OpenCloudOS-Kernel/drivers/gpu/drm/ttm/ttm_memory.c

603 lines
14 KiB
C

/**************************************************************************
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#define pr_fmt(fmt) "[TTM] " fmt
#include <drm/ttm/ttm_memory.h>
#include <drm/ttm/ttm_module.h>
#include <drm/ttm/ttm_page_alloc.h>
#include <linux/spinlock.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#define TTM_MEMORY_ALLOC_RETRIES 4
struct ttm_mem_zone {
struct kobject kobj;
struct ttm_mem_global *glob;
const char *name;
uint64_t zone_mem;
uint64_t emer_mem;
uint64_t max_mem;
uint64_t swap_limit;
uint64_t used_mem;
};
static struct attribute ttm_mem_sys = {
.name = "zone_memory",
.mode = S_IRUGO
};
static struct attribute ttm_mem_emer = {
.name = "emergency_memory",
.mode = S_IRUGO | S_IWUSR
};
static struct attribute ttm_mem_max = {
.name = "available_memory",
.mode = S_IRUGO | S_IWUSR
};
static struct attribute ttm_mem_swap = {
.name = "swap_limit",
.mode = S_IRUGO | S_IWUSR
};
static struct attribute ttm_mem_used = {
.name = "used_memory",
.mode = S_IRUGO
};
static void ttm_mem_zone_kobj_release(struct kobject *kobj)
{
struct ttm_mem_zone *zone =
container_of(kobj, struct ttm_mem_zone, kobj);
pr_info("Zone %7s: Used memory at exit: %llu kiB\n",
zone->name, (unsigned long long)zone->used_mem >> 10);
kfree(zone);
}
static ssize_t ttm_mem_zone_show(struct kobject *kobj,
struct attribute *attr,
char *buffer)
{
struct ttm_mem_zone *zone =
container_of(kobj, struct ttm_mem_zone, kobj);
uint64_t val = 0;
spin_lock(&zone->glob->lock);
if (attr == &ttm_mem_sys)
val = zone->zone_mem;
else if (attr == &ttm_mem_emer)
val = zone->emer_mem;
else if (attr == &ttm_mem_max)
val = zone->max_mem;
else if (attr == &ttm_mem_swap)
val = zone->swap_limit;
else if (attr == &ttm_mem_used)
val = zone->used_mem;
spin_unlock(&zone->glob->lock);
return snprintf(buffer, PAGE_SIZE, "%llu\n",
(unsigned long long) val >> 10);
}
static void ttm_check_swapping(struct ttm_mem_global *glob);
static ssize_t ttm_mem_zone_store(struct kobject *kobj,
struct attribute *attr,
const char *buffer,
size_t size)
{
struct ttm_mem_zone *zone =
container_of(kobj, struct ttm_mem_zone, kobj);
int chars;
unsigned long val;
uint64_t val64;
chars = sscanf(buffer, "%lu", &val);
if (chars == 0)
return size;
val64 = val;
val64 <<= 10;
spin_lock(&zone->glob->lock);
if (val64 > zone->zone_mem)
val64 = zone->zone_mem;
if (attr == &ttm_mem_emer) {
zone->emer_mem = val64;
if (zone->max_mem > val64)
zone->max_mem = val64;
} else if (attr == &ttm_mem_max) {
zone->max_mem = val64;
if (zone->emer_mem < val64)
zone->emer_mem = val64;
} else if (attr == &ttm_mem_swap)
zone->swap_limit = val64;
spin_unlock(&zone->glob->lock);
ttm_check_swapping(zone->glob);
return size;
}
static struct attribute *ttm_mem_zone_attrs[] = {
&ttm_mem_sys,
&ttm_mem_emer,
&ttm_mem_max,
&ttm_mem_swap,
&ttm_mem_used,
NULL
};
static const struct sysfs_ops ttm_mem_zone_ops = {
.show = &ttm_mem_zone_show,
.store = &ttm_mem_zone_store
};
static struct kobj_type ttm_mem_zone_kobj_type = {
.release = &ttm_mem_zone_kobj_release,
.sysfs_ops = &ttm_mem_zone_ops,
.default_attrs = ttm_mem_zone_attrs,
};
static void ttm_mem_global_kobj_release(struct kobject *kobj)
{
struct ttm_mem_global *glob =
container_of(kobj, struct ttm_mem_global, kobj);
kfree(glob);
}
static struct kobj_type ttm_mem_glob_kobj_type = {
.release = &ttm_mem_global_kobj_release,
};
static bool ttm_zones_above_swap_target(struct ttm_mem_global *glob,
bool from_wq, uint64_t extra)
{
unsigned int i;
struct ttm_mem_zone *zone;
uint64_t target;
for (i = 0; i < glob->num_zones; ++i) {
zone = glob->zones[i];
if (from_wq)
target = zone->swap_limit;
else if (capable(CAP_SYS_ADMIN))
target = zone->emer_mem;
else
target = zone->max_mem;
target = (extra > target) ? 0ULL : target;
if (zone->used_mem > target)
return true;
}
return false;
}
/**
* At this point we only support a single shrink callback.
* Extend this if needed, perhaps using a linked list of callbacks.
* Note that this function is reentrant:
* many threads may try to swap out at any given time.
*/
static void ttm_shrink(struct ttm_mem_global *glob, bool from_wq,
uint64_t extra)
{
int ret;
struct ttm_mem_shrink *shrink;
spin_lock(&glob->lock);
if (glob->shrink == NULL)
goto out;
while (ttm_zones_above_swap_target(glob, from_wq, extra)) {
shrink = glob->shrink;
spin_unlock(&glob->lock);
ret = shrink->do_shrink(shrink);
spin_lock(&glob->lock);
if (unlikely(ret != 0))
goto out;
}
out:
spin_unlock(&glob->lock);
}
static void ttm_shrink_work(struct work_struct *work)
{
struct ttm_mem_global *glob =
container_of(work, struct ttm_mem_global, work);
ttm_shrink(glob, true, 0ULL);
}
static int ttm_mem_init_kernel_zone(struct ttm_mem_global *glob,
const struct sysinfo *si)
{
struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL);
uint64_t mem;
int ret;
if (unlikely(!zone))
return -ENOMEM;
mem = si->totalram - si->totalhigh;
mem *= si->mem_unit;
zone->name = "kernel";
zone->zone_mem = mem;
zone->max_mem = mem >> 1;
zone->emer_mem = (mem >> 1) + (mem >> 2);
zone->swap_limit = zone->max_mem - (mem >> 3);
zone->used_mem = 0;
zone->glob = glob;
glob->zone_kernel = zone;
ret = kobject_init_and_add(
&zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name);
if (unlikely(ret != 0)) {
kobject_put(&zone->kobj);
return ret;
}
glob->zones[glob->num_zones++] = zone;
return 0;
}
#ifdef CONFIG_HIGHMEM
static int ttm_mem_init_highmem_zone(struct ttm_mem_global *glob,
const struct sysinfo *si)
{
struct ttm_mem_zone *zone;
uint64_t mem;
int ret;
if (si->totalhigh == 0)
return 0;
zone = kzalloc(sizeof(*zone), GFP_KERNEL);
if (unlikely(!zone))
return -ENOMEM;
mem = si->totalram;
mem *= si->mem_unit;
zone->name = "highmem";
zone->zone_mem = mem;
zone->max_mem = mem >> 1;
zone->emer_mem = (mem >> 1) + (mem >> 2);
zone->swap_limit = zone->max_mem - (mem >> 3);
zone->used_mem = 0;
zone->glob = glob;
glob->zone_highmem = zone;
ret = kobject_init_and_add(
&zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, "%s",
zone->name);
if (unlikely(ret != 0)) {
kobject_put(&zone->kobj);
return ret;
}
glob->zones[glob->num_zones++] = zone;
return 0;
}
#else
static int ttm_mem_init_dma32_zone(struct ttm_mem_global *glob,
const struct sysinfo *si)
{
struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL);
uint64_t mem;
int ret;
if (unlikely(!zone))
return -ENOMEM;
mem = si->totalram;
mem *= si->mem_unit;
/**
* No special dma32 zone needed.
*/
if (mem <= ((uint64_t) 1ULL << 32)) {
kfree(zone);
return 0;
}
/*
* Limit max dma32 memory to 4GB for now
* until we can figure out how big this
* zone really is.
*/
mem = ((uint64_t) 1ULL << 32);
zone->name = "dma32";
zone->zone_mem = mem;
zone->max_mem = mem >> 1;
zone->emer_mem = (mem >> 1) + (mem >> 2);
zone->swap_limit = zone->max_mem - (mem >> 3);
zone->used_mem = 0;
zone->glob = glob;
glob->zone_dma32 = zone;
ret = kobject_init_and_add(
&zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name);
if (unlikely(ret != 0)) {
kobject_put(&zone->kobj);
return ret;
}
glob->zones[glob->num_zones++] = zone;
return 0;
}
#endif
int ttm_mem_global_init(struct ttm_mem_global *glob)
{
struct sysinfo si;
int ret;
int i;
struct ttm_mem_zone *zone;
spin_lock_init(&glob->lock);
glob->swap_queue = create_singlethread_workqueue("ttm_swap");
INIT_WORK(&glob->work, ttm_shrink_work);
ret = kobject_init_and_add(
&glob->kobj, &ttm_mem_glob_kobj_type, ttm_get_kobj(), "memory_accounting");
if (unlikely(ret != 0)) {
kobject_put(&glob->kobj);
return ret;
}
si_meminfo(&si);
ret = ttm_mem_init_kernel_zone(glob, &si);
if (unlikely(ret != 0))
goto out_no_zone;
#ifdef CONFIG_HIGHMEM
ret = ttm_mem_init_highmem_zone(glob, &si);
if (unlikely(ret != 0))
goto out_no_zone;
#else
ret = ttm_mem_init_dma32_zone(glob, &si);
if (unlikely(ret != 0))
goto out_no_zone;
#endif
for (i = 0; i < glob->num_zones; ++i) {
zone = glob->zones[i];
pr_info("Zone %7s: Available graphics memory: %llu kiB\n",
zone->name, (unsigned long long)zone->max_mem >> 10);
}
ttm_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE));
ttm_dma_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE));
return 0;
out_no_zone:
ttm_mem_global_release(glob);
return ret;
}
EXPORT_SYMBOL(ttm_mem_global_init);
void ttm_mem_global_release(struct ttm_mem_global *glob)
{
unsigned int i;
struct ttm_mem_zone *zone;
/* let the page allocator first stop the shrink work. */
ttm_page_alloc_fini();
ttm_dma_page_alloc_fini();
flush_workqueue(glob->swap_queue);
destroy_workqueue(glob->swap_queue);
glob->swap_queue = NULL;
for (i = 0; i < glob->num_zones; ++i) {
zone = glob->zones[i];
kobject_del(&zone->kobj);
kobject_put(&zone->kobj);
}
kobject_del(&glob->kobj);
kobject_put(&glob->kobj);
}
EXPORT_SYMBOL(ttm_mem_global_release);
static void ttm_check_swapping(struct ttm_mem_global *glob)
{
bool needs_swapping = false;
unsigned int i;
struct ttm_mem_zone *zone;
spin_lock(&glob->lock);
for (i = 0; i < glob->num_zones; ++i) {
zone = glob->zones[i];
if (zone->used_mem > zone->swap_limit) {
needs_swapping = true;
break;
}
}
spin_unlock(&glob->lock);
if (unlikely(needs_swapping))
(void)queue_work(glob->swap_queue, &glob->work);
}
static void ttm_mem_global_free_zone(struct ttm_mem_global *glob,
struct ttm_mem_zone *single_zone,
uint64_t amount)
{
unsigned int i;
struct ttm_mem_zone *zone;
spin_lock(&glob->lock);
for (i = 0; i < glob->num_zones; ++i) {
zone = glob->zones[i];
if (single_zone && zone != single_zone)
continue;
zone->used_mem -= amount;
}
spin_unlock(&glob->lock);
}
void ttm_mem_global_free(struct ttm_mem_global *glob,
uint64_t amount)
{
return ttm_mem_global_free_zone(glob, NULL, amount);
}
EXPORT_SYMBOL(ttm_mem_global_free);
static int ttm_mem_global_reserve(struct ttm_mem_global *glob,
struct ttm_mem_zone *single_zone,
uint64_t amount, bool reserve)
{
uint64_t limit;
int ret = -ENOMEM;
unsigned int i;
struct ttm_mem_zone *zone;
spin_lock(&glob->lock);
for (i = 0; i < glob->num_zones; ++i) {
zone = glob->zones[i];
if (single_zone && zone != single_zone)
continue;
limit = (capable(CAP_SYS_ADMIN)) ?
zone->emer_mem : zone->max_mem;
if (zone->used_mem > limit)
goto out_unlock;
}
if (reserve) {
for (i = 0; i < glob->num_zones; ++i) {
zone = glob->zones[i];
if (single_zone && zone != single_zone)
continue;
zone->used_mem += amount;
}
}
ret = 0;
out_unlock:
spin_unlock(&glob->lock);
ttm_check_swapping(glob);
return ret;
}
static int ttm_mem_global_alloc_zone(struct ttm_mem_global *glob,
struct ttm_mem_zone *single_zone,
uint64_t memory,
bool no_wait, bool interruptible)
{
int count = TTM_MEMORY_ALLOC_RETRIES;
while (unlikely(ttm_mem_global_reserve(glob,
single_zone,
memory, true)
!= 0)) {
if (no_wait)
return -ENOMEM;
if (unlikely(count-- == 0))
return -ENOMEM;
ttm_shrink(glob, false, memory + (memory >> 2) + 16);
}
return 0;
}
int ttm_mem_global_alloc(struct ttm_mem_global *glob, uint64_t memory,
bool no_wait, bool interruptible)
{
/**
* Normal allocations of kernel memory are registered in
* all zones.
*/
return ttm_mem_global_alloc_zone(glob, NULL, memory, no_wait,
interruptible);
}
EXPORT_SYMBOL(ttm_mem_global_alloc);
int ttm_mem_global_alloc_page(struct ttm_mem_global *glob,
struct page *page,
bool no_wait, bool interruptible)
{
struct ttm_mem_zone *zone = NULL;
/**
* Page allocations may be registed in a single zone
* only if highmem or !dma32.
*/
#ifdef CONFIG_HIGHMEM
if (PageHighMem(page) && glob->zone_highmem != NULL)
zone = glob->zone_highmem;
#else
if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL)
zone = glob->zone_kernel;
#endif
return ttm_mem_global_alloc_zone(glob, zone, PAGE_SIZE, no_wait,
interruptible);
}
void ttm_mem_global_free_page(struct ttm_mem_global *glob, struct page *page)
{
struct ttm_mem_zone *zone = NULL;
#ifdef CONFIG_HIGHMEM
if (PageHighMem(page) && glob->zone_highmem != NULL)
zone = glob->zone_highmem;
#else
if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL)
zone = glob->zone_kernel;
#endif
ttm_mem_global_free_zone(glob, zone, PAGE_SIZE);
}
size_t ttm_round_pot(size_t size)
{
if ((size & (size - 1)) == 0)
return size;
else if (size > PAGE_SIZE)
return PAGE_ALIGN(size);
else {
size_t tmp_size = 4;
while (tmp_size < size)
tmp_size <<= 1;
return tmp_size;
}
return 0;
}
EXPORT_SYMBOL(ttm_round_pot);