dmm->plat_data->cpu_cache_flags;
}
bool dmm_is_available(void)
{
return omap_dmm ? true : false;
}
static int omap_dmm_remove(struct platform_device *dev)
{
struct tiler_block *block, *_block;
int i;
unsigned long flags;
if (omap_dmm) {
/* free all area regions */
spin_lock_irqsave(&list_lock, flags);
list_for_each_entry_safe(block, _block, &omap_dmm->alloc_head,
alloc_node) {
list_del(&block->alloc_node);
kfree(block);
}
spin_unlock_irqrestore(&list_lock, flags);
for (i = 0; i < omap_dmm->num_lut; i++)
if (omap_dmm->tcm && omap_dmm->tcm[i])
omap_dmm->tcm[i]->deinit(omap_dmm->tcm[i]);
kfree(omap_dmm->tcm);
kfree(omap_dmm->engines);
if (omap_dmm->refill_va)
dma_free_wc(omap_dmm->dev,
REFILL_BUFFER_SIZE * omap_dmm->num_engines,
omap_dmm->refill_va, omap_dmm->refill_pa);
if (omap_dmm->dummy_page)
__free_page(omap_dmm->dummy_page);
if (omap_dmm->irq > 0)
free_irq(omap_dmm->irq, omap_dmm);
iounmap(omap_dmm->base);
kfree(omap_dmm);
omap_dmm = NULL;
}
return 0;
}
static int omap_dmm_probe(struct platform_device *dev)
{
int ret = -EFAULT, i;
struct tcm_area area = {0};
u32 hwinfo, pat_geom;
struct resource *mem;
omap_dmm = kzalloc(sizeof(*omap_dmm), GFP_KERNEL);
if (!omap_dmm)
goto fail;
/* initialize lists */
INIT_LIST_HEAD(&omap_dmm->alloc_head);
INIT_LIST_HEAD(&omap_dmm->idle_head);
init_waitqueue_head(&omap_dmm->engine_queue);
if (dev->dev.of_node) {
const struct of_device_id *match;
match = of_match_node(dmm_of_match, dev->dev.of_node);
if (!match) {
dev_err(&dev->dev, "failed to find matching device node\n");
return -ENODEV;
}
omap_dmm->plat_data = match->data;
}
/* lookup hwmod data - base address and irq */
mem = platform_get_resource(dev, IORESOURCE_MEM, 0);
if (!mem) {
dev_err(&dev->dev, "failed to get base address resource\n");
goto fail;
}
omap_dmm->base = ioremap(mem->start, SZ_2K);
if (!omap_dmm->base) {
dev_err(&dev->dev, "failed to get dmm base address\n");
goto fail;
}
omap_dmm->irq = platform_get_irq(dev, 0);
if (omap_dmm->irq < 0) {
dev_err(&dev->dev, "failed to get IRQ resource\n");
goto fail;
}
omap_dmm->dev = &dev->dev;
hwinfo = dmm_read(omap_dmm, DMM_PAT_HWINFO);
omap_dmm->num_engines = (hwinfo >> 24) & 0x1F;
omap_dmm->num_lut = (hwinfo >> 16) & 0x1F;
omap_dmm->container_width = 256;
omap_dmm->container_height = 128;
atomic_set(&omap_dmm->engine_counter, omap_dmm->num_engines);
/* read out actual LUT width and height */
pat_geom = dmm_read(omap_dmm, DMM_PAT_GEOMETRY);
omap_dmm->lut_width = ((pat_geom >> 16) & 0xF) << 5;
omap_dmm->lut_height = ((pat_geom >> 24) & 0xF) << 5;
/* increment LUT by one if on OMAP5 */
/* LUT has twice the height, and is split into a separate container */
if (omap_dmm->lut_height != omap_dmm->container_height)
omap_dmm->num_lut++;
/* initialize DMM registers */
dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__0);
dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__1);
dmm_write(omap_dmm, 0x80808080, DMM_PAT_VIEW_MAP__0);
dmm_write(omap_dmm, 0x80000000, DMM_PAT_VIEW_MAP_BASE);
dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__0);
dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__1);
ret = request_irq(omap_dmm->irq, omap_dmm_irq_handler, IRQF_SHARED,
"omap_dmm_irq_handler", omap_dmm);
if (ret) {
dev_err(&dev->dev, "couldn't register IRQ %d, error %d\n",
omap_dmm->irq, ret);
omap_dmm->irq = -1;
goto fail;
}
/* Enable all interrupts for each refill engine except
* ERR_LUT_MISS<n> (which is just advisory, and we don't care
* about because we want to be able to refill live scanout
* buffers for accelerated pan/scroll) and FILL_DSC<n> which
* we just generally don't care about.
*/
dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_SET);
omap_dmm->dummy_page = alloc_page(GFP_KERNEL | __GFP_DMA32);
if (!omap_dmm->dummy_page) {
dev_err(&dev->dev, "could not allocate dummy page\n");
ret = -ENOMEM;
goto fail;
}
/* set dma mask for device */
ret = dma_set_coherent_mask(&dev->dev, DMA_BIT_MASK(32));
if (ret)
goto fail;
omap_dmm->dummy_pa = page_to_phys(omap_dmm->dummy_page);
/* alloc refill memory */
omap_dmm->refill_va = dma_alloc_wc(&dev->dev,
REFILL_BUFFER_SIZE * omap_dmm->num_engines,
&omap_dmm->refill_pa, GFP_KERNEL);
if (!omap_dmm->refill_va) {
dev_err(&dev->dev, "could not allocate refill memory\n");
goto fail;
}
/* alloc engines */
omap_dmm->engines = kcalloc(omap_dmm->num_engines,
sizeof(struct refill_engine), GFP_KERNEL);
if (!omap_dmm->engines) {
ret = -ENOMEM;
goto fail;
}
for (i = 0; i < omap_dmm->num_engines; i++) {
omap_dmm->engines[i].id = i;
omap_dmm->engines[i].dmm = omap_dmm;
omap_dmm->engines[i].refill_va = omap_dmm->refill_va +
(REFILL_BUFFER_SIZE * i);
omap_dmm->engines[i].refill_pa = omap_dmm->refill_pa +
(REFILL_BUFFER_SIZE * i);
init_completion(&omap_dmm->engines[i].compl);
list_add(&omap_dmm->engines[i].idle_node, &omap_dmm->idle_head);
}
omap_dmm->tcm = kcalloc(omap_dmm->num_lut, sizeof(*omap_dmm->tcm),
GFP_KERNEL);
if (!omap_dmm->tcm) {
ret = -ENOMEM;
goto fail;
}
/* init containers */
/* Each LUT is associated with a TCM (container manager). We use the
lut_id to denote the lut_id used to identify the correct LUT for
programming during reill operations */
for (i = 0; i < omap_dmm->num_lut; i++) {
omap_dmm->tcm[i] = sita_init(omap_dmm->container_width,
omap_dmm->container_height);
if (!omap_dmm->tcm[i]) {
dev_err(&dev->dev, "failed to allocate container\n");
ret = -ENOMEM;
goto fail;
}
omap_dmm->tcm[i]->lut_id = i;
}
/* assign access mode containers to applicable tcm container */
/* OMAP 4 has 1 container for all 4 views */
/* OMAP 5 has 2 containers, 1 for 2D and 1 for 1D */
containers[TILFMT_8BIT] = omap_dmm->tcm[0];
containers[TILFMT_16BIT] = omap_dmm->tcm[0];
containers[TILFMT_32BIT] = omap_dmm->tcm[0];
if (omap_dmm->container_height != omap_dmm->lut_height) {
/* second LUT is used for PAGE mode. Programming must use
y offset that is added to all y coordinates. LUT id is still
0, because it is the same LUT, just the upper 128 lines */
containers[TILFMT_PAGE] = omap_dmm->tcm[1];
omap_dmm->tcm[1]->y_offset = OMAP5_LUT_OFFSET;
omap_dmm->tcm[1]->lut_id = 0;
} else {
containers[TILFMT_PAGE] = omap_dmm->tcm[0];
}
area = (struct tcm_area) {
.tcm = NULL,
.p1.x = omap_dmm->container_width - 1,
.p1.y = omap_dmm->container_height - 1,
};
/* initialize all LUTs to dummy page entries */
for (i = 0; i < omap_dmm->num_lut; i++) {
area.tcm = omap_dmm->tcm[i];
if (fill(&area, NULL, 0, 0, true))
dev_err(omap_dmm->dev, "refill failed");
}
dev_info(omap_dmm->dev, "initialized all PAT entries\n");
return 0;
fail:
if (omap_dmm_remove(dev))
dev_err(&dev->dev, "cleanup failed\n");
return ret;
}
/*
* debugfs support
*/
#ifdef CONFIG_DEBUG_FS
static const char *alphabet = "abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
static const char *special = ".,:;'\"`~!^-+";
static void fill_map(char **map, int xdiv, int ydiv, struct tcm_area *a,
char c, bool ovw)
{
int x, y;
for (y = a->p0.y / ydiv; y <= a->p1.y / ydiv; y++)
for (x = a->p0.x / xdiv; x <= a->p1.x / xdiv; x++)
if (map[y][x] == ' ' || ovw)
map[y][x] = c;
}
static void fill_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p,
char c)
{
map[p->y / ydiv][p->x / xdiv] = c;
}
static char read_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p)
{
return map[p->y / ydiv][p->x / xdiv];
}
static int map_width(int xdiv, int x0, int x1)
{
return (x1 / xdiv) - (x0 / xdiv) + 1;
}
static void text_map(char **map, int xdiv, char *nice, int yd, int x0, int x1)
{
char *p = map[yd] + (x0 / xdiv);
int w = (map_width(xdiv, x0, x1) - strlen(nice)) / 2;
if (w >= 0) {
p += w;
while (*nice)
*p++ = *nice++;
}
}
static void map_1d_info(char **map, int xdiv, int ydiv, char *nice,
struct tcm_area *a)
{
sprintf(nice, "%dK", tcm_sizeof(*a) * 4);
if (a->p0.y + 1 < a->p1.y) {
text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 0,
256 - 1);
} else if (a->p0.y < a->p1.y) {
if (strlen(nice) < map_width(xdiv, a->p0.x, 256 - 1))
text_map(map, xdiv, nice, a->p0.y / ydiv,
a->p0.x + xdiv, 256 - 1);
else if (strlen(nice) < map_width(xdiv, 0, a->p1.x))
text_map(map, xdiv, nice, a->p1.y / ydiv,
0, a->p1.y - xdiv);
} else if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) {
text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x, a->p1.x);
}
}
static void map_2d_info(char **map, int xdiv, int ydiv, char *nice,
struct tcm_area *a)
{
sprintf(nice, "(%d*%d)", tcm_awidth(*a), tcm_aheight(*a));
if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x))
text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv,
a->p0.x, a->p1.x);
}
int tiler_map_show(struct seq_file *s, void *arg)
{
int xdiv = 2, ydiv = 1;
char **map = NULL, *global_map;
struct tiler_block *block;
struct tcm_area a, p;
int i;
const char *m2d = alphabet;
const char *a2d = special;
const char *m2dp = m2d, *a2dp = a2d;
char nice[128];
int h_adj;
int w_adj;
unsigned long flags;
int lut_idx;
if (!omap_dmm) {
/* early return if dmm/tiler device is not initialized */
return 0;
}
h_adj = omap_dmm->container_height / ydiv;
w_adj = omap_dmm->container_width / xdiv;
map = kmalloc(h_adj * sizeof(*map), GFP_KERNEL);
global_map = kmalloc((w_adj + 1) * h_adj, GFP_KERNEL);
if (!map || !global_map)
goto error;
for (lut_idx = 0; lut_idx < omap_dmm->num_lut; lut_idx++) {
memset(map, 0, h_adj * sizeof(*map));
memset(global_map, ' ', (w_adj + 1) * h_adj);
for (i = 0; i < omap_dmm->container_height; i++) {
map[i] = global_map + i * (w_adj + 1);
map[i][w_adj] = 0;
}
spin_lock_irqsave(&list_lock, flags);
list_for_each_entry(block, &omap_dmm->alloc_head, alloc_node) {
if (block->area.tcm == omap_dmm->tcm[lut_idx]) {
if (block->fmt != TILFMT_PAGE) {
fill_map(map, xdiv, ydiv, &block->area,
*m2dp, true);
if (!*++a2dp)
a2dp = a2d;
if (!*++m2dp)
m2dp = m2d;
map_2d_info(map, xdiv, ydiv, nice,
&block->area);
} else {
bool start = read_map_pt(map, xdiv,
ydiv, &block->area.p0) == ' ';
bool end = read_map_pt(map, xdiv, ydiv,
&block->area.p1) == ' ';
tcm_for_each_slice(a, block->area, p)
fill_map(map, xdiv, ydiv, &a,
'=', true);
fill_map_pt(map, xdiv, ydiv,
&block->area.p0,
start ? '<' : 'X');
fill_map_pt(map, xdiv, ydiv,
&block->area.p1,
end ? '>' : 'X');
map_1d_info(map, xdiv, ydiv, nice,
&block->area);
}
}
}
spin_unlock_irqrestore(&list_lock, flags);
if (s) {
seq_printf(s, "CONTAINER %d DUMP BEGIN\n", lut_idx);
for (i = 0; i < 128; i++)
seq_printf(s, "%03d:%s\n", i, map[i]);
seq_printf(s, "CONTAINER %d DUMP END\n", lut_idx);
} else {
dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP BEGIN\n",
lut_idx);
for (i = 0; i < 128; i++)
dev_dbg(omap_dmm->dev, "%03d:%s\n", i, map[i]);
dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP END\n",
lut_idx);
}
}
error:
kfree(map);
kfree(global_map);
return 0;
}
#endif
#ifdef CONFIG_PM_SLEEP
static int omap_dmm_resume(struct device *dev)
{
struct tcm_area area;
int i;
if (!omap_dmm)
return -ENODEV;
area = (struct tcm_area) {
.tcm = NULL,
.p1.x = omap_dmm->container_width - 1,
.p1.y = omap_dmm->container_height - 1,
};
/* initialize all LUTs to dummy page entries */
for (i = 0; i < omap_dmm->num_lut; i++) {
area.tcm = omap_dmm->tcm[i];
if (fill(&area, NULL, 0, 0, true))
dev_err(dev, "refill failed");
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(omap_dmm_pm_ops, NULL, omap_dmm_resume);
#if defined(CONFIG_OF)
static const struct dmm_platform_data dmm_omap4_platform_data = {
.cpu_cache_flags = OMAP_BO_WC,
};
static const struct dmm_platform_data dmm_omap5_platform_data = {
.cpu_cache_flags = OMAP_BO_UNCACHED,
};
static const struct of_device_id dmm_of_match[] = {
{
.compatible = "ti,omap4-dmm",
.data = &dmm_omap4_platform_data,
},
{
.compatible = "ti,omap5-dmm",
.data = &dmm_omap5_platform_data,
},
{},
};
#endif
struct platform_driver omap_dmm_driver = {
.probe = omap_dmm_probe,
.remove = omap_dmm_remove,
.driver = {
.owner = THIS_MODULE,
.name = DMM_DRIVER_NAME,
.of_match_table = of_match_ptr(dmm_of_match),
.pm = &omap_dmm_pm_ops,
},
};
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Andy Gross <andy.gross@ti.com>");
MODULE_DESCRIPTION("OMAP DMM/Tiler Driver");