OpenCloudOS-Kernel/arch/s390/kernel/setup.c

1004 lines
26 KiB
C

/*
* arch/s390/kernel/setup.c
*
* S390 version
* Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Author(s): Hartmut Penner (hp@de.ibm.com),
* Martin Schwidefsky (schwidefsky@de.ibm.com)
*
* Derived from "arch/i386/kernel/setup.c"
* Copyright (C) 1995, Linus Torvalds
*/
/*
* This file handles the architecture-dependent parts of initialization
*/
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/tty.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/bootmem.h>
#include <linux/root_dev.h>
#include <linux/console.h>
#include <linux/seq_file.h>
#include <linux/kernel_stat.h>
#include <linux/device.h>
#include <linux/notifier.h>
#include <linux/pfn.h>
#include <linux/ctype.h>
#include <linux/reboot.h>
#include <asm/ipl.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/smp.h>
#include <asm/mmu_context.h>
#include <asm/cpcmd.h>
#include <asm/lowcore.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/sections.h>
#include <asm/ebcdic.h>
#include <asm/compat.h>
long psw_kernel_bits = (PSW_BASE_BITS | PSW_MASK_DAT | PSW_ASC_PRIMARY |
PSW_MASK_MCHECK | PSW_DEFAULT_KEY);
long psw_user_bits = (PSW_BASE_BITS | PSW_MASK_DAT | PSW_ASC_HOME |
PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK |
PSW_MASK_PSTATE | PSW_DEFAULT_KEY);
/*
* User copy operations.
*/
struct uaccess_ops uaccess;
EXPORT_SYMBOL(uaccess);
/*
* Machine setup..
*/
unsigned int console_mode = 0;
unsigned int console_devno = -1;
unsigned int console_irq = -1;
unsigned long machine_flags = 0;
unsigned long elf_hwcap = 0;
char elf_platform[ELF_PLATFORM_SIZE];
struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS];
volatile int __cpu_logical_map[NR_CPUS]; /* logical cpu to cpu address */
static unsigned long __initdata memory_end;
/*
* This is set up by the setup-routine at boot-time
* for S390 need to find out, what we have to setup
* using address 0x10400 ...
*/
#include <asm/setup.h>
static struct resource code_resource = {
.name = "Kernel code",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
static struct resource data_resource = {
.name = "Kernel data",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
/*
* cpu_init() initializes state that is per-CPU.
*/
void __cpuinit cpu_init(void)
{
int addr = hard_smp_processor_id();
/*
* Store processor id in lowcore (used e.g. in timer_interrupt)
*/
get_cpu_id(&S390_lowcore.cpu_data.cpu_id);
S390_lowcore.cpu_data.cpu_addr = addr;
/*
* Force FPU initialization:
*/
clear_thread_flag(TIF_USEDFPU);
clear_used_math();
atomic_inc(&init_mm.mm_count);
current->active_mm = &init_mm;
if (current->mm)
BUG();
enter_lazy_tlb(&init_mm, current);
}
/*
* VM halt and poweroff setup routines
*/
char vmhalt_cmd[128] = "";
char vmpoff_cmd[128] = "";
static char vmpanic_cmd[128] = "";
static void strncpy_skip_quote(char *dst, char *src, int n)
{
int sx, dx;
dx = 0;
for (sx = 0; src[sx] != 0; sx++) {
if (src[sx] == '"') continue;
dst[dx++] = src[sx];
if (dx >= n) break;
}
}
static int __init vmhalt_setup(char *str)
{
strncpy_skip_quote(vmhalt_cmd, str, 127);
vmhalt_cmd[127] = 0;
return 1;
}
__setup("vmhalt=", vmhalt_setup);
static int __init vmpoff_setup(char *str)
{
strncpy_skip_quote(vmpoff_cmd, str, 127);
vmpoff_cmd[127] = 0;
return 1;
}
__setup("vmpoff=", vmpoff_setup);
static int vmpanic_notify(struct notifier_block *self, unsigned long event,
void *data)
{
if (MACHINE_IS_VM && strlen(vmpanic_cmd) > 0)
cpcmd(vmpanic_cmd, NULL, 0, NULL);
return NOTIFY_OK;
}
#define PANIC_PRI_VMPANIC 0
static struct notifier_block vmpanic_nb = {
.notifier_call = vmpanic_notify,
.priority = PANIC_PRI_VMPANIC
};
static int __init vmpanic_setup(char *str)
{
static int register_done __initdata = 0;
strncpy_skip_quote(vmpanic_cmd, str, 127);
vmpanic_cmd[127] = 0;
if (!register_done) {
register_done = 1;
atomic_notifier_chain_register(&panic_notifier_list,
&vmpanic_nb);
}
return 1;
}
__setup("vmpanic=", vmpanic_setup);
/*
* condev= and conmode= setup parameter.
*/
static int __init condev_setup(char *str)
{
int vdev;
vdev = simple_strtoul(str, &str, 0);
if (vdev >= 0 && vdev < 65536) {
console_devno = vdev;
console_irq = -1;
}
return 1;
}
__setup("condev=", condev_setup);
static int __init conmode_setup(char *str)
{
#if defined(CONFIG_SCLP_CONSOLE)
if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
SET_CONSOLE_SCLP;
#endif
#if defined(CONFIG_TN3215_CONSOLE)
if (strncmp(str, "3215", 5) == 0)
SET_CONSOLE_3215;
#endif
#if defined(CONFIG_TN3270_CONSOLE)
if (strncmp(str, "3270", 5) == 0)
SET_CONSOLE_3270;
#endif
return 1;
}
__setup("conmode=", conmode_setup);
static void __init conmode_default(void)
{
char query_buffer[1024];
char *ptr;
if (MACHINE_IS_VM) {
cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
ptr = strstr(query_buffer, "SUBCHANNEL =");
console_irq = simple_strtoul(ptr + 13, NULL, 16);
cpcmd("QUERY TERM", query_buffer, 1024, NULL);
ptr = strstr(query_buffer, "CONMODE");
/*
* Set the conmode to 3215 so that the device recognition
* will set the cu_type of the console to 3215. If the
* conmode is 3270 and we don't set it back then both
* 3215 and the 3270 driver will try to access the console
* device (3215 as console and 3270 as normal tty).
*/
cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
if (ptr == NULL) {
#if defined(CONFIG_SCLP_CONSOLE)
SET_CONSOLE_SCLP;
#endif
return;
}
if (strncmp(ptr + 8, "3270", 4) == 0) {
#if defined(CONFIG_TN3270_CONSOLE)
SET_CONSOLE_3270;
#elif defined(CONFIG_TN3215_CONSOLE)
SET_CONSOLE_3215;
#elif defined(CONFIG_SCLP_CONSOLE)
SET_CONSOLE_SCLP;
#endif
} else if (strncmp(ptr + 8, "3215", 4) == 0) {
#if defined(CONFIG_TN3215_CONSOLE)
SET_CONSOLE_3215;
#elif defined(CONFIG_TN3270_CONSOLE)
SET_CONSOLE_3270;
#elif defined(CONFIG_SCLP_CONSOLE)
SET_CONSOLE_SCLP;
#endif
}
} else if (MACHINE_IS_P390) {
#if defined(CONFIG_TN3215_CONSOLE)
SET_CONSOLE_3215;
#elif defined(CONFIG_TN3270_CONSOLE)
SET_CONSOLE_3270;
#endif
} else {
#if defined(CONFIG_SCLP_CONSOLE)
SET_CONSOLE_SCLP;
#endif
}
}
#if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE)
static void __init setup_zfcpdump(unsigned int console_devno)
{
static char str[64];
if (ipl_info.type != IPL_TYPE_FCP_DUMP)
return;
if (console_devno != -1)
sprintf(str, "cio_ignore=all,!0.0.%04x,!0.0.%04x",
ipl_info.data.fcp.dev_id.devno, console_devno);
else
sprintf(str, "cio_ignore=all,!0.0.%04x",
ipl_info.data.fcp.dev_id.devno);
strcat(COMMAND_LINE, " ");
strcat(COMMAND_LINE, str);
console_loglevel = 2;
}
#else
static inline void setup_zfcpdump(unsigned int console_devno) {}
#endif /* CONFIG_ZFCPDUMP */
#ifdef CONFIG_SMP
void (*_machine_restart)(char *command) = machine_restart_smp;
void (*_machine_halt)(void) = machine_halt_smp;
void (*_machine_power_off)(void) = machine_power_off_smp;
#else
/*
* Reboot, halt and power_off routines for non SMP.
*/
static void do_machine_restart_nonsmp(char * __unused)
{
do_reipl();
}
static void do_machine_halt_nonsmp(void)
{
if (MACHINE_IS_VM && strlen(vmhalt_cmd) > 0)
__cpcmd(vmhalt_cmd, NULL, 0, NULL);
signal_processor(smp_processor_id(), sigp_stop_and_store_status);
}
static void do_machine_power_off_nonsmp(void)
{
if (MACHINE_IS_VM && strlen(vmpoff_cmd) > 0)
__cpcmd(vmpoff_cmd, NULL, 0, NULL);
signal_processor(smp_processor_id(), sigp_stop_and_store_status);
}
void (*_machine_restart)(char *command) = do_machine_restart_nonsmp;
void (*_machine_halt)(void) = do_machine_halt_nonsmp;
void (*_machine_power_off)(void) = do_machine_power_off_nonsmp;
#endif
/*
* Reboot, halt and power_off stubs. They just call _machine_restart,
* _machine_halt or _machine_power_off.
*/
void machine_restart(char *command)
{
if (!in_interrupt() || oops_in_progress)
/*
* Only unblank the console if we are called in enabled
* context or a bust_spinlocks cleared the way for us.
*/
console_unblank();
_machine_restart(command);
}
void machine_halt(void)
{
if (!in_interrupt() || oops_in_progress)
/*
* Only unblank the console if we are called in enabled
* context or a bust_spinlocks cleared the way for us.
*/
console_unblank();
_machine_halt();
}
void machine_power_off(void)
{
if (!in_interrupt() || oops_in_progress)
/*
* Only unblank the console if we are called in enabled
* context or a bust_spinlocks cleared the way for us.
*/
console_unblank();
_machine_power_off();
}
/*
* Dummy power off function.
*/
void (*pm_power_off)(void) = machine_power_off;
static int __init early_parse_mem(char *p)
{
memory_end = memparse(p, &p);
return 0;
}
early_param("mem", early_parse_mem);
/*
* "ipldelay=XXX[sm]" sets ipl delay in seconds or minutes
*/
static int __init early_parse_ipldelay(char *p)
{
unsigned long delay = 0;
delay = simple_strtoul(p, &p, 0);
switch (*p) {
case 's':
case 'S':
delay *= 1000000;
break;
case 'm':
case 'M':
delay *= 60 * 1000000;
}
/* now wait for the requested amount of time */
udelay(delay);
return 0;
}
early_param("ipldelay", early_parse_ipldelay);
#ifdef CONFIG_S390_SWITCH_AMODE
unsigned int switch_amode = 0;
EXPORT_SYMBOL_GPL(switch_amode);
static void set_amode_and_uaccess(unsigned long user_amode,
unsigned long user32_amode)
{
psw_user_bits = PSW_BASE_BITS | PSW_MASK_DAT | user_amode |
PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK |
PSW_MASK_PSTATE | PSW_DEFAULT_KEY;
#ifdef CONFIG_COMPAT
psw_user32_bits = PSW_BASE32_BITS | PSW_MASK_DAT | user_amode |
PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK |
PSW_MASK_PSTATE | PSW_DEFAULT_KEY;
psw32_user_bits = PSW32_BASE_BITS | PSW32_MASK_DAT | user32_amode |
PSW32_MASK_IO | PSW32_MASK_EXT | PSW32_MASK_MCHECK |
PSW32_MASK_PSTATE;
#endif
psw_kernel_bits = PSW_BASE_BITS | PSW_MASK_DAT | PSW_ASC_HOME |
PSW_MASK_MCHECK | PSW_DEFAULT_KEY;
if (MACHINE_HAS_MVCOS) {
printk("mvcos available.\n");
memcpy(&uaccess, &uaccess_mvcos_switch, sizeof(uaccess));
} else {
printk("mvcos not available.\n");
memcpy(&uaccess, &uaccess_pt, sizeof(uaccess));
}
}
/*
* Switch kernel/user addressing modes?
*/
static int __init early_parse_switch_amode(char *p)
{
switch_amode = 1;
return 0;
}
early_param("switch_amode", early_parse_switch_amode);
#else /* CONFIG_S390_SWITCH_AMODE */
static inline void set_amode_and_uaccess(unsigned long user_amode,
unsigned long user32_amode)
{
}
#endif /* CONFIG_S390_SWITCH_AMODE */
#ifdef CONFIG_S390_EXEC_PROTECT
unsigned int s390_noexec = 0;
EXPORT_SYMBOL_GPL(s390_noexec);
/*
* Enable execute protection?
*/
static int __init early_parse_noexec(char *p)
{
if (!strncmp(p, "off", 3))
return 0;
switch_amode = 1;
s390_noexec = 1;
return 0;
}
early_param("noexec", early_parse_noexec);
#endif /* CONFIG_S390_EXEC_PROTECT */
static void setup_addressing_mode(void)
{
if (s390_noexec) {
printk("S390 execute protection active, ");
set_amode_and_uaccess(PSW_ASC_SECONDARY, PSW32_ASC_SECONDARY);
return;
}
if (switch_amode) {
printk("S390 address spaces switched, ");
set_amode_and_uaccess(PSW_ASC_PRIMARY, PSW32_ASC_PRIMARY);
}
}
static void __init
setup_lowcore(void)
{
struct _lowcore *lc;
int lc_pages;
/*
* Setup lowcore for boot cpu
*/
lc_pages = sizeof(void *) == 8 ? 2 : 1;
lc = (struct _lowcore *)
__alloc_bootmem(lc_pages * PAGE_SIZE, lc_pages * PAGE_SIZE, 0);
memset(lc, 0, lc_pages * PAGE_SIZE);
lc->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
lc->restart_psw.addr =
PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
if (switch_amode)
lc->restart_psw.mask |= PSW_ASC_HOME;
lc->external_new_psw.mask = psw_kernel_bits;
lc->external_new_psw.addr =
PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
lc->svc_new_psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT;
lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
lc->program_new_psw.mask = psw_kernel_bits;
lc->program_new_psw.addr =
PSW_ADDR_AMODE | (unsigned long)pgm_check_handler;
lc->mcck_new_psw.mask =
psw_kernel_bits & ~PSW_MASK_MCHECK & ~PSW_MASK_DAT;
lc->mcck_new_psw.addr =
PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
lc->io_new_psw.mask = psw_kernel_bits;
lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
lc->ipl_device = S390_lowcore.ipl_device;
lc->jiffy_timer = -1LL;
lc->kernel_stack = ((unsigned long) &init_thread_union) + THREAD_SIZE;
lc->async_stack = (unsigned long)
__alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0) + ASYNC_SIZE;
lc->panic_stack = (unsigned long)
__alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0) + PAGE_SIZE;
lc->current_task = (unsigned long) init_thread_union.thread_info.task;
lc->thread_info = (unsigned long) &init_thread_union;
#ifndef CONFIG_64BIT
if (MACHINE_HAS_IEEE) {
lc->extended_save_area_addr = (__u32)
__alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0);
/* enable extended save area */
__ctl_set_bit(14, 29);
}
#endif
set_prefix((u32)(unsigned long) lc);
}
static void __init
setup_resources(void)
{
struct resource *res, *sub_res;
int i;
code_resource.start = (unsigned long) &_text;
code_resource.end = (unsigned long) &_etext - 1;
data_resource.start = (unsigned long) &_etext;
data_resource.end = (unsigned long) &_edata - 1;
for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
res = alloc_bootmem_low(sizeof(struct resource));
res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
switch (memory_chunk[i].type) {
case CHUNK_READ_WRITE:
res->name = "System RAM";
break;
case CHUNK_READ_ONLY:
res->name = "System ROM";
res->flags |= IORESOURCE_READONLY;
break;
default:
res->name = "reserved";
}
res->start = memory_chunk[i].addr;
res->end = memory_chunk[i].addr + memory_chunk[i].size - 1;
request_resource(&iomem_resource, res);
if (code_resource.start >= res->start &&
code_resource.start <= res->end &&
code_resource.end > res->end) {
sub_res = alloc_bootmem_low(sizeof(struct resource));
memcpy(sub_res, &code_resource,
sizeof(struct resource));
sub_res->end = res->end;
code_resource.start = res->end + 1;
request_resource(res, sub_res);
}
if (code_resource.start >= res->start &&
code_resource.start <= res->end &&
code_resource.end <= res->end)
request_resource(res, &code_resource);
if (data_resource.start >= res->start &&
data_resource.start <= res->end &&
data_resource.end > res->end) {
sub_res = alloc_bootmem_low(sizeof(struct resource));
memcpy(sub_res, &data_resource,
sizeof(struct resource));
sub_res->end = res->end;
data_resource.start = res->end + 1;
request_resource(res, sub_res);
}
if (data_resource.start >= res->start &&
data_resource.start <= res->end &&
data_resource.end <= res->end)
request_resource(res, &data_resource);
}
}
unsigned long real_memory_size;
EXPORT_SYMBOL_GPL(real_memory_size);
static void __init setup_memory_end(void)
{
unsigned long memory_size;
unsigned long max_mem, max_phys;
int i;
#if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE)
if (ipl_info.type == IPL_TYPE_FCP_DUMP)
memory_end = ZFCPDUMP_HSA_SIZE;
#endif
memory_size = 0;
max_phys = VMALLOC_END_INIT - VMALLOC_MIN_SIZE;
memory_end &= PAGE_MASK;
max_mem = memory_end ? min(max_phys, memory_end) : max_phys;
for (i = 0; i < MEMORY_CHUNKS; i++) {
struct mem_chunk *chunk = &memory_chunk[i];
real_memory_size = max(real_memory_size,
chunk->addr + chunk->size);
if (chunk->addr >= max_mem) {
memset(chunk, 0, sizeof(*chunk));
continue;
}
if (chunk->addr + chunk->size > max_mem)
chunk->size = max_mem - chunk->addr;
memory_size = max(memory_size, chunk->addr + chunk->size);
}
if (!memory_end)
memory_end = memory_size;
}
static void __init
setup_memory(void)
{
unsigned long bootmap_size;
unsigned long start_pfn, end_pfn;
int i;
/*
* partially used pages are not usable - thus
* we are rounding upwards:
*/
start_pfn = PFN_UP(__pa(&_end));
end_pfn = max_pfn = PFN_DOWN(memory_end);
#ifdef CONFIG_BLK_DEV_INITRD
/*
* Move the initrd in case the bitmap of the bootmem allocater
* would overwrite it.
*/
if (INITRD_START && INITRD_SIZE) {
unsigned long bmap_size;
unsigned long start;
bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
bmap_size = PFN_PHYS(bmap_size);
if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
if (start + INITRD_SIZE > memory_end) {
printk("initrd extends beyond end of memory "
"(0x%08lx > 0x%08lx)\n"
"disabling initrd\n",
start + INITRD_SIZE, memory_end);
INITRD_START = INITRD_SIZE = 0;
} else {
printk("Moving initrd (0x%08lx -> 0x%08lx, "
"size: %ld)\n",
INITRD_START, start, INITRD_SIZE);
memmove((void *) start, (void *) INITRD_START,
INITRD_SIZE);
INITRD_START = start;
}
}
}
#endif
/*
* Initialize the boot-time allocator
*/
bootmap_size = init_bootmem(start_pfn, end_pfn);
/*
* Register RAM areas with the bootmem allocator.
*/
for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
unsigned long start_chunk, end_chunk, pfn;
if (memory_chunk[i].type != CHUNK_READ_WRITE)
continue;
start_chunk = PFN_DOWN(memory_chunk[i].addr);
end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size) - 1;
end_chunk = min(end_chunk, end_pfn);
if (start_chunk >= end_chunk)
continue;
add_active_range(0, start_chunk, end_chunk);
pfn = max(start_chunk, start_pfn);
for (; pfn <= end_chunk; pfn++)
page_set_storage_key(PFN_PHYS(pfn), PAGE_DEFAULT_KEY);
}
psw_set_key(PAGE_DEFAULT_KEY);
free_bootmem_with_active_regions(0, max_pfn);
/*
* Reserve memory used for lowcore/command line/kernel image.
*/
reserve_bootmem(0, (unsigned long)_ehead);
reserve_bootmem((unsigned long)_stext,
PFN_PHYS(start_pfn) - (unsigned long)_stext);
/*
* Reserve the bootmem bitmap itself as well. We do this in two
* steps (first step was init_bootmem()) because this catches
* the (very unlikely) case of us accidentally initializing the
* bootmem allocator with an invalid RAM area.
*/
reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size);
#ifdef CONFIG_BLK_DEV_INITRD
if (INITRD_START && INITRD_SIZE) {
if (INITRD_START + INITRD_SIZE <= memory_end) {
reserve_bootmem(INITRD_START, INITRD_SIZE);
initrd_start = INITRD_START;
initrd_end = initrd_start + INITRD_SIZE;
} else {
printk("initrd extends beyond end of memory "
"(0x%08lx > 0x%08lx)\ndisabling initrd\n",
initrd_start + INITRD_SIZE, memory_end);
initrd_start = initrd_end = 0;
}
}
#endif
}
static __init unsigned int stfl(void)
{
asm volatile(
" .insn s,0xb2b10000,0(0)\n" /* stfl */
"0:\n"
EX_TABLE(0b,0b));
return S390_lowcore.stfl_fac_list;
}
static __init int stfle(unsigned long long *list, int doublewords)
{
typedef struct { unsigned long long _[doublewords]; } addrtype;
register unsigned long __nr asm("0") = doublewords - 1;
asm volatile(".insn s,0xb2b00000,%0" /* stfle */
: "=m" (*(addrtype *) list), "+d" (__nr) : : "cc");
return __nr + 1;
}
/*
* Setup hardware capabilities.
*/
static void __init setup_hwcaps(void)
{
static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
struct cpuinfo_S390 *cpuinfo = &S390_lowcore.cpu_data;
unsigned long long facility_list_extended;
unsigned int facility_list;
int i;
facility_list = stfl();
/*
* The store facility list bits numbers as found in the principles
* of operation are numbered with bit 1UL<<31 as number 0 to
* bit 1UL<<0 as number 31.
* Bit 0: instructions named N3, "backported" to esa-mode
* Bit 2: z/Architecture mode is active
* Bit 7: the store-facility-list-extended facility is installed
* Bit 17: the message-security assist is installed
* Bit 19: the long-displacement facility is installed
* Bit 21: the extended-immediate facility is installed
* These get translated to:
* HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
* HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
* HWCAP_S390_LDISP bit 4, and HWCAP_S390_EIMM bit 5.
*/
for (i = 0; i < 6; i++)
if (facility_list & (1UL << (31 - stfl_bits[i])))
elf_hwcap |= 1UL << i;
/*
* Check for additional facilities with store-facility-list-extended.
* stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
* and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
* as stored by stfl, bits 32-xxx contain additional facilities.
* How many facility words are stored depends on the number of
* doublewords passed to the instruction. The additional facilites
* are:
* Bit 43: decimal floating point facility is installed
* translated to:
* HWCAP_S390_DFP bit 6.
*/
if ((elf_hwcap & (1UL << 2)) &&
stfle(&facility_list_extended, 1) > 0) {
if (facility_list_extended & (1ULL << (64 - 43)))
elf_hwcap |= 1UL << 6;
}
switch (cpuinfo->cpu_id.machine) {
case 0x9672:
#if !defined(CONFIG_64BIT)
default: /* Use "g5" as default for 31 bit kernels. */
#endif
strcpy(elf_platform, "g5");
break;
case 0x2064:
case 0x2066:
#if defined(CONFIG_64BIT)
default: /* Use "z900" as default for 64 bit kernels. */
#endif
strcpy(elf_platform, "z900");
break;
case 0x2084:
case 0x2086:
strcpy(elf_platform, "z990");
break;
case 0x2094:
strcpy(elf_platform, "z9-109");
break;
}
}
/*
* Setup function called from init/main.c just after the banner
* was printed.
*/
void __init
setup_arch(char **cmdline_p)
{
/*
* print what head.S has found out about the machine
*/
#ifndef CONFIG_64BIT
printk((MACHINE_IS_VM) ?
"We are running under VM (31 bit mode)\n" :
"We are running native (31 bit mode)\n");
printk((MACHINE_HAS_IEEE) ?
"This machine has an IEEE fpu\n" :
"This machine has no IEEE fpu\n");
#else /* CONFIG_64BIT */
printk((MACHINE_IS_VM) ?
"We are running under VM (64 bit mode)\n" :
"We are running native (64 bit mode)\n");
#endif /* CONFIG_64BIT */
/* Save unparsed command line copy for /proc/cmdline */
strlcpy(boot_command_line, COMMAND_LINE, COMMAND_LINE_SIZE);
*cmdline_p = COMMAND_LINE;
*(*cmdline_p + COMMAND_LINE_SIZE - 1) = '\0';
ROOT_DEV = Root_RAM0;
init_mm.start_code = PAGE_OFFSET;
init_mm.end_code = (unsigned long) &_etext;
init_mm.end_data = (unsigned long) &_edata;
init_mm.brk = (unsigned long) &_end;
if (MACHINE_HAS_MVCOS)
memcpy(&uaccess, &uaccess_mvcos, sizeof(uaccess));
else
memcpy(&uaccess, &uaccess_std, sizeof(uaccess));
parse_early_param();
setup_ipl_info();
setup_memory_end();
setup_addressing_mode();
setup_memory();
setup_resources();
setup_lowcore();
cpu_init();
__cpu_logical_map[0] = S390_lowcore.cpu_data.cpu_addr;
smp_setup_cpu_possible_map();
/*
* Setup capabilities (ELF_HWCAP & ELF_PLATFORM).
*/
setup_hwcaps();
/*
* Create kernel page tables and switch to virtual addressing.
*/
paging_init();
/* Setup default console */
conmode_default();
/* Setup zfcpdump support */
setup_zfcpdump(console_devno);
}
void __cpuinit print_cpu_info(struct cpuinfo_S390 *cpuinfo)
{
printk("cpu %d "
#ifdef CONFIG_SMP
"phys_idx=%d "
#endif
"vers=%02X ident=%06X machine=%04X unused=%04X\n",
cpuinfo->cpu_nr,
#ifdef CONFIG_SMP
cpuinfo->cpu_addr,
#endif
cpuinfo->cpu_id.version,
cpuinfo->cpu_id.ident,
cpuinfo->cpu_id.machine,
cpuinfo->cpu_id.unused);
}
/*
* show_cpuinfo - Get information on one CPU for use by procfs.
*/
static int show_cpuinfo(struct seq_file *m, void *v)
{
static const char *hwcap_str[7] = {
"esan3", "zarch", "stfle", "msa", "ldisp", "eimm", "dfp"
};
struct cpuinfo_S390 *cpuinfo;
unsigned long n = (unsigned long) v - 1;
int i;
s390_adjust_jiffies();
preempt_disable();
if (!n) {
seq_printf(m, "vendor_id : IBM/S390\n"
"# processors : %i\n"
"bogomips per cpu: %lu.%02lu\n",
num_online_cpus(), loops_per_jiffy/(500000/HZ),
(loops_per_jiffy/(5000/HZ))%100);
seq_puts(m, "features\t: ");
for (i = 0; i < 7; i++)
if (hwcap_str[i] && (elf_hwcap & (1UL << i)))
seq_printf(m, "%s ", hwcap_str[i]);
seq_puts(m, "\n");
}
if (cpu_online(n)) {
#ifdef CONFIG_SMP
if (smp_processor_id() == n)
cpuinfo = &S390_lowcore.cpu_data;
else
cpuinfo = &lowcore_ptr[n]->cpu_data;
#else
cpuinfo = &S390_lowcore.cpu_data;
#endif
seq_printf(m, "processor %li: "
"version = %02X, "
"identification = %06X, "
"machine = %04X\n",
n, cpuinfo->cpu_id.version,
cpuinfo->cpu_id.ident,
cpuinfo->cpu_id.machine);
}
preempt_enable();
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < NR_CPUS ? (void *)((unsigned long) *pos + 1) : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};