OpenCloudOS-Kernel/drivers/media/video/usbvideo/quickcam_messenger.c

1121 lines
27 KiB
C

/*
* Driver for Logitech Quickcam Messenger usb video camera
* Copyright (C) Jaya Kumar
*
* This work was sponsored by CIS(M) Sdn Bhd.
* History:
* 05/08/2006 - Jaya Kumar
* I wrote this based on the konicawc by Simon Evans.
* -
* Full credit for reverse engineering and creating an initial
* working linux driver for the VV6422 goes to the qce-ga project by
* Tuukka Toivonen, Jochen Hoenicke, Peter McConnell,
* Cristiano De Michele, Georg Acher, Jean-Frederic Clere as well as
* others.
* ---
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/input.h>
#include <linux/usb/input.h>
#include "usbvideo.h"
#include "quickcam_messenger.h"
/*
* Version Information
*/
#ifdef CONFIG_USB_DEBUG
static int debug;
#define DEBUG(n, format, arg...) \
if (n <= debug) { \
printk(KERN_DEBUG __FILE__ ":%s(): " format "\n", __FUNCTION__ , ## arg); \
}
#else
#define DEBUG(n, arg...)
static const int debug = 0;
#endif
#define DRIVER_VERSION "v0.01"
#define DRIVER_DESC "Logitech Quickcam Messenger USB"
#define USB_LOGITECH_VENDOR_ID 0x046D
#define USB_QCM_PRODUCT_ID 0x08F0
#define MAX_CAMERAS 1
#define MAX_COLOUR 32768
#define MAX_HUE 32768
#define MAX_BRIGHTNESS 32768
#define MAX_CONTRAST 32768
#define MAX_WHITENESS 32768
static int size = SIZE_320X240;
static int colour = MAX_COLOUR;
static int hue = MAX_HUE;
static int brightness = MAX_BRIGHTNESS;
static int contrast = MAX_CONTRAST;
static int whiteness = MAX_WHITENESS;
static struct usbvideo *cams;
static struct usb_device_id qcm_table [] = {
{ USB_DEVICE(USB_LOGITECH_VENDOR_ID, USB_QCM_PRODUCT_ID) },
{ }
};
MODULE_DEVICE_TABLE(usb, qcm_table);
#ifdef CONFIG_INPUT
static void qcm_register_input(struct qcm *cam, struct usb_device *dev)
{
struct input_dev *input_dev;
usb_make_path(dev, cam->input_physname, sizeof(cam->input_physname));
strncat(cam->input_physname, "/input0", sizeof(cam->input_physname));
cam->input = input_dev = input_allocate_device();
if (!input_dev) {
warn("insufficient mem for cam input device");
return;
}
input_dev->name = "QCM button";
input_dev->phys = cam->input_physname;
usb_to_input_id(dev, &input_dev->id);
input_dev->cdev.dev = &dev->dev;
input_dev->evbit[0] = BIT(EV_KEY);
input_dev->keybit[LONG(BTN_0)] = BIT(BTN_0);
input_dev->private = cam;
input_register_device(cam->input);
}
static void qcm_unregister_input(struct qcm *cam)
{
if (cam->input) {
input_unregister_device(cam->input);
cam->input = NULL;
}
}
static void qcm_report_buttonstat(struct qcm *cam)
{
if (cam->input) {
input_report_key(cam->input, BTN_0, cam->button_sts);
input_sync(cam->input);
}
}
static void qcm_int_irq(struct urb *urb)
{
int ret;
struct uvd *uvd = urb->context;
struct qcm *cam;
if (!CAMERA_IS_OPERATIONAL(uvd))
return;
if (!uvd->streaming)
return;
uvd->stats.urb_count++;
if (urb->status < 0)
uvd->stats.iso_err_count++;
else {
if (urb->actual_length > 0 ) {
cam = (struct qcm *) uvd->user_data;
if (cam->button_sts_buf == 0x88)
cam->button_sts = 0x0;
else if (cam->button_sts_buf == 0x80)
cam->button_sts = 0x1;
qcm_report_buttonstat(cam);
}
}
ret = usb_submit_urb(urb, GFP_ATOMIC);
if (ret < 0)
err("usb_submit_urb error (%d)", ret);
}
static int qcm_setup_input_int(struct qcm *cam, struct uvd *uvd)
{
int errflag;
usb_fill_int_urb(cam->button_urb, uvd->dev,
usb_rcvintpipe(uvd->dev, uvd->video_endp + 1),
&cam->button_sts_buf,
1,
qcm_int_irq,
uvd, 16);
errflag = usb_submit_urb(cam->button_urb, GFP_KERNEL);
if (errflag)
err ("usb_submit_int ret %d", errflag);
return errflag;
}
static void qcm_stop_int_data(struct qcm *cam)
{
usb_kill_urb(cam->button_urb);
}
static int qcm_alloc_int_urb(struct qcm *cam)
{
cam->button_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!cam->button_urb)
return -ENOMEM;
return 0;
}
static void qcm_free_int(struct qcm *cam)
{
if (cam->button_urb)
usb_free_urb(cam->button_urb);
}
#endif /* CONFIG_INPUT */
static int qcm_stv_setb(struct usb_device *dev, u16 reg, u8 val)
{
int ret;
/* we'll wait up to 3 slices but no more */
ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
0x04, USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE,
reg, 0, &val, 1, 3*HZ);
return ret;
}
static int qcm_stv_setw(struct usb_device *dev, u16 reg, u16 val)
{
int ret;
/* we'll wait up to 3 slices but no more */
ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
0x04, USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE,
reg, 0, &val, 2, 3*HZ);
return ret;
}
static int qcm_stv_getw(struct usb_device *dev, unsigned short reg,
__le16 *val)
{
int ret;
/* we'll wait up to 3 slices but no more */
ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
0x04, USB_TYPE_VENDOR | USB_DIR_IN | USB_RECIP_DEVICE,
reg, 0, val, 2, 3*HZ);
return ret;
}
static int qcm_camera_on(struct uvd *uvd)
{
int ret;
CHECK_RET(ret, qcm_stv_setb(uvd->dev, STV_ISO_ENABLE, 0x01));
return 0;
}
static int qcm_camera_off(struct uvd *uvd)
{
int ret;
CHECK_RET(ret, qcm_stv_setb(uvd->dev, STV_ISO_ENABLE, 0x00));
return 0;
}
static void qcm_hsv2rgb(u16 hue, u16 sat, u16 val, u16 *r, u16 *g, u16 *b)
{
unsigned int segment, valsat;
signed int h = (signed int) hue;
unsigned int s = (sat - 32768) * 2; /* rescale */
unsigned int v = val;
unsigned int p;
/*
the registers controling gain are 8 bit of which
we affect only the last 4 bits with our gain.
we know that if saturation is 0, (unsaturated) then
we're grayscale (center axis of the colour cone) so
we set rgb=value. we use a formula obtained from
wikipedia to map the cone to the RGB plane. it's
as follows for the human value case of h=0..360,
s=0..1, v=0..1
h_i = h/60 % 6 , f = h/60 - h_i , p = v(1-s)
q = v(1 - f*s) , t = v(1 - (1-f)s)
h_i==0 => r=v , g=t, b=p
h_i==1 => r=q , g=v, b=p
h_i==2 => r=p , g=v, b=t
h_i==3 => r=p , g=q, b=v
h_i==4 => r=t , g=p, b=v
h_i==5 => r=v , g=p, b=q
the bottom side (the point) and the stuff just up
of that is black so we simplify those two cases.
*/
if (sat < 32768) {
/* anything less than this is unsaturated */
*r = val;
*g = val;
*b = val;
return;
}
if (val <= (0xFFFF/8)) {
/* anything less than this is black */
*r = 0;
*g = 0;
*b = 0;
return;
}
/* the rest of this code is copying tukkat's
implementation of the hsv2rgb conversion as taken
from qc-usb-messenger code. the 10923 is 0xFFFF/6
to divide the cone into 6 sectors. */
segment = (h + 10923) & 0xFFFF;
segment = segment*3 >> 16; /* 0..2: 0=R, 1=G, 2=B */
hue -= segment * 21845; /* -10923..10923 */
h = hue;
h *= 3;
valsat = v*s >> 16; /* 0..65534 */
p = v - valsat;
if (h >= 0) {
unsigned int t = v - (valsat * (32769 - h) >> 15);
switch (segment) {
case 0: /* R-> */
*r = v;
*g = t;
*b = p;
break;
case 1: /* G-> */
*r = p;
*g = v;
*b = t;
break;
case 2: /* B-> */
*r = t;
*g = p;
*b = v;
break;
}
} else {
unsigned int q = v - (valsat * (32769 + h) >> 15);
switch (segment) {
case 0: /* ->R */
*r = v;
*g = p;
*b = q;
break;
case 1: /* ->G */
*r = q;
*g = v;
*b = p;
break;
case 2: /* ->B */
*r = p;
*g = q;
*b = v;
break;
}
}
}
static int qcm_sensor_set_gains(struct uvd *uvd, u16 hue,
u16 saturation, u16 value)
{
int ret;
u16 r=0,g=0,b=0;
/* this code is based on qc-usb-messenger */
qcm_hsv2rgb(hue, saturation, value, &r, &g, &b);
r >>= 12;
g >>= 12;
b >>= 12;
/* min val is 8 */
r = max((u16) 8, r);
g = max((u16) 8, g);
b = max((u16) 8, b);
r |= 0x30;
g |= 0x30;
b |= 0x30;
/* set the r,g,b gain registers */
CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x0509, r));
CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x050A, g));
CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x050B, b));
/* doing as qc-usb did */
CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x050C, 0x2A));
CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x050D, 0x01));
CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x143F, 0x01));
return 0;
}
static int qcm_sensor_set_exposure(struct uvd *uvd, int exposure)
{
int ret;
int formedval;
/* calculation was from qc-usb-messenger driver */
formedval = ( exposure >> 12 );
/* max value for formedval is 14 */
formedval = min(formedval, 14);
CHECK_RET(ret, qcm_stv_setb(uvd->dev,
0x143A, 0xF0 | formedval));
CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x143F, 0x01));
return 0;
}
static int qcm_sensor_setlevels(struct uvd *uvd, int brightness, int contrast,
int hue, int colour)
{
int ret;
/* brightness is exposure, contrast is gain, colour is saturation */
CHECK_RET(ret,
qcm_sensor_set_exposure(uvd, brightness));
CHECK_RET(ret, qcm_sensor_set_gains(uvd, hue, colour, contrast));
return 0;
}
static int qcm_sensor_setsize(struct uvd *uvd, u8 size)
{
int ret;
CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x1505, size));
return 0;
}
static int qcm_sensor_set_shutter(struct uvd *uvd, int whiteness)
{
int ret;
/* some rescaling as done by the qc-usb-messenger code */
if (whiteness > 0xC000)
whiteness = 0xC000 + (whiteness & 0x3FFF)*8;
CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x143D,
(whiteness >> 8) & 0xFF));
CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x143E,
(whiteness >> 16) & 0x03));
CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x143F, 0x01));
return 0;
}
static int qcm_sensor_init(struct uvd *uvd)
{
struct qcm *cam = (struct qcm *) uvd->user_data;
int ret;
int i;
for (i=0; i < sizeof(regval_table)/sizeof(regval_table[0]) ; i++) {
CHECK_RET(ret, qcm_stv_setb(uvd->dev,
regval_table[i].reg,
regval_table[i].val));
}
CHECK_RET(ret, qcm_stv_setw(uvd->dev, 0x15c1,
cpu_to_le16(ISOC_PACKET_SIZE)));
CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x15c3, 0x08));
CHECK_RET(ret, ret = qcm_stv_setb(uvd->dev, 0x143f, 0x01));
CHECK_RET(ret, qcm_stv_setb(uvd->dev, STV_ISO_ENABLE, 0x00));
CHECK_RET(ret, qcm_sensor_setsize(uvd, camera_sizes[cam->size].cmd));
CHECK_RET(ret, qcm_sensor_setlevels(uvd, uvd->vpic.brightness,
uvd->vpic.contrast, uvd->vpic.hue, uvd->vpic.colour));
CHECK_RET(ret, qcm_sensor_set_shutter(uvd, uvd->vpic.whiteness));
CHECK_RET(ret, qcm_sensor_setsize(uvd, camera_sizes[cam->size].cmd));
return 0;
}
static int qcm_set_camera_size(struct uvd *uvd)
{
int ret;
struct qcm *cam = (struct qcm *) uvd->user_data;
CHECK_RET(ret, qcm_sensor_setsize(uvd, camera_sizes[cam->size].cmd));
cam->width = camera_sizes[cam->size].width;
cam->height = camera_sizes[cam->size].height;
uvd->videosize = VIDEOSIZE(cam->width, cam->height);
return 0;
}
static int qcm_setup_on_open(struct uvd *uvd)
{
int ret;
CHECK_RET(ret, qcm_sensor_set_gains(uvd, uvd->vpic.hue,
uvd->vpic.colour, uvd->vpic.contrast));
CHECK_RET(ret, qcm_sensor_set_exposure(uvd, uvd->vpic.brightness));
CHECK_RET(ret, qcm_sensor_set_shutter(uvd, uvd->vpic.whiteness));
CHECK_RET(ret, qcm_set_camera_size(uvd));
CHECK_RET(ret, qcm_camera_on(uvd));
return 0;
}
static void qcm_adjust_picture(struct uvd *uvd)
{
int ret;
struct qcm *cam = (struct qcm *) uvd->user_data;
ret = qcm_camera_off(uvd);
if (ret) {
err("can't turn camera off. abandoning pic adjustment");
return;
}
/* if there's been a change in contrast, hue, or
colour then we need to recalculate hsv in order
to update gains */
if ((cam->contrast != uvd->vpic.contrast) ||
(cam->hue != uvd->vpic.hue) ||
(cam->colour != uvd->vpic.colour)) {
cam->contrast = uvd->vpic.contrast;
cam->hue = uvd->vpic.hue;
cam->colour = uvd->vpic.colour;
ret = qcm_sensor_set_gains(uvd, cam->hue, cam->colour,
cam->contrast);
if (ret) {
err("can't set gains. abandoning pic adjustment");
return;
}
}
if (cam->brightness != uvd->vpic.brightness) {
cam->brightness = uvd->vpic.brightness;
ret = qcm_sensor_set_exposure(uvd, cam->brightness);
if (ret) {
err("can't set exposure. abandoning pic adjustment");
return;
}
}
if (cam->whiteness != uvd->vpic.whiteness) {
cam->whiteness = uvd->vpic.whiteness;
qcm_sensor_set_shutter(uvd, cam->whiteness);
if (ret) {
err("can't set shutter. abandoning pic adjustment");
return;
}
}
ret = qcm_camera_on(uvd);
if (ret) {
err("can't reenable camera. pic adjustment failed");
return;
}
}
static int qcm_process_frame(struct uvd *uvd, u8 *cdata, int framelen)
{
int datalen;
int totaldata;
struct framehdr {
__be16 id;
__be16 len;
};
struct framehdr *fhdr;
totaldata = 0;
while (framelen) {
fhdr = (struct framehdr *) cdata;
datalen = be16_to_cpu(fhdr->len);
framelen -= 4;
cdata += 4;
if ((fhdr->id) == cpu_to_be16(0x8001)) {
RingQueue_Enqueue(&uvd->dp, marker, 4);
totaldata += 4;
continue;
}
if ((fhdr->id & cpu_to_be16(0xFF00)) == cpu_to_be16(0x0200)) {
RingQueue_Enqueue(&uvd->dp, cdata, datalen);
totaldata += datalen;
}
framelen -= datalen;
cdata += datalen;
}
return totaldata;
}
static int qcm_compress_iso(struct uvd *uvd, struct urb *dataurb)
{
int totlen;
int i;
unsigned char *cdata;
totlen=0;
for (i = 0; i < dataurb->number_of_packets; i++) {
int n = dataurb->iso_frame_desc[i].actual_length;
int st = dataurb->iso_frame_desc[i].status;
cdata = dataurb->transfer_buffer +
dataurb->iso_frame_desc[i].offset;
if (st < 0) {
warn("Data error: packet=%d. len=%d. status=%d.",
i, n, st);
uvd->stats.iso_err_count++;
continue;
}
if (!n)
continue;
totlen += qcm_process_frame(uvd, cdata, n);
}
return totlen;
}
static void resubmit_urb(struct uvd *uvd, struct urb *urb)
{
int ret;
urb->dev = uvd->dev;
ret = usb_submit_urb(urb, GFP_ATOMIC);
if (ret)
err("usb_submit_urb error (%d)", ret);
}
static void qcm_isoc_irq(struct urb *urb)
{
int len;
struct uvd *uvd = urb->context;
if (!CAMERA_IS_OPERATIONAL(uvd))
return;
if (!uvd->streaming)
return;
uvd->stats.urb_count++;
if (!urb->actual_length) {
resubmit_urb(uvd, urb);
return;
}
len = qcm_compress_iso(uvd, urb);
resubmit_urb(uvd, urb);
uvd->stats.urb_length = len;
uvd->stats.data_count += len;
if (len)
RingQueue_WakeUpInterruptible(&uvd->dp);
}
static int qcm_start_data(struct uvd *uvd)
{
struct qcm *cam = (struct qcm *) uvd->user_data;
int i;
int errflag;
int pktsz;
int err;
pktsz = uvd->iso_packet_len;
if (!CAMERA_IS_OPERATIONAL(uvd)) {
err("Camera is not operational");
return -EFAULT;
}
err = usb_set_interface(uvd->dev, uvd->iface, uvd->ifaceAltActive);
if (err < 0) {
err("usb_set_interface error");
uvd->last_error = err;
return -EBUSY;
}
for (i=0; i < USBVIDEO_NUMSBUF; i++) {
int j, k;
struct urb *urb = uvd->sbuf[i].urb;
urb->dev = uvd->dev;
urb->context = uvd;
urb->pipe = usb_rcvisocpipe(uvd->dev, uvd->video_endp);
urb->interval = 1;
urb->transfer_flags = URB_ISO_ASAP;
urb->transfer_buffer = uvd->sbuf[i].data;
urb->complete = qcm_isoc_irq;
urb->number_of_packets = FRAMES_PER_DESC;
urb->transfer_buffer_length = pktsz * FRAMES_PER_DESC;
for (j=k=0; j < FRAMES_PER_DESC; j++, k += pktsz) {
urb->iso_frame_desc[j].offset = k;
urb->iso_frame_desc[j].length = pktsz;
}
}
uvd->streaming = 1;
uvd->curframe = -1;
for (i=0; i < USBVIDEO_NUMSBUF; i++) {
errflag = usb_submit_urb(uvd->sbuf[i].urb, GFP_KERNEL);
if (errflag)
err ("usb_submit_isoc(%d) ret %d", i, errflag);
}
CHECK_RET(err, qcm_setup_input_int(cam, uvd));
CHECK_RET(err, qcm_camera_on(uvd));
return 0;
}
static void qcm_stop_data(struct uvd *uvd)
{
struct qcm *cam = (struct qcm *) uvd->user_data;
int i, j;
int ret;
if ((uvd == NULL) || (!uvd->streaming) || (uvd->dev == NULL))
return;
ret = qcm_camera_off(uvd);
if (ret)
warn("couldn't turn the cam off.");
uvd->streaming = 0;
/* Unschedule all of the iso td's */
for (i=0; i < USBVIDEO_NUMSBUF; i++)
usb_kill_urb(uvd->sbuf[i].urb);
qcm_stop_int_data(cam);
if (!uvd->remove_pending) {
/* Set packet size to 0 */
j = usb_set_interface(uvd->dev, uvd->iface,
uvd->ifaceAltInactive);
if (j < 0) {
err("usb_set_interface() error %d.", j);
uvd->last_error = j;
}
}
}
static void qcm_process_isoc(struct uvd *uvd, struct usbvideo_frame *frame)
{
struct qcm *cam = (struct qcm *) uvd->user_data;
int x;
struct rgb *rgbL0;
struct rgb *rgbL1;
struct bayL0 *bayL0;
struct bayL1 *bayL1;
int hor,ver,hordel,verdel;
assert(frame != NULL);
switch (cam->size) {
case SIZE_160X120:
hor = 162; ver = 124; hordel = 1; verdel = 2;
break;
case SIZE_320X240:
default:
hor = 324; ver = 248; hordel = 2; verdel = 4;
break;
}
if (frame->scanstate == ScanState_Scanning) {
while (RingQueue_GetLength(&uvd->dp) >=
4 + (hor*verdel + hordel)) {
if ((RING_QUEUE_PEEK(&uvd->dp, 0) == 0x00) &&
(RING_QUEUE_PEEK(&uvd->dp, 1) == 0xff) &&
(RING_QUEUE_PEEK(&uvd->dp, 2) == 0x00) &&
(RING_QUEUE_PEEK(&uvd->dp, 3) == 0xff)) {
frame->curline = 0;
frame->scanstate = ScanState_Lines;
frame->frameState = FrameState_Grabbing;
RING_QUEUE_DEQUEUE_BYTES(&uvd->dp, 4);
/*
* if we're starting, we need to discard the first
* 4 lines of y bayer data
* and the first 2 gr elements of x bayer data
*/
RING_QUEUE_DEQUEUE_BYTES(&uvd->dp,
(hor*verdel + hordel));
break;
}
RING_QUEUE_DEQUEUE_BYTES(&uvd->dp, 1);
}
}
if (frame->scanstate == ScanState_Scanning)
return;
/* now we can start processing bayer data so long as we have at least
* 2 lines worth of data. this is the simplest demosaicing method that
* I could think of. I use each 2x2 bayer element without interpolation
* to generate 4 rgb pixels.
*/
while ( frame->curline < cam->height &&
(RingQueue_GetLength(&uvd->dp) >= hor*2)) {
/* get 2 lines of bayer for demosaicing
* into 2 lines of RGB */
RingQueue_Dequeue(&uvd->dp, cam->scratch, hor*2);
bayL0 = (struct bayL0 *) cam->scratch;
bayL1 = (struct bayL1 *) (cam->scratch + hor);
/* frame->curline is the rgb y line */
rgbL0 = (struct rgb *)
( frame->data + (cam->width*3*frame->curline));
/* w/2 because we're already doing 2 pixels */
rgbL1 = rgbL0 + (cam->width/2);
for (x=0; x < cam->width; x+=2) {
rgbL0->r = bayL0->r;
rgbL0->g = bayL0->g;
rgbL0->b = bayL1->b;
rgbL0->r2 = bayL0->r;
rgbL0->g2 = bayL1->g;
rgbL0->b2 = bayL1->b;
rgbL1->r = bayL0->r;
rgbL1->g = bayL1->g;
rgbL1->b = bayL1->b;
rgbL1->r2 = bayL0->r;
rgbL1->g2 = bayL1->g;
rgbL1->b2 = bayL1->b;
rgbL0++;
rgbL1++;
bayL0++;
bayL1++;
}
frame->seqRead_Length += cam->width*3*2;
frame->curline += 2;
}
/* See if we filled the frame */
if (frame->curline == cam->height) {
frame->frameState = FrameState_Done_Hold;
frame->curline = 0;
uvd->curframe = -1;
uvd->stats.frame_num++;
}
}
/* taken from konicawc */
static int qcm_set_video_mode(struct uvd *uvd, struct video_window *vw)
{
int ret;
int newsize;
int oldsize;
int x = vw->width;
int y = vw->height;
struct qcm *cam = (struct qcm *) uvd->user_data;
if (x > 0 && y > 0) {
DEBUG(2, "trying to find size %d,%d", x, y);
for (newsize = 0; newsize <= MAX_FRAME_SIZE; newsize++) {
if ((camera_sizes[newsize].width == x) &&
(camera_sizes[newsize].height == y))
break;
}
} else
newsize = cam->size;
if (newsize > MAX_FRAME_SIZE) {
DEBUG(1, "couldn't find size %d,%d", x, y);
return -EINVAL;
}
if (newsize == cam->size) {
DEBUG(1, "Nothing to do");
return 0;
}
qcm_stop_data(uvd);
if (cam->size != newsize) {
oldsize = cam->size;
cam->size = newsize;
ret = qcm_set_camera_size(uvd);
if (ret) {
err("Couldn't set camera size, err=%d",ret);
/* restore the original size */
cam->size = oldsize;
return ret;
}
}
/* Flush the input queue and clear any current frame in progress */
RingQueue_Flush(&uvd->dp);
if (uvd->curframe != -1) {
uvd->frame[uvd->curframe].curline = 0;
uvd->frame[uvd->curframe].seqRead_Length = 0;
uvd->frame[uvd->curframe].seqRead_Index = 0;
}
CHECK_RET(ret, qcm_start_data(uvd));
return 0;
}
static int qcm_configure_video(struct uvd *uvd)
{
int ret;
memset(&uvd->vpic, 0, sizeof(uvd->vpic));
memset(&uvd->vpic_old, 0x55, sizeof(uvd->vpic_old));
uvd->vpic.colour = colour;
uvd->vpic.hue = hue;
uvd->vpic.brightness = brightness;
uvd->vpic.contrast = contrast;
uvd->vpic.whiteness = whiteness;
uvd->vpic.depth = 24;
uvd->vpic.palette = VIDEO_PALETTE_RGB24;
memset(&uvd->vcap, 0, sizeof(uvd->vcap));
strcpy(uvd->vcap.name, "QCM USB Camera");
uvd->vcap.type = VID_TYPE_CAPTURE;
uvd->vcap.channels = 1;
uvd->vcap.audios = 0;
uvd->vcap.minwidth = camera_sizes[SIZE_160X120].width;
uvd->vcap.minheight = camera_sizes[SIZE_160X120].height;
uvd->vcap.maxwidth = camera_sizes[SIZE_320X240].width;
uvd->vcap.maxheight = camera_sizes[SIZE_320X240].height;
memset(&uvd->vchan, 0, sizeof(uvd->vchan));
uvd->vchan.flags = 0 ;
uvd->vchan.tuners = 0;
uvd->vchan.channel = 0;
uvd->vchan.type = VIDEO_TYPE_CAMERA;
strcpy(uvd->vchan.name, "Camera");
CHECK_RET(ret, qcm_sensor_init(uvd));
return 0;
}
static int qcm_probe(struct usb_interface *intf,
const struct usb_device_id *devid)
{
int err;
struct uvd *uvd;
struct usb_device *dev = interface_to_usbdev(intf);
struct qcm *cam;
size_t buffer_size;
unsigned char video_ep;
struct usb_host_interface *interface;
struct usb_endpoint_descriptor *endpoint;
int i,j;
unsigned int ifacenum, ifacenum_inact=0;
__le16 sensor_id;
/* we don't support multiconfig cams */
if (dev->descriptor.bNumConfigurations != 1)
return -ENODEV;
/* first check for the video interface and not
* the audio interface */
interface = &intf->cur_altsetting[0];
if ((interface->desc.bInterfaceClass != USB_CLASS_VENDOR_SPEC)
|| (interface->desc.bInterfaceSubClass !=
USB_CLASS_VENDOR_SPEC))
return -ENODEV;
/*
walk through each endpoint in each setting in the interface
stop when we find the one that's an isochronous IN endpoint.
*/
for (i=0; i < intf->num_altsetting; i++) {
interface = &intf->cur_altsetting[i];
ifacenum = interface->desc.bAlternateSetting;
/* walk the end points */
for (j=0; j < interface->desc.bNumEndpoints; j++) {
endpoint = &interface->endpoint[j].desc;
if ((endpoint->bEndpointAddress &
USB_ENDPOINT_DIR_MASK) != USB_DIR_IN)
continue; /* not input then not good */
buffer_size = le16_to_cpu(endpoint->wMaxPacketSize);
if (!buffer_size) {
ifacenum_inact = ifacenum;
continue; /* 0 pkt size is not what we want */
}
if ((endpoint->bmAttributes &
USB_ENDPOINT_XFERTYPE_MASK) ==
USB_ENDPOINT_XFER_ISOC) {
video_ep = endpoint->bEndpointAddress;
/* break out of the search */
goto good_videoep;
}
}
}
/* failed out since nothing useful was found */
err("No suitable endpoint was found\n");
return -ENODEV;
good_videoep:
/* disable isochronous stream before doing anything else */
err = qcm_stv_setb(dev, STV_ISO_ENABLE, 0);
if (err < 0) {
err("Failed to disable sensor stream");
return -EIO;
}
/*
Check that this is the same unknown sensor that is known to work. This
sensor is suspected to be the ST VV6422C001. I'll check the same value
that the qc-usb driver checks. This value is probably not even the
sensor ID since it matches the USB dev ID. Oh well. If it doesn't
match, it's probably a diff sensor so exit and apologize.
*/
err = qcm_stv_getw(dev, CMOS_SENSOR_IDREV, &sensor_id);
if (err < 0) {
err("Couldn't read sensor values. Err %d\n",err);
return err;
}
if (sensor_id != cpu_to_le16(0x08F0)) {
err("Sensor ID %x != %x. Unsupported. Sorry\n",
le16_to_cpu(sensor_id), (0x08F0));
return -ENODEV;
}
uvd = usbvideo_AllocateDevice(cams);
if (!uvd)
return -ENOMEM;
cam = (struct qcm *) uvd->user_data;
/* buf for doing demosaicing */
cam->scratch = kmalloc(324*2, GFP_KERNEL);
if (!cam->scratch) /* uvd freed in dereg */
return -ENOMEM;
/* yes, if we fail after here, cam->scratch gets freed
by qcm_free_uvd */
err = qcm_alloc_int_urb(cam);
if (err < 0)
return err;
/* yes, if we fail after here, int urb gets freed
by qcm_free_uvd */
RESTRICT_TO_RANGE(size, SIZE_160X120, SIZE_320X240);
cam->width = camera_sizes[size].width;
cam->height = camera_sizes[size].height;
cam->size = size;
uvd->debug = debug;
uvd->flags = 0;
uvd->dev = dev;
uvd->iface = intf->altsetting->desc.bInterfaceNumber;
uvd->ifaceAltActive = ifacenum;
uvd->ifaceAltInactive = ifacenum_inact;
uvd->video_endp = video_ep;
uvd->iso_packet_len = buffer_size;
uvd->paletteBits = 1L << VIDEO_PALETTE_RGB24;
uvd->defaultPalette = VIDEO_PALETTE_RGB24;
uvd->canvas = VIDEOSIZE(320, 240);
uvd->videosize = VIDEOSIZE(cam->width, cam->height);
err = qcm_configure_video(uvd);
if (err) {
err("failed to configure video settings");
return err;
}
err = usbvideo_RegisterVideoDevice(uvd);
if (err) { /* the uvd gets freed in Deregister */
err("usbvideo_RegisterVideoDevice() failed.");
return err;
}
uvd->max_frame_size = (320 * 240 * 3);
qcm_register_input(cam, dev);
usb_set_intfdata(intf, uvd);
return 0;
}
static void qcm_free_uvd(struct uvd *uvd)
{
struct qcm *cam = (struct qcm *) uvd->user_data;
kfree(cam->scratch);
qcm_unregister_input(cam);
qcm_free_int(cam);
}
static struct usbvideo_cb qcm_driver = {
.probe = qcm_probe,
.setupOnOpen = qcm_setup_on_open,
.processData = qcm_process_isoc,
.setVideoMode = qcm_set_video_mode,
.startDataPump = qcm_start_data,
.stopDataPump = qcm_stop_data,
.adjustPicture = qcm_adjust_picture,
.userFree = qcm_free_uvd
};
static int __init qcm_init(void)
{
info(DRIVER_DESC " " DRIVER_VERSION);
return usbvideo_register(
&cams,
MAX_CAMERAS,
sizeof(struct qcm),
"QCM",
&qcm_driver,
THIS_MODULE,
qcm_table);
}
static void __exit qcm_exit(void)
{
usbvideo_Deregister(&cams);
}
module_param(size, int, 0);
MODULE_PARM_DESC(size, "Initial Size 0: 160x120 1: 320x240");
module_param(colour, int, 0);
MODULE_PARM_DESC(colour, "Initial colour");
module_param(hue, int, 0);
MODULE_PARM_DESC(hue, "Initial hue");
module_param(brightness, int, 0);
MODULE_PARM_DESC(brightness, "Initial brightness");
module_param(contrast, int, 0);
MODULE_PARM_DESC(contrast, "Initial contrast");
module_param(whiteness, int, 0);
MODULE_PARM_DESC(whiteness, "Initial whiteness");
#ifdef CONFIG_USB_DEBUG
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Debug level: 0-9 (default=0)");
#endif
module_init(qcm_init);
module_exit(qcm_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Jaya Kumar");
MODULE_DESCRIPTION("QCM USB Camera");
MODULE_SUPPORTED_DEVICE("QCM USB Camera");