2654 lines
78 KiB
C
2654 lines
78 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/uuid.h>
|
|
#include <linux/timekeeping.h>
|
|
#include "misc.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "locking.h"
|
|
#include "tree-log.h"
|
|
#include "volumes.h"
|
|
#include "dev-replace.h"
|
|
#include "qgroup.h"
|
|
#include "block-group.h"
|
|
#include "space-info.h"
|
|
#include "zoned.h"
|
|
#include "fs.h"
|
|
#include "accessors.h"
|
|
#include "extent-tree.h"
|
|
#include "root-tree.h"
|
|
#include "defrag.h"
|
|
#include "dir-item.h"
|
|
#include "uuid-tree.h"
|
|
#include "ioctl.h"
|
|
#include "relocation.h"
|
|
#include "scrub.h"
|
|
|
|
static struct kmem_cache *btrfs_trans_handle_cachep;
|
|
|
|
#define BTRFS_ROOT_TRANS_TAG 0
|
|
|
|
/*
|
|
* Transaction states and transitions
|
|
*
|
|
* No running transaction (fs tree blocks are not modified)
|
|
* |
|
|
* | To next stage:
|
|
* | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
|
|
* V
|
|
* Transaction N [[TRANS_STATE_RUNNING]]
|
|
* |
|
|
* | New trans handles can be attached to transaction N by calling all
|
|
* | start_transaction() variants.
|
|
* |
|
|
* | To next stage:
|
|
* | Call btrfs_commit_transaction() on any trans handle attached to
|
|
* | transaction N
|
|
* V
|
|
* Transaction N [[TRANS_STATE_COMMIT_START]]
|
|
* |
|
|
* | Will wait for previous running transaction to completely finish if there
|
|
* | is one
|
|
* |
|
|
* | Then one of the following happes:
|
|
* | - Wait for all other trans handle holders to release.
|
|
* | The btrfs_commit_transaction() caller will do the commit work.
|
|
* | - Wait for current transaction to be committed by others.
|
|
* | Other btrfs_commit_transaction() caller will do the commit work.
|
|
* |
|
|
* | At this stage, only btrfs_join_transaction*() variants can attach
|
|
* | to this running transaction.
|
|
* | All other variants will wait for current one to finish and attach to
|
|
* | transaction N+1.
|
|
* |
|
|
* | To next stage:
|
|
* | Caller is chosen to commit transaction N, and all other trans handle
|
|
* | haven been released.
|
|
* V
|
|
* Transaction N [[TRANS_STATE_COMMIT_DOING]]
|
|
* |
|
|
* | The heavy lifting transaction work is started.
|
|
* | From running delayed refs (modifying extent tree) to creating pending
|
|
* | snapshots, running qgroups.
|
|
* | In short, modify supporting trees to reflect modifications of subvolume
|
|
* | trees.
|
|
* |
|
|
* | At this stage, all start_transaction() calls will wait for this
|
|
* | transaction to finish and attach to transaction N+1.
|
|
* |
|
|
* | To next stage:
|
|
* | Until all supporting trees are updated.
|
|
* V
|
|
* Transaction N [[TRANS_STATE_UNBLOCKED]]
|
|
* | Transaction N+1
|
|
* | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
|
|
* | need to write them back to disk and update |
|
|
* | super blocks. |
|
|
* | |
|
|
* | At this stage, new transaction is allowed to |
|
|
* | start. |
|
|
* | All new start_transaction() calls will be |
|
|
* | attached to transid N+1. |
|
|
* | |
|
|
* | To next stage: |
|
|
* | Until all tree blocks are super blocks are |
|
|
* | written to block devices |
|
|
* V |
|
|
* Transaction N [[TRANS_STATE_COMPLETED]] V
|
|
* All tree blocks and super blocks are written. Transaction N+1
|
|
* This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
|
|
* data structures will be cleaned up. | Life goes on
|
|
*/
|
|
static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
|
|
[TRANS_STATE_RUNNING] = 0U,
|
|
[TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
|
|
[TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
|
|
__TRANS_ATTACH |
|
|
__TRANS_JOIN |
|
|
__TRANS_JOIN_NOSTART),
|
|
[TRANS_STATE_UNBLOCKED] = (__TRANS_START |
|
|
__TRANS_ATTACH |
|
|
__TRANS_JOIN |
|
|
__TRANS_JOIN_NOLOCK |
|
|
__TRANS_JOIN_NOSTART),
|
|
[TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
|
|
__TRANS_ATTACH |
|
|
__TRANS_JOIN |
|
|
__TRANS_JOIN_NOLOCK |
|
|
__TRANS_JOIN_NOSTART),
|
|
[TRANS_STATE_COMPLETED] = (__TRANS_START |
|
|
__TRANS_ATTACH |
|
|
__TRANS_JOIN |
|
|
__TRANS_JOIN_NOLOCK |
|
|
__TRANS_JOIN_NOSTART),
|
|
};
|
|
|
|
void btrfs_put_transaction(struct btrfs_transaction *transaction)
|
|
{
|
|
WARN_ON(refcount_read(&transaction->use_count) == 0);
|
|
if (refcount_dec_and_test(&transaction->use_count)) {
|
|
BUG_ON(!list_empty(&transaction->list));
|
|
WARN_ON(!RB_EMPTY_ROOT(
|
|
&transaction->delayed_refs.href_root.rb_root));
|
|
WARN_ON(!RB_EMPTY_ROOT(
|
|
&transaction->delayed_refs.dirty_extent_root));
|
|
if (transaction->delayed_refs.pending_csums)
|
|
btrfs_err(transaction->fs_info,
|
|
"pending csums is %llu",
|
|
transaction->delayed_refs.pending_csums);
|
|
/*
|
|
* If any block groups are found in ->deleted_bgs then it's
|
|
* because the transaction was aborted and a commit did not
|
|
* happen (things failed before writing the new superblock
|
|
* and calling btrfs_finish_extent_commit()), so we can not
|
|
* discard the physical locations of the block groups.
|
|
*/
|
|
while (!list_empty(&transaction->deleted_bgs)) {
|
|
struct btrfs_block_group *cache;
|
|
|
|
cache = list_first_entry(&transaction->deleted_bgs,
|
|
struct btrfs_block_group,
|
|
bg_list);
|
|
list_del_init(&cache->bg_list);
|
|
btrfs_unfreeze_block_group(cache);
|
|
btrfs_put_block_group(cache);
|
|
}
|
|
WARN_ON(!list_empty(&transaction->dev_update_list));
|
|
kfree(transaction);
|
|
}
|
|
}
|
|
|
|
static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_root *root, *tmp;
|
|
|
|
/*
|
|
* At this point no one can be using this transaction to modify any tree
|
|
* and no one can start another transaction to modify any tree either.
|
|
*/
|
|
ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
|
|
|
|
down_write(&fs_info->commit_root_sem);
|
|
|
|
if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
|
|
fs_info->last_reloc_trans = trans->transid;
|
|
|
|
list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
|
|
dirty_list) {
|
|
list_del_init(&root->dirty_list);
|
|
free_extent_buffer(root->commit_root);
|
|
root->commit_root = btrfs_root_node(root);
|
|
extent_io_tree_release(&root->dirty_log_pages);
|
|
btrfs_qgroup_clean_swapped_blocks(root);
|
|
}
|
|
|
|
/* We can free old roots now. */
|
|
spin_lock(&cur_trans->dropped_roots_lock);
|
|
while (!list_empty(&cur_trans->dropped_roots)) {
|
|
root = list_first_entry(&cur_trans->dropped_roots,
|
|
struct btrfs_root, root_list);
|
|
list_del_init(&root->root_list);
|
|
spin_unlock(&cur_trans->dropped_roots_lock);
|
|
btrfs_free_log(trans, root);
|
|
btrfs_drop_and_free_fs_root(fs_info, root);
|
|
spin_lock(&cur_trans->dropped_roots_lock);
|
|
}
|
|
spin_unlock(&cur_trans->dropped_roots_lock);
|
|
|
|
up_write(&fs_info->commit_root_sem);
|
|
}
|
|
|
|
static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
|
|
unsigned int type)
|
|
{
|
|
if (type & TRANS_EXTWRITERS)
|
|
atomic_inc(&trans->num_extwriters);
|
|
}
|
|
|
|
static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
|
|
unsigned int type)
|
|
{
|
|
if (type & TRANS_EXTWRITERS)
|
|
atomic_dec(&trans->num_extwriters);
|
|
}
|
|
|
|
static inline void extwriter_counter_init(struct btrfs_transaction *trans,
|
|
unsigned int type)
|
|
{
|
|
atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
|
|
}
|
|
|
|
static inline int extwriter_counter_read(struct btrfs_transaction *trans)
|
|
{
|
|
return atomic_read(&trans->num_extwriters);
|
|
}
|
|
|
|
/*
|
|
* To be called after doing the chunk btree updates right after allocating a new
|
|
* chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
|
|
* chunk after all chunk btree updates and after finishing the second phase of
|
|
* chunk allocation (btrfs_create_pending_block_groups()) in case some block
|
|
* group had its chunk item insertion delayed to the second phase.
|
|
*/
|
|
void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
|
|
if (!trans->chunk_bytes_reserved)
|
|
return;
|
|
|
|
btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
|
|
trans->chunk_bytes_reserved, NULL);
|
|
trans->chunk_bytes_reserved = 0;
|
|
}
|
|
|
|
/*
|
|
* either allocate a new transaction or hop into the existing one
|
|
*/
|
|
static noinline int join_transaction(struct btrfs_fs_info *fs_info,
|
|
unsigned int type)
|
|
{
|
|
struct btrfs_transaction *cur_trans;
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
loop:
|
|
/* The file system has been taken offline. No new transactions. */
|
|
if (BTRFS_FS_ERROR(fs_info)) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return -EROFS;
|
|
}
|
|
|
|
cur_trans = fs_info->running_transaction;
|
|
if (cur_trans) {
|
|
if (TRANS_ABORTED(cur_trans)) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return cur_trans->aborted;
|
|
}
|
|
if (btrfs_blocked_trans_types[cur_trans->state] & type) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return -EBUSY;
|
|
}
|
|
refcount_inc(&cur_trans->use_count);
|
|
atomic_inc(&cur_trans->num_writers);
|
|
extwriter_counter_inc(cur_trans, type);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
|
|
btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
|
|
return 0;
|
|
}
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
/*
|
|
* If we are ATTACH, we just want to catch the current transaction,
|
|
* and commit it. If there is no transaction, just return ENOENT.
|
|
*/
|
|
if (type == TRANS_ATTACH)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* JOIN_NOLOCK only happens during the transaction commit, so
|
|
* it is impossible that ->running_transaction is NULL
|
|
*/
|
|
BUG_ON(type == TRANS_JOIN_NOLOCK);
|
|
|
|
cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
|
|
if (!cur_trans)
|
|
return -ENOMEM;
|
|
|
|
btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
|
|
btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (fs_info->running_transaction) {
|
|
/*
|
|
* someone started a transaction after we unlocked. Make sure
|
|
* to redo the checks above
|
|
*/
|
|
btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
|
|
btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
|
|
kfree(cur_trans);
|
|
goto loop;
|
|
} else if (BTRFS_FS_ERROR(fs_info)) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
|
|
btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
|
|
kfree(cur_trans);
|
|
return -EROFS;
|
|
}
|
|
|
|
cur_trans->fs_info = fs_info;
|
|
atomic_set(&cur_trans->pending_ordered, 0);
|
|
init_waitqueue_head(&cur_trans->pending_wait);
|
|
atomic_set(&cur_trans->num_writers, 1);
|
|
extwriter_counter_init(cur_trans, type);
|
|
init_waitqueue_head(&cur_trans->writer_wait);
|
|
init_waitqueue_head(&cur_trans->commit_wait);
|
|
cur_trans->state = TRANS_STATE_RUNNING;
|
|
/*
|
|
* One for this trans handle, one so it will live on until we
|
|
* commit the transaction.
|
|
*/
|
|
refcount_set(&cur_trans->use_count, 2);
|
|
cur_trans->flags = 0;
|
|
cur_trans->start_time = ktime_get_seconds();
|
|
|
|
memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
|
|
|
|
cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
|
|
cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
|
|
atomic_set(&cur_trans->delayed_refs.num_entries, 0);
|
|
|
|
/*
|
|
* although the tree mod log is per file system and not per transaction,
|
|
* the log must never go across transaction boundaries.
|
|
*/
|
|
smp_mb();
|
|
if (!list_empty(&fs_info->tree_mod_seq_list))
|
|
WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
|
|
if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
|
|
WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
|
|
atomic64_set(&fs_info->tree_mod_seq, 0);
|
|
|
|
spin_lock_init(&cur_trans->delayed_refs.lock);
|
|
|
|
INIT_LIST_HEAD(&cur_trans->pending_snapshots);
|
|
INIT_LIST_HEAD(&cur_trans->dev_update_list);
|
|
INIT_LIST_HEAD(&cur_trans->switch_commits);
|
|
INIT_LIST_HEAD(&cur_trans->dirty_bgs);
|
|
INIT_LIST_HEAD(&cur_trans->io_bgs);
|
|
INIT_LIST_HEAD(&cur_trans->dropped_roots);
|
|
mutex_init(&cur_trans->cache_write_mutex);
|
|
spin_lock_init(&cur_trans->dirty_bgs_lock);
|
|
INIT_LIST_HEAD(&cur_trans->deleted_bgs);
|
|
spin_lock_init(&cur_trans->dropped_roots_lock);
|
|
list_add_tail(&cur_trans->list, &fs_info->trans_list);
|
|
extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
|
|
IO_TREE_TRANS_DIRTY_PAGES);
|
|
extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
|
|
IO_TREE_FS_PINNED_EXTENTS);
|
|
fs_info->generation++;
|
|
cur_trans->transid = fs_info->generation;
|
|
fs_info->running_transaction = cur_trans;
|
|
cur_trans->aborted = 0;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This does all the record keeping required to make sure that a shareable root
|
|
* is properly recorded in a given transaction. This is required to make sure
|
|
* the old root from before we joined the transaction is deleted when the
|
|
* transaction commits.
|
|
*/
|
|
static int record_root_in_trans(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
int force)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret = 0;
|
|
|
|
if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
|
|
root->last_trans < trans->transid) || force) {
|
|
WARN_ON(!force && root->commit_root != root->node);
|
|
|
|
/*
|
|
* see below for IN_TRANS_SETUP usage rules
|
|
* we have the reloc mutex held now, so there
|
|
* is only one writer in this function
|
|
*/
|
|
set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
|
|
|
|
/* make sure readers find IN_TRANS_SETUP before
|
|
* they find our root->last_trans update
|
|
*/
|
|
smp_wmb();
|
|
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
if (root->last_trans == trans->transid && !force) {
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
return 0;
|
|
}
|
|
radix_tree_tag_set(&fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid,
|
|
BTRFS_ROOT_TRANS_TAG);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
root->last_trans = trans->transid;
|
|
|
|
/* this is pretty tricky. We don't want to
|
|
* take the relocation lock in btrfs_record_root_in_trans
|
|
* unless we're really doing the first setup for this root in
|
|
* this transaction.
|
|
*
|
|
* Normally we'd use root->last_trans as a flag to decide
|
|
* if we want to take the expensive mutex.
|
|
*
|
|
* But, we have to set root->last_trans before we
|
|
* init the relocation root, otherwise, we trip over warnings
|
|
* in ctree.c. The solution used here is to flag ourselves
|
|
* with root IN_TRANS_SETUP. When this is 1, we're still
|
|
* fixing up the reloc trees and everyone must wait.
|
|
*
|
|
* When this is zero, they can trust root->last_trans and fly
|
|
* through btrfs_record_root_in_trans without having to take the
|
|
* lock. smp_wmb() makes sure that all the writes above are
|
|
* done before we pop in the zero below
|
|
*/
|
|
ret = btrfs_init_reloc_root(trans, root);
|
|
smp_mb__before_atomic();
|
|
clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
|
|
/* Add ourselves to the transaction dropped list */
|
|
spin_lock(&cur_trans->dropped_roots_lock);
|
|
list_add_tail(&root->root_list, &cur_trans->dropped_roots);
|
|
spin_unlock(&cur_trans->dropped_roots_lock);
|
|
|
|
/* Make sure we don't try to update the root at commit time */
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
radix_tree_tag_clear(&fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid,
|
|
BTRFS_ROOT_TRANS_TAG);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
}
|
|
|
|
int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret;
|
|
|
|
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
|
|
return 0;
|
|
|
|
/*
|
|
* see record_root_in_trans for comments about IN_TRANS_SETUP usage
|
|
* and barriers
|
|
*/
|
|
smp_rmb();
|
|
if (root->last_trans == trans->transid &&
|
|
!test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
|
|
return 0;
|
|
|
|
mutex_lock(&fs_info->reloc_mutex);
|
|
ret = record_root_in_trans(trans, root, 0);
|
|
mutex_unlock(&fs_info->reloc_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int is_transaction_blocked(struct btrfs_transaction *trans)
|
|
{
|
|
return (trans->state >= TRANS_STATE_COMMIT_START &&
|
|
trans->state < TRANS_STATE_UNBLOCKED &&
|
|
!TRANS_ABORTED(trans));
|
|
}
|
|
|
|
/* wait for commit against the current transaction to become unblocked
|
|
* when this is done, it is safe to start a new transaction, but the current
|
|
* transaction might not be fully on disk.
|
|
*/
|
|
static void wait_current_trans(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_transaction *cur_trans;
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
cur_trans = fs_info->running_transaction;
|
|
if (cur_trans && is_transaction_blocked(cur_trans)) {
|
|
refcount_inc(&cur_trans->use_count);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
|
|
wait_event(fs_info->transaction_wait,
|
|
cur_trans->state >= TRANS_STATE_UNBLOCKED ||
|
|
TRANS_ABORTED(cur_trans));
|
|
btrfs_put_transaction(cur_trans);
|
|
} else {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
}
|
|
}
|
|
|
|
static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
|
|
{
|
|
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
|
|
return 0;
|
|
|
|
if (type == TRANS_START)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool need_reserve_reloc_root(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
if (!fs_info->reloc_ctl ||
|
|
!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
|
|
root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
|
|
root->reloc_root)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct btrfs_trans_handle *
|
|
start_transaction(struct btrfs_root *root, unsigned int num_items,
|
|
unsigned int type, enum btrfs_reserve_flush_enum flush,
|
|
bool enforce_qgroups)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
|
|
struct btrfs_trans_handle *h;
|
|
struct btrfs_transaction *cur_trans;
|
|
u64 num_bytes = 0;
|
|
u64 qgroup_reserved = 0;
|
|
bool reloc_reserved = false;
|
|
bool do_chunk_alloc = false;
|
|
int ret;
|
|
|
|
if (BTRFS_FS_ERROR(fs_info))
|
|
return ERR_PTR(-EROFS);
|
|
|
|
if (current->journal_info) {
|
|
WARN_ON(type & TRANS_EXTWRITERS);
|
|
h = current->journal_info;
|
|
refcount_inc(&h->use_count);
|
|
WARN_ON(refcount_read(&h->use_count) > 2);
|
|
h->orig_rsv = h->block_rsv;
|
|
h->block_rsv = NULL;
|
|
goto got_it;
|
|
}
|
|
|
|
/*
|
|
* Do the reservation before we join the transaction so we can do all
|
|
* the appropriate flushing if need be.
|
|
*/
|
|
if (num_items && root != fs_info->chunk_root) {
|
|
struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
|
|
u64 delayed_refs_bytes = 0;
|
|
|
|
qgroup_reserved = num_items * fs_info->nodesize;
|
|
ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
|
|
enforce_qgroups);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
/*
|
|
* We want to reserve all the bytes we may need all at once, so
|
|
* we only do 1 enospc flushing cycle per transaction start. We
|
|
* accomplish this by simply assuming we'll do num_items worth
|
|
* of delayed refs updates in this trans handle, and refill that
|
|
* amount for whatever is missing in the reserve.
|
|
*/
|
|
num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
|
|
if (flush == BTRFS_RESERVE_FLUSH_ALL &&
|
|
!btrfs_block_rsv_full(delayed_refs_rsv)) {
|
|
delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
|
|
num_items);
|
|
num_bytes += delayed_refs_bytes;
|
|
}
|
|
|
|
/*
|
|
* Do the reservation for the relocation root creation
|
|
*/
|
|
if (need_reserve_reloc_root(root)) {
|
|
num_bytes += fs_info->nodesize;
|
|
reloc_reserved = true;
|
|
}
|
|
|
|
ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
|
|
if (ret)
|
|
goto reserve_fail;
|
|
if (delayed_refs_bytes) {
|
|
btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
|
|
delayed_refs_bytes);
|
|
num_bytes -= delayed_refs_bytes;
|
|
}
|
|
|
|
if (rsv->space_info->force_alloc)
|
|
do_chunk_alloc = true;
|
|
} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
|
|
!btrfs_block_rsv_full(delayed_refs_rsv)) {
|
|
/*
|
|
* Some people call with btrfs_start_transaction(root, 0)
|
|
* because they can be throttled, but have some other mechanism
|
|
* for reserving space. We still want these guys to refill the
|
|
* delayed block_rsv so just add 1 items worth of reservation
|
|
* here.
|
|
*/
|
|
ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
|
|
if (ret)
|
|
goto reserve_fail;
|
|
}
|
|
again:
|
|
h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
|
|
if (!h) {
|
|
ret = -ENOMEM;
|
|
goto alloc_fail;
|
|
}
|
|
|
|
/*
|
|
* If we are JOIN_NOLOCK we're already committing a transaction and
|
|
* waiting on this guy, so we don't need to do the sb_start_intwrite
|
|
* because we're already holding a ref. We need this because we could
|
|
* have raced in and did an fsync() on a file which can kick a commit
|
|
* and then we deadlock with somebody doing a freeze.
|
|
*
|
|
* If we are ATTACH, it means we just want to catch the current
|
|
* transaction and commit it, so we needn't do sb_start_intwrite().
|
|
*/
|
|
if (type & __TRANS_FREEZABLE)
|
|
sb_start_intwrite(fs_info->sb);
|
|
|
|
if (may_wait_transaction(fs_info, type))
|
|
wait_current_trans(fs_info);
|
|
|
|
do {
|
|
ret = join_transaction(fs_info, type);
|
|
if (ret == -EBUSY) {
|
|
wait_current_trans(fs_info);
|
|
if (unlikely(type == TRANS_ATTACH ||
|
|
type == TRANS_JOIN_NOSTART))
|
|
ret = -ENOENT;
|
|
}
|
|
} while (ret == -EBUSY);
|
|
|
|
if (ret < 0)
|
|
goto join_fail;
|
|
|
|
cur_trans = fs_info->running_transaction;
|
|
|
|
h->transid = cur_trans->transid;
|
|
h->transaction = cur_trans;
|
|
refcount_set(&h->use_count, 1);
|
|
h->fs_info = root->fs_info;
|
|
|
|
h->type = type;
|
|
INIT_LIST_HEAD(&h->new_bgs);
|
|
|
|
smp_mb();
|
|
if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
|
|
may_wait_transaction(fs_info, type)) {
|
|
current->journal_info = h;
|
|
btrfs_commit_transaction(h);
|
|
goto again;
|
|
}
|
|
|
|
if (num_bytes) {
|
|
trace_btrfs_space_reservation(fs_info, "transaction",
|
|
h->transid, num_bytes, 1);
|
|
h->block_rsv = &fs_info->trans_block_rsv;
|
|
h->bytes_reserved = num_bytes;
|
|
h->reloc_reserved = reloc_reserved;
|
|
}
|
|
|
|
got_it:
|
|
if (!current->journal_info)
|
|
current->journal_info = h;
|
|
|
|
/*
|
|
* If the space_info is marked ALLOC_FORCE then we'll get upgraded to
|
|
* ALLOC_FORCE the first run through, and then we won't allocate for
|
|
* anybody else who races in later. We don't care about the return
|
|
* value here.
|
|
*/
|
|
if (do_chunk_alloc && num_bytes) {
|
|
u64 flags = h->block_rsv->space_info->flags;
|
|
|
|
btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
|
|
CHUNK_ALLOC_NO_FORCE);
|
|
}
|
|
|
|
/*
|
|
* btrfs_record_root_in_trans() needs to alloc new extents, and may
|
|
* call btrfs_join_transaction() while we're also starting a
|
|
* transaction.
|
|
*
|
|
* Thus it need to be called after current->journal_info initialized,
|
|
* or we can deadlock.
|
|
*/
|
|
ret = btrfs_record_root_in_trans(h, root);
|
|
if (ret) {
|
|
/*
|
|
* The transaction handle is fully initialized and linked with
|
|
* other structures so it needs to be ended in case of errors,
|
|
* not just freed.
|
|
*/
|
|
btrfs_end_transaction(h);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
return h;
|
|
|
|
join_fail:
|
|
if (type & __TRANS_FREEZABLE)
|
|
sb_end_intwrite(fs_info->sb);
|
|
kmem_cache_free(btrfs_trans_handle_cachep, h);
|
|
alloc_fail:
|
|
if (num_bytes)
|
|
btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
|
|
num_bytes, NULL);
|
|
reserve_fail:
|
|
btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
|
|
unsigned int num_items)
|
|
{
|
|
return start_transaction(root, num_items, TRANS_START,
|
|
BTRFS_RESERVE_FLUSH_ALL, true);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
|
|
struct btrfs_root *root,
|
|
unsigned int num_items)
|
|
{
|
|
return start_transaction(root, num_items, TRANS_START,
|
|
BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
|
|
{
|
|
return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
|
|
true);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
|
|
{
|
|
return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
|
|
BTRFS_RESERVE_NO_FLUSH, true);
|
|
}
|
|
|
|
/*
|
|
* Similar to regular join but it never starts a transaction when none is
|
|
* running or after waiting for the current one to finish.
|
|
*/
|
|
struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
|
|
{
|
|
return start_transaction(root, 0, TRANS_JOIN_NOSTART,
|
|
BTRFS_RESERVE_NO_FLUSH, true);
|
|
}
|
|
|
|
/*
|
|
* btrfs_attach_transaction() - catch the running transaction
|
|
*
|
|
* It is used when we want to commit the current the transaction, but
|
|
* don't want to start a new one.
|
|
*
|
|
* Note: If this function return -ENOENT, it just means there is no
|
|
* running transaction. But it is possible that the inactive transaction
|
|
* is still in the memory, not fully on disk. If you hope there is no
|
|
* inactive transaction in the fs when -ENOENT is returned, you should
|
|
* invoke
|
|
* btrfs_attach_transaction_barrier()
|
|
*/
|
|
struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
|
|
{
|
|
return start_transaction(root, 0, TRANS_ATTACH,
|
|
BTRFS_RESERVE_NO_FLUSH, true);
|
|
}
|
|
|
|
/*
|
|
* btrfs_attach_transaction_barrier() - catch the running transaction
|
|
*
|
|
* It is similar to the above function, the difference is this one
|
|
* will wait for all the inactive transactions until they fully
|
|
* complete.
|
|
*/
|
|
struct btrfs_trans_handle *
|
|
btrfs_attach_transaction_barrier(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
trans = start_transaction(root, 0, TRANS_ATTACH,
|
|
BTRFS_RESERVE_NO_FLUSH, true);
|
|
if (trans == ERR_PTR(-ENOENT))
|
|
btrfs_wait_for_commit(root->fs_info, 0);
|
|
|
|
return trans;
|
|
}
|
|
|
|
/* Wait for a transaction commit to reach at least the given state. */
|
|
static noinline void wait_for_commit(struct btrfs_transaction *commit,
|
|
const enum btrfs_trans_state min_state)
|
|
{
|
|
struct btrfs_fs_info *fs_info = commit->fs_info;
|
|
u64 transid = commit->transid;
|
|
bool put = false;
|
|
|
|
/*
|
|
* At the moment this function is called with min_state either being
|
|
* TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
|
|
*/
|
|
if (min_state == TRANS_STATE_COMPLETED)
|
|
btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
|
|
else
|
|
btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
|
|
|
|
while (1) {
|
|
wait_event(commit->commit_wait, commit->state >= min_state);
|
|
if (put)
|
|
btrfs_put_transaction(commit);
|
|
|
|
if (min_state < TRANS_STATE_COMPLETED)
|
|
break;
|
|
|
|
/*
|
|
* A transaction isn't really completed until all of the
|
|
* previous transactions are completed, but with fsync we can
|
|
* end up with SUPER_COMMITTED transactions before a COMPLETED
|
|
* transaction. Wait for those.
|
|
*/
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
commit = list_first_entry_or_null(&fs_info->trans_list,
|
|
struct btrfs_transaction,
|
|
list);
|
|
if (!commit || commit->transid > transid) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
break;
|
|
}
|
|
refcount_inc(&commit->use_count);
|
|
put = true;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
}
|
|
}
|
|
|
|
int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
|
|
{
|
|
struct btrfs_transaction *cur_trans = NULL, *t;
|
|
int ret = 0;
|
|
|
|
if (transid) {
|
|
if (transid <= fs_info->last_trans_committed)
|
|
goto out;
|
|
|
|
/* find specified transaction */
|
|
spin_lock(&fs_info->trans_lock);
|
|
list_for_each_entry(t, &fs_info->trans_list, list) {
|
|
if (t->transid == transid) {
|
|
cur_trans = t;
|
|
refcount_inc(&cur_trans->use_count);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if (t->transid > transid) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
/*
|
|
* The specified transaction doesn't exist, or we
|
|
* raced with btrfs_commit_transaction
|
|
*/
|
|
if (!cur_trans) {
|
|
if (transid > fs_info->last_trans_committed)
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
} else {
|
|
/* find newest transaction that is committing | committed */
|
|
spin_lock(&fs_info->trans_lock);
|
|
list_for_each_entry_reverse(t, &fs_info->trans_list,
|
|
list) {
|
|
if (t->state >= TRANS_STATE_COMMIT_START) {
|
|
if (t->state == TRANS_STATE_COMPLETED)
|
|
break;
|
|
cur_trans = t;
|
|
refcount_inc(&cur_trans->use_count);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&fs_info->trans_lock);
|
|
if (!cur_trans)
|
|
goto out; /* nothing committing|committed */
|
|
}
|
|
|
|
wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
|
|
btrfs_put_transaction(cur_trans);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_throttle(struct btrfs_fs_info *fs_info)
|
|
{
|
|
wait_current_trans(fs_info);
|
|
}
|
|
|
|
bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
|
|
if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
|
|
test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
|
|
return true;
|
|
|
|
if (btrfs_check_space_for_delayed_refs(trans->fs_info))
|
|
return true;
|
|
|
|
return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
|
|
}
|
|
|
|
static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
|
|
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
|
|
if (!trans->block_rsv) {
|
|
ASSERT(!trans->bytes_reserved);
|
|
return;
|
|
}
|
|
|
|
if (!trans->bytes_reserved)
|
|
return;
|
|
|
|
ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
|
|
trace_btrfs_space_reservation(fs_info, "transaction",
|
|
trans->transid, trans->bytes_reserved, 0);
|
|
btrfs_block_rsv_release(fs_info, trans->block_rsv,
|
|
trans->bytes_reserved, NULL);
|
|
trans->bytes_reserved = 0;
|
|
}
|
|
|
|
static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
|
|
int throttle)
|
|
{
|
|
struct btrfs_fs_info *info = trans->fs_info;
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
int err = 0;
|
|
|
|
if (refcount_read(&trans->use_count) > 1) {
|
|
refcount_dec(&trans->use_count);
|
|
trans->block_rsv = trans->orig_rsv;
|
|
return 0;
|
|
}
|
|
|
|
btrfs_trans_release_metadata(trans);
|
|
trans->block_rsv = NULL;
|
|
|
|
btrfs_create_pending_block_groups(trans);
|
|
|
|
btrfs_trans_release_chunk_metadata(trans);
|
|
|
|
if (trans->type & __TRANS_FREEZABLE)
|
|
sb_end_intwrite(info->sb);
|
|
|
|
WARN_ON(cur_trans != info->running_transaction);
|
|
WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
|
|
atomic_dec(&cur_trans->num_writers);
|
|
extwriter_counter_dec(cur_trans, trans->type);
|
|
|
|
cond_wake_up(&cur_trans->writer_wait);
|
|
|
|
btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
|
|
btrfs_lockdep_release(info, btrfs_trans_num_writers);
|
|
|
|
btrfs_put_transaction(cur_trans);
|
|
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
|
|
if (throttle)
|
|
btrfs_run_delayed_iputs(info);
|
|
|
|
if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
|
|
wake_up_process(info->transaction_kthread);
|
|
if (TRANS_ABORTED(trans))
|
|
err = trans->aborted;
|
|
else
|
|
err = -EROFS;
|
|
}
|
|
|
|
kmem_cache_free(btrfs_trans_handle_cachep, trans);
|
|
return err;
|
|
}
|
|
|
|
int btrfs_end_transaction(struct btrfs_trans_handle *trans)
|
|
{
|
|
return __btrfs_end_transaction(trans, 0);
|
|
}
|
|
|
|
int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
|
|
{
|
|
return __btrfs_end_transaction(trans, 1);
|
|
}
|
|
|
|
/*
|
|
* when btree blocks are allocated, they have some corresponding bits set for
|
|
* them in one of two extent_io trees. This is used to make sure all of
|
|
* those extents are sent to disk but does not wait on them
|
|
*/
|
|
int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
|
|
struct extent_io_tree *dirty_pages, int mark)
|
|
{
|
|
int err = 0;
|
|
int werr = 0;
|
|
struct address_space *mapping = fs_info->btree_inode->i_mapping;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 start = 0;
|
|
u64 end;
|
|
|
|
while (!find_first_extent_bit(dirty_pages, start, &start, &end,
|
|
mark, &cached_state)) {
|
|
bool wait_writeback = false;
|
|
|
|
err = convert_extent_bit(dirty_pages, start, end,
|
|
EXTENT_NEED_WAIT,
|
|
mark, &cached_state);
|
|
/*
|
|
* convert_extent_bit can return -ENOMEM, which is most of the
|
|
* time a temporary error. So when it happens, ignore the error
|
|
* and wait for writeback of this range to finish - because we
|
|
* failed to set the bit EXTENT_NEED_WAIT for the range, a call
|
|
* to __btrfs_wait_marked_extents() would not know that
|
|
* writeback for this range started and therefore wouldn't
|
|
* wait for it to finish - we don't want to commit a
|
|
* superblock that points to btree nodes/leafs for which
|
|
* writeback hasn't finished yet (and without errors).
|
|
* We cleanup any entries left in the io tree when committing
|
|
* the transaction (through extent_io_tree_release()).
|
|
*/
|
|
if (err == -ENOMEM) {
|
|
err = 0;
|
|
wait_writeback = true;
|
|
}
|
|
if (!err)
|
|
err = filemap_fdatawrite_range(mapping, start, end);
|
|
if (err)
|
|
werr = err;
|
|
else if (wait_writeback)
|
|
werr = filemap_fdatawait_range(mapping, start, end);
|
|
free_extent_state(cached_state);
|
|
cached_state = NULL;
|
|
cond_resched();
|
|
start = end + 1;
|
|
}
|
|
return werr;
|
|
}
|
|
|
|
/*
|
|
* when btree blocks are allocated, they have some corresponding bits set for
|
|
* them in one of two extent_io trees. This is used to make sure all of
|
|
* those extents are on disk for transaction or log commit. We wait
|
|
* on all the pages and clear them from the dirty pages state tree
|
|
*/
|
|
static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
|
|
struct extent_io_tree *dirty_pages)
|
|
{
|
|
int err = 0;
|
|
int werr = 0;
|
|
struct address_space *mapping = fs_info->btree_inode->i_mapping;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 start = 0;
|
|
u64 end;
|
|
|
|
while (!find_first_extent_bit(dirty_pages, start, &start, &end,
|
|
EXTENT_NEED_WAIT, &cached_state)) {
|
|
/*
|
|
* Ignore -ENOMEM errors returned by clear_extent_bit().
|
|
* When committing the transaction, we'll remove any entries
|
|
* left in the io tree. For a log commit, we don't remove them
|
|
* after committing the log because the tree can be accessed
|
|
* concurrently - we do it only at transaction commit time when
|
|
* it's safe to do it (through extent_io_tree_release()).
|
|
*/
|
|
err = clear_extent_bit(dirty_pages, start, end,
|
|
EXTENT_NEED_WAIT, &cached_state);
|
|
if (err == -ENOMEM)
|
|
err = 0;
|
|
if (!err)
|
|
err = filemap_fdatawait_range(mapping, start, end);
|
|
if (err)
|
|
werr = err;
|
|
free_extent_state(cached_state);
|
|
cached_state = NULL;
|
|
cond_resched();
|
|
start = end + 1;
|
|
}
|
|
if (err)
|
|
werr = err;
|
|
return werr;
|
|
}
|
|
|
|
static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
|
|
struct extent_io_tree *dirty_pages)
|
|
{
|
|
bool errors = false;
|
|
int err;
|
|
|
|
err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
|
|
if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
|
|
errors = true;
|
|
|
|
if (errors && !err)
|
|
err = -EIO;
|
|
return err;
|
|
}
|
|
|
|
int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
|
|
{
|
|
struct btrfs_fs_info *fs_info = log_root->fs_info;
|
|
struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
|
|
bool errors = false;
|
|
int err;
|
|
|
|
ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
|
|
if ((mark & EXTENT_DIRTY) &&
|
|
test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
|
|
errors = true;
|
|
|
|
if ((mark & EXTENT_NEW) &&
|
|
test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
|
|
errors = true;
|
|
|
|
if (errors && !err)
|
|
err = -EIO;
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* When btree blocks are allocated the corresponding extents are marked dirty.
|
|
* This function ensures such extents are persisted on disk for transaction or
|
|
* log commit.
|
|
*
|
|
* @trans: transaction whose dirty pages we'd like to write
|
|
*/
|
|
static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
|
|
{
|
|
int ret;
|
|
int ret2;
|
|
struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct blk_plug plug;
|
|
|
|
blk_start_plug(&plug);
|
|
ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
|
|
blk_finish_plug(&plug);
|
|
ret2 = btrfs_wait_extents(fs_info, dirty_pages);
|
|
|
|
extent_io_tree_release(&trans->transaction->dirty_pages);
|
|
|
|
if (ret)
|
|
return ret;
|
|
else if (ret2)
|
|
return ret2;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this is used to update the root pointer in the tree of tree roots.
|
|
*
|
|
* But, in the case of the extent allocation tree, updating the root
|
|
* pointer may allocate blocks which may change the root of the extent
|
|
* allocation tree.
|
|
*
|
|
* So, this loops and repeats and makes sure the cowonly root didn't
|
|
* change while the root pointer was being updated in the metadata.
|
|
*/
|
|
static int update_cowonly_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
u64 old_root_bytenr;
|
|
u64 old_root_used;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
|
|
old_root_used = btrfs_root_used(&root->root_item);
|
|
|
|
while (1) {
|
|
old_root_bytenr = btrfs_root_bytenr(&root->root_item);
|
|
if (old_root_bytenr == root->node->start &&
|
|
old_root_used == btrfs_root_used(&root->root_item))
|
|
break;
|
|
|
|
btrfs_set_root_node(&root->root_item, root->node);
|
|
ret = btrfs_update_root(trans, tree_root,
|
|
&root->root_key,
|
|
&root->root_item);
|
|
if (ret)
|
|
return ret;
|
|
|
|
old_root_used = btrfs_root_used(&root->root_item);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* update all the cowonly tree roots on disk
|
|
*
|
|
* The error handling in this function may not be obvious. Any of the
|
|
* failures will cause the file system to go offline. We still need
|
|
* to clean up the delayed refs.
|
|
*/
|
|
static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
|
|
struct list_head *io_bgs = &trans->transaction->io_bgs;
|
|
struct list_head *next;
|
|
struct extent_buffer *eb;
|
|
int ret;
|
|
|
|
/*
|
|
* At this point no one can be using this transaction to modify any tree
|
|
* and no one can start another transaction to modify any tree either.
|
|
*/
|
|
ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
|
|
|
|
eb = btrfs_lock_root_node(fs_info->tree_root);
|
|
ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
|
|
0, &eb, BTRFS_NESTING_COW);
|
|
btrfs_tree_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = btrfs_run_dev_stats(trans);
|
|
if (ret)
|
|
return ret;
|
|
ret = btrfs_run_dev_replace(trans);
|
|
if (ret)
|
|
return ret;
|
|
ret = btrfs_run_qgroups(trans);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = btrfs_setup_space_cache(trans);
|
|
if (ret)
|
|
return ret;
|
|
|
|
again:
|
|
while (!list_empty(&fs_info->dirty_cowonly_roots)) {
|
|
struct btrfs_root *root;
|
|
next = fs_info->dirty_cowonly_roots.next;
|
|
list_del_init(next);
|
|
root = list_entry(next, struct btrfs_root, dirty_list);
|
|
clear_bit(BTRFS_ROOT_DIRTY, &root->state);
|
|
|
|
list_add_tail(&root->dirty_list,
|
|
&trans->transaction->switch_commits);
|
|
ret = update_cowonly_root(trans, root);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Now flush any delayed refs generated by updating all of the roots */
|
|
ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
|
|
ret = btrfs_write_dirty_block_groups(trans);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* We're writing the dirty block groups, which could generate
|
|
* delayed refs, which could generate more dirty block groups,
|
|
* so we want to keep this flushing in this loop to make sure
|
|
* everything gets run.
|
|
*/
|
|
ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (!list_empty(&fs_info->dirty_cowonly_roots))
|
|
goto again;
|
|
|
|
/* Update dev-replace pointer once everything is committed */
|
|
fs_info->dev_replace.committed_cursor_left =
|
|
fs_info->dev_replace.cursor_left_last_write_of_item;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we had a pending drop we need to see if there are any others left in our
|
|
* dead roots list, and if not clear our bit and wake any waiters.
|
|
*/
|
|
void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
|
|
{
|
|
/*
|
|
* We put the drop in progress roots at the front of the list, so if the
|
|
* first entry doesn't have UNFINISHED_DROP set we can wake everybody
|
|
* up.
|
|
*/
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (!list_empty(&fs_info->dead_roots)) {
|
|
struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
|
|
struct btrfs_root,
|
|
root_list);
|
|
if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return;
|
|
}
|
|
}
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
btrfs_wake_unfinished_drop(fs_info);
|
|
}
|
|
|
|
/*
|
|
* dead roots are old snapshots that need to be deleted. This allocates
|
|
* a dirty root struct and adds it into the list of dead roots that need to
|
|
* be deleted
|
|
*/
|
|
void btrfs_add_dead_root(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (list_empty(&root->root_list)) {
|
|
btrfs_grab_root(root);
|
|
|
|
/* We want to process the partially complete drops first. */
|
|
if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
|
|
list_add(&root->root_list, &fs_info->dead_roots);
|
|
else
|
|
list_add_tail(&root->root_list, &fs_info->dead_roots);
|
|
}
|
|
spin_unlock(&fs_info->trans_lock);
|
|
}
|
|
|
|
/*
|
|
* Update each subvolume root and its relocation root, if it exists, in the tree
|
|
* of tree roots. Also free log roots if they exist.
|
|
*/
|
|
static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_root *gang[8];
|
|
int i;
|
|
int ret;
|
|
|
|
/*
|
|
* At this point no one can be using this transaction to modify any tree
|
|
* and no one can start another transaction to modify any tree either.
|
|
*/
|
|
ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
|
|
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
while (1) {
|
|
ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
|
|
(void **)gang, 0,
|
|
ARRAY_SIZE(gang),
|
|
BTRFS_ROOT_TRANS_TAG);
|
|
if (ret == 0)
|
|
break;
|
|
for (i = 0; i < ret; i++) {
|
|
struct btrfs_root *root = gang[i];
|
|
int ret2;
|
|
|
|
/*
|
|
* At this point we can neither have tasks logging inodes
|
|
* from a root nor trying to commit a log tree.
|
|
*/
|
|
ASSERT(atomic_read(&root->log_writers) == 0);
|
|
ASSERT(atomic_read(&root->log_commit[0]) == 0);
|
|
ASSERT(atomic_read(&root->log_commit[1]) == 0);
|
|
|
|
radix_tree_tag_clear(&fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid,
|
|
BTRFS_ROOT_TRANS_TAG);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
|
|
btrfs_free_log(trans, root);
|
|
ret2 = btrfs_update_reloc_root(trans, root);
|
|
if (ret2)
|
|
return ret2;
|
|
|
|
/* see comments in should_cow_block() */
|
|
clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
|
|
smp_mb__after_atomic();
|
|
|
|
if (root->commit_root != root->node) {
|
|
list_add_tail(&root->dirty_list,
|
|
&trans->transaction->switch_commits);
|
|
btrfs_set_root_node(&root->root_item,
|
|
root->node);
|
|
}
|
|
|
|
ret2 = btrfs_update_root(trans, fs_info->tree_root,
|
|
&root->root_key,
|
|
&root->root_item);
|
|
if (ret2)
|
|
return ret2;
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
btrfs_qgroup_free_meta_all_pertrans(root);
|
|
}
|
|
}
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* defrag a given btree.
|
|
* Every leaf in the btree is read and defragged.
|
|
*/
|
|
int btrfs_defrag_root(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
|
|
if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
|
|
return 0;
|
|
|
|
while (1) {
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
break;
|
|
}
|
|
|
|
ret = btrfs_defrag_leaves(trans, root);
|
|
|
|
btrfs_end_transaction(trans);
|
|
btrfs_btree_balance_dirty(info);
|
|
cond_resched();
|
|
|
|
if (btrfs_fs_closing(info) || ret != -EAGAIN)
|
|
break;
|
|
|
|
if (btrfs_defrag_cancelled(info)) {
|
|
btrfs_debug(info, "defrag_root cancelled");
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
}
|
|
clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Do all special snapshot related qgroup dirty hack.
|
|
*
|
|
* Will do all needed qgroup inherit and dirty hack like switch commit
|
|
* roots inside one transaction and write all btree into disk, to make
|
|
* qgroup works.
|
|
*/
|
|
static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *src,
|
|
struct btrfs_root *parent,
|
|
struct btrfs_qgroup_inherit *inherit,
|
|
u64 dst_objectid)
|
|
{
|
|
struct btrfs_fs_info *fs_info = src->fs_info;
|
|
int ret;
|
|
|
|
/*
|
|
* Save some performance in the case that qgroups are not
|
|
* enabled. If this check races with the ioctl, rescan will
|
|
* kick in anyway.
|
|
*/
|
|
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Ensure dirty @src will be committed. Or, after coming
|
|
* commit_fs_roots() and switch_commit_roots(), any dirty but not
|
|
* recorded root will never be updated again, causing an outdated root
|
|
* item.
|
|
*/
|
|
ret = record_root_in_trans(trans, src, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* btrfs_qgroup_inherit relies on a consistent view of the usage for the
|
|
* src root, so we must run the delayed refs here.
|
|
*
|
|
* However this isn't particularly fool proof, because there's no
|
|
* synchronization keeping us from changing the tree after this point
|
|
* before we do the qgroup_inherit, or even from making changes while
|
|
* we're doing the qgroup_inherit. But that's a problem for the future,
|
|
* for now flush the delayed refs to narrow the race window where the
|
|
* qgroup counters could end up wrong.
|
|
*/
|
|
ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = commit_fs_roots(trans);
|
|
if (ret)
|
|
goto out;
|
|
ret = btrfs_qgroup_account_extents(trans);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/* Now qgroup are all updated, we can inherit it to new qgroups */
|
|
ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
|
|
inherit);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Now we do a simplified commit transaction, which will:
|
|
* 1) commit all subvolume and extent tree
|
|
* To ensure all subvolume and extent tree have a valid
|
|
* commit_root to accounting later insert_dir_item()
|
|
* 2) write all btree blocks onto disk
|
|
* This is to make sure later btree modification will be cowed
|
|
* Or commit_root can be populated and cause wrong qgroup numbers
|
|
* In this simplified commit, we don't really care about other trees
|
|
* like chunk and root tree, as they won't affect qgroup.
|
|
* And we don't write super to avoid half committed status.
|
|
*/
|
|
ret = commit_cowonly_roots(trans);
|
|
if (ret)
|
|
goto out;
|
|
switch_commit_roots(trans);
|
|
ret = btrfs_write_and_wait_transaction(trans);
|
|
if (ret)
|
|
btrfs_handle_fs_error(fs_info, ret,
|
|
"Error while writing out transaction for qgroup");
|
|
|
|
out:
|
|
/*
|
|
* Force parent root to be updated, as we recorded it before so its
|
|
* last_trans == cur_transid.
|
|
* Or it won't be committed again onto disk after later
|
|
* insert_dir_item()
|
|
*/
|
|
if (!ret)
|
|
ret = record_root_in_trans(trans, parent, 1);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* new snapshots need to be created at a very specific time in the
|
|
* transaction commit. This does the actual creation.
|
|
*
|
|
* Note:
|
|
* If the error which may affect the commitment of the current transaction
|
|
* happens, we should return the error number. If the error which just affect
|
|
* the creation of the pending snapshots, just return 0.
|
|
*/
|
|
static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
|
|
struct btrfs_pending_snapshot *pending)
|
|
{
|
|
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_key key;
|
|
struct btrfs_root_item *new_root_item;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct btrfs_root *root = pending->root;
|
|
struct btrfs_root *parent_root;
|
|
struct btrfs_block_rsv *rsv;
|
|
struct inode *parent_inode = pending->dir;
|
|
struct btrfs_path *path;
|
|
struct btrfs_dir_item *dir_item;
|
|
struct extent_buffer *tmp;
|
|
struct extent_buffer *old;
|
|
struct timespec64 cur_time;
|
|
int ret = 0;
|
|
u64 to_reserve = 0;
|
|
u64 index = 0;
|
|
u64 objectid;
|
|
u64 root_flags;
|
|
unsigned int nofs_flags;
|
|
struct fscrypt_name fname;
|
|
|
|
ASSERT(pending->path);
|
|
path = pending->path;
|
|
|
|
ASSERT(pending->root_item);
|
|
new_root_item = pending->root_item;
|
|
|
|
/*
|
|
* We're inside a transaction and must make sure that any potential
|
|
* allocations with GFP_KERNEL in fscrypt won't recurse back to
|
|
* filesystem.
|
|
*/
|
|
nofs_flags = memalloc_nofs_save();
|
|
pending->error = fscrypt_setup_filename(parent_inode,
|
|
&pending->dentry->d_name, 0,
|
|
&fname);
|
|
memalloc_nofs_restore(nofs_flags);
|
|
if (pending->error)
|
|
goto free_pending;
|
|
|
|
pending->error = btrfs_get_free_objectid(tree_root, &objectid);
|
|
if (pending->error)
|
|
goto free_fname;
|
|
|
|
/*
|
|
* Make qgroup to skip current new snapshot's qgroupid, as it is
|
|
* accounted by later btrfs_qgroup_inherit().
|
|
*/
|
|
btrfs_set_skip_qgroup(trans, objectid);
|
|
|
|
btrfs_reloc_pre_snapshot(pending, &to_reserve);
|
|
|
|
if (to_reserve > 0) {
|
|
pending->error = btrfs_block_rsv_add(fs_info,
|
|
&pending->block_rsv,
|
|
to_reserve,
|
|
BTRFS_RESERVE_NO_FLUSH);
|
|
if (pending->error)
|
|
goto clear_skip_qgroup;
|
|
}
|
|
|
|
key.objectid = objectid;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
|
|
rsv = trans->block_rsv;
|
|
trans->block_rsv = &pending->block_rsv;
|
|
trans->bytes_reserved = trans->block_rsv->reserved;
|
|
trace_btrfs_space_reservation(fs_info, "transaction",
|
|
trans->transid,
|
|
trans->bytes_reserved, 1);
|
|
parent_root = BTRFS_I(parent_inode)->root;
|
|
ret = record_root_in_trans(trans, parent_root, 0);
|
|
if (ret)
|
|
goto fail;
|
|
cur_time = current_time(parent_inode);
|
|
|
|
/*
|
|
* insert the directory item
|
|
*/
|
|
ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
/* check if there is a file/dir which has the same name. */
|
|
dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
|
|
btrfs_ino(BTRFS_I(parent_inode)),
|
|
&fname.disk_name, 0);
|
|
if (dir_item != NULL && !IS_ERR(dir_item)) {
|
|
pending->error = -EEXIST;
|
|
goto dir_item_existed;
|
|
} else if (IS_ERR(dir_item)) {
|
|
ret = PTR_ERR(dir_item);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* pull in the delayed directory update
|
|
* and the delayed inode item
|
|
* otherwise we corrupt the FS during
|
|
* snapshot
|
|
*/
|
|
ret = btrfs_run_delayed_items(trans);
|
|
if (ret) { /* Transaction aborted */
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
ret = record_root_in_trans(trans, root, 0);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
|
|
memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
|
|
btrfs_check_and_init_root_item(new_root_item);
|
|
|
|
root_flags = btrfs_root_flags(new_root_item);
|
|
if (pending->readonly)
|
|
root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
|
|
else
|
|
root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
|
|
btrfs_set_root_flags(new_root_item, root_flags);
|
|
|
|
btrfs_set_root_generation_v2(new_root_item,
|
|
trans->transid);
|
|
generate_random_guid(new_root_item->uuid);
|
|
memcpy(new_root_item->parent_uuid, root->root_item.uuid,
|
|
BTRFS_UUID_SIZE);
|
|
if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
|
|
memset(new_root_item->received_uuid, 0,
|
|
sizeof(new_root_item->received_uuid));
|
|
memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
|
|
memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
|
|
btrfs_set_root_stransid(new_root_item, 0);
|
|
btrfs_set_root_rtransid(new_root_item, 0);
|
|
}
|
|
btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
|
|
btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
|
|
btrfs_set_root_otransid(new_root_item, trans->transid);
|
|
|
|
old = btrfs_lock_root_node(root);
|
|
ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
|
|
BTRFS_NESTING_COW);
|
|
if (ret) {
|
|
btrfs_tree_unlock(old);
|
|
free_extent_buffer(old);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
|
|
/* clean up in any case */
|
|
btrfs_tree_unlock(old);
|
|
free_extent_buffer(old);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
/* see comments in should_cow_block() */
|
|
set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
|
|
smp_wmb();
|
|
|
|
btrfs_set_root_node(new_root_item, tmp);
|
|
/* record when the snapshot was created in key.offset */
|
|
key.offset = trans->transid;
|
|
ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
|
|
btrfs_tree_unlock(tmp);
|
|
free_extent_buffer(tmp);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* insert root back/forward references
|
|
*/
|
|
ret = btrfs_add_root_ref(trans, objectid,
|
|
parent_root->root_key.objectid,
|
|
btrfs_ino(BTRFS_I(parent_inode)), index,
|
|
&fname.disk_name);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
key.offset = (u64)-1;
|
|
pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
|
|
if (IS_ERR(pending->snap)) {
|
|
ret = PTR_ERR(pending->snap);
|
|
pending->snap = NULL;
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
ret = btrfs_reloc_post_snapshot(trans, pending);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Do special qgroup accounting for snapshot, as we do some qgroup
|
|
* snapshot hack to do fast snapshot.
|
|
* To co-operate with that hack, we do hack again.
|
|
* Or snapshot will be greatly slowed down by a subtree qgroup rescan
|
|
*/
|
|
ret = qgroup_account_snapshot(trans, root, parent_root,
|
|
pending->inherit, objectid);
|
|
if (ret < 0)
|
|
goto fail;
|
|
|
|
ret = btrfs_insert_dir_item(trans, &fname.disk_name,
|
|
BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
|
|
index);
|
|
/* We have check then name at the beginning, so it is impossible. */
|
|
BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
|
|
fname.disk_name.len * 2);
|
|
parent_inode->i_mtime = current_time(parent_inode);
|
|
parent_inode->i_ctime = parent_inode->i_mtime;
|
|
ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
|
|
BTRFS_UUID_KEY_SUBVOL,
|
|
objectid);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
|
|
ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
|
|
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
|
|
objectid);
|
|
if (ret && ret != -EEXIST) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
pending->error = ret;
|
|
dir_item_existed:
|
|
trans->block_rsv = rsv;
|
|
trans->bytes_reserved = 0;
|
|
clear_skip_qgroup:
|
|
btrfs_clear_skip_qgroup(trans);
|
|
free_fname:
|
|
fscrypt_free_filename(&fname);
|
|
free_pending:
|
|
kfree(new_root_item);
|
|
pending->root_item = NULL;
|
|
btrfs_free_path(path);
|
|
pending->path = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* create all the snapshots we've scheduled for creation
|
|
*/
|
|
static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_pending_snapshot *pending, *next;
|
|
struct list_head *head = &trans->transaction->pending_snapshots;
|
|
int ret = 0;
|
|
|
|
list_for_each_entry_safe(pending, next, head, list) {
|
|
list_del(&pending->list);
|
|
ret = create_pending_snapshot(trans, pending);
|
|
if (ret)
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void update_super_roots(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root_item *root_item;
|
|
struct btrfs_super_block *super;
|
|
|
|
super = fs_info->super_copy;
|
|
|
|
root_item = &fs_info->chunk_root->root_item;
|
|
super->chunk_root = root_item->bytenr;
|
|
super->chunk_root_generation = root_item->generation;
|
|
super->chunk_root_level = root_item->level;
|
|
|
|
root_item = &fs_info->tree_root->root_item;
|
|
super->root = root_item->bytenr;
|
|
super->generation = root_item->generation;
|
|
super->root_level = root_item->level;
|
|
if (btrfs_test_opt(fs_info, SPACE_CACHE))
|
|
super->cache_generation = root_item->generation;
|
|
else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
|
|
super->cache_generation = 0;
|
|
if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
|
|
super->uuid_tree_generation = root_item->generation;
|
|
}
|
|
|
|
int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
|
|
{
|
|
struct btrfs_transaction *trans;
|
|
int ret = 0;
|
|
|
|
spin_lock(&info->trans_lock);
|
|
trans = info->running_transaction;
|
|
if (trans)
|
|
ret = (trans->state >= TRANS_STATE_COMMIT_START);
|
|
spin_unlock(&info->trans_lock);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_transaction_blocked(struct btrfs_fs_info *info)
|
|
{
|
|
struct btrfs_transaction *trans;
|
|
int ret = 0;
|
|
|
|
spin_lock(&info->trans_lock);
|
|
trans = info->running_transaction;
|
|
if (trans)
|
|
ret = is_transaction_blocked(trans);
|
|
spin_unlock(&info->trans_lock);
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_transaction *cur_trans;
|
|
|
|
/* Kick the transaction kthread. */
|
|
set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
|
|
wake_up_process(fs_info->transaction_kthread);
|
|
|
|
/* take transaction reference */
|
|
cur_trans = trans->transaction;
|
|
refcount_inc(&cur_trans->use_count);
|
|
|
|
btrfs_end_transaction(trans);
|
|
|
|
/*
|
|
* Wait for the current transaction commit to start and block
|
|
* subsequent transaction joins
|
|
*/
|
|
btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
|
|
wait_event(fs_info->transaction_blocked_wait,
|
|
cur_trans->state >= TRANS_STATE_COMMIT_START ||
|
|
TRANS_ABORTED(cur_trans));
|
|
btrfs_put_transaction(cur_trans);
|
|
}
|
|
|
|
static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
|
|
WARN_ON(refcount_read(&trans->use_count) > 1);
|
|
|
|
btrfs_abort_transaction(trans, err);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
|
|
/*
|
|
* If the transaction is removed from the list, it means this
|
|
* transaction has been committed successfully, so it is impossible
|
|
* to call the cleanup function.
|
|
*/
|
|
BUG_ON(list_empty(&cur_trans->list));
|
|
|
|
if (cur_trans == fs_info->running_transaction) {
|
|
cur_trans->state = TRANS_STATE_COMMIT_DOING;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
/*
|
|
* The thread has already released the lockdep map as reader
|
|
* already in btrfs_commit_transaction().
|
|
*/
|
|
btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
|
|
wait_event(cur_trans->writer_wait,
|
|
atomic_read(&cur_trans->num_writers) == 1);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
}
|
|
|
|
/*
|
|
* Now that we know no one else is still using the transaction we can
|
|
* remove the transaction from the list of transactions. This avoids
|
|
* the transaction kthread from cleaning up the transaction while some
|
|
* other task is still using it, which could result in a use-after-free
|
|
* on things like log trees, as it forces the transaction kthread to
|
|
* wait for this transaction to be cleaned up by us.
|
|
*/
|
|
list_del_init(&cur_trans->list);
|
|
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
btrfs_cleanup_one_transaction(trans->transaction, fs_info);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (cur_trans == fs_info->running_transaction)
|
|
fs_info->running_transaction = NULL;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
if (trans->type & __TRANS_FREEZABLE)
|
|
sb_end_intwrite(fs_info->sb);
|
|
btrfs_put_transaction(cur_trans);
|
|
btrfs_put_transaction(cur_trans);
|
|
|
|
trace_btrfs_transaction_commit(fs_info);
|
|
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
|
|
/*
|
|
* If relocation is running, we can't cancel scrub because that will
|
|
* result in a deadlock. Before relocating a block group, relocation
|
|
* pauses scrub, then starts and commits a transaction before unpausing
|
|
* scrub. If the transaction commit is being done by the relocation
|
|
* task or triggered by another task and the relocation task is waiting
|
|
* for the commit, and we end up here due to an error in the commit
|
|
* path, then calling btrfs_scrub_cancel() will deadlock, as we are
|
|
* asking for scrub to stop while having it asked to be paused higher
|
|
* above in relocation code.
|
|
*/
|
|
if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
|
|
btrfs_scrub_cancel(fs_info);
|
|
|
|
kmem_cache_free(btrfs_trans_handle_cachep, trans);
|
|
}
|
|
|
|
/*
|
|
* Release reserved delayed ref space of all pending block groups of the
|
|
* transaction and remove them from the list
|
|
*/
|
|
static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_block_group *block_group, *tmp;
|
|
|
|
list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
|
|
btrfs_delayed_refs_rsv_release(fs_info, 1);
|
|
list_del_init(&block_group->bg_list);
|
|
}
|
|
}
|
|
|
|
static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
|
|
{
|
|
/*
|
|
* We use try_to_writeback_inodes_sb() here because if we used
|
|
* btrfs_start_delalloc_roots we would deadlock with fs freeze.
|
|
* Currently are holding the fs freeze lock, if we do an async flush
|
|
* we'll do btrfs_join_transaction() and deadlock because we need to
|
|
* wait for the fs freeze lock. Using the direct flushing we benefit
|
|
* from already being in a transaction and our join_transaction doesn't
|
|
* have to re-take the fs freeze lock.
|
|
*
|
|
* Note that try_to_writeback_inodes_sb() will only trigger writeback
|
|
* if it can read lock sb->s_umount. It will always be able to lock it,
|
|
* except when the filesystem is being unmounted or being frozen, but in
|
|
* those cases sync_filesystem() is called, which results in calling
|
|
* writeback_inodes_sb() while holding a write lock on sb->s_umount.
|
|
* Note that we don't call writeback_inodes_sb() directly, because it
|
|
* will emit a warning if sb->s_umount is not locked.
|
|
*/
|
|
if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
|
|
try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
|
|
return 0;
|
|
}
|
|
|
|
static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
|
|
{
|
|
if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
|
|
btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
|
|
}
|
|
|
|
/*
|
|
* Add a pending snapshot associated with the given transaction handle to the
|
|
* respective handle. This must be called after the transaction commit started
|
|
* and while holding fs_info->trans_lock.
|
|
* This serves to guarantee a caller of btrfs_commit_transaction() that it can
|
|
* safely free the pending snapshot pointer in case btrfs_commit_transaction()
|
|
* returns an error.
|
|
*/
|
|
static void add_pending_snapshot(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
|
|
if (!trans->pending_snapshot)
|
|
return;
|
|
|
|
lockdep_assert_held(&trans->fs_info->trans_lock);
|
|
ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
|
|
|
|
list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
|
|
}
|
|
|
|
static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
|
|
{
|
|
fs_info->commit_stats.commit_count++;
|
|
fs_info->commit_stats.last_commit_dur = interval;
|
|
fs_info->commit_stats.max_commit_dur =
|
|
max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
|
|
fs_info->commit_stats.total_commit_dur += interval;
|
|
}
|
|
|
|
int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
struct btrfs_transaction *prev_trans = NULL;
|
|
int ret;
|
|
ktime_t start_time;
|
|
ktime_t interval;
|
|
|
|
ASSERT(refcount_read(&trans->use_count) == 1);
|
|
btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
|
|
|
|
clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
|
|
|
|
/* Stop the commit early if ->aborted is set */
|
|
if (TRANS_ABORTED(cur_trans)) {
|
|
ret = cur_trans->aborted;
|
|
goto lockdep_trans_commit_start_release;
|
|
}
|
|
|
|
btrfs_trans_release_metadata(trans);
|
|
trans->block_rsv = NULL;
|
|
|
|
/*
|
|
* We only want one transaction commit doing the flushing so we do not
|
|
* waste a bunch of time on lock contention on the extent root node.
|
|
*/
|
|
if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
|
|
&cur_trans->delayed_refs.flags)) {
|
|
/*
|
|
* Make a pass through all the delayed refs we have so far.
|
|
* Any running threads may add more while we are here.
|
|
*/
|
|
ret = btrfs_run_delayed_refs(trans, 0);
|
|
if (ret)
|
|
goto lockdep_trans_commit_start_release;
|
|
}
|
|
|
|
btrfs_create_pending_block_groups(trans);
|
|
|
|
if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
|
|
int run_it = 0;
|
|
|
|
/* this mutex is also taken before trying to set
|
|
* block groups readonly. We need to make sure
|
|
* that nobody has set a block group readonly
|
|
* after a extents from that block group have been
|
|
* allocated for cache files. btrfs_set_block_group_ro
|
|
* will wait for the transaction to commit if it
|
|
* finds BTRFS_TRANS_DIRTY_BG_RUN set.
|
|
*
|
|
* The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
|
|
* only one process starts all the block group IO. It wouldn't
|
|
* hurt to have more than one go through, but there's no
|
|
* real advantage to it either.
|
|
*/
|
|
mutex_lock(&fs_info->ro_block_group_mutex);
|
|
if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
|
|
&cur_trans->flags))
|
|
run_it = 1;
|
|
mutex_unlock(&fs_info->ro_block_group_mutex);
|
|
|
|
if (run_it) {
|
|
ret = btrfs_start_dirty_block_groups(trans);
|
|
if (ret)
|
|
goto lockdep_trans_commit_start_release;
|
|
}
|
|
}
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
|
|
enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
|
|
|
|
add_pending_snapshot(trans);
|
|
|
|
spin_unlock(&fs_info->trans_lock);
|
|
refcount_inc(&cur_trans->use_count);
|
|
|
|
if (trans->in_fsync)
|
|
want_state = TRANS_STATE_SUPER_COMMITTED;
|
|
|
|
btrfs_trans_state_lockdep_release(fs_info,
|
|
BTRFS_LOCKDEP_TRANS_COMMIT_START);
|
|
ret = btrfs_end_transaction(trans);
|
|
wait_for_commit(cur_trans, want_state);
|
|
|
|
if (TRANS_ABORTED(cur_trans))
|
|
ret = cur_trans->aborted;
|
|
|
|
btrfs_put_transaction(cur_trans);
|
|
|
|
return ret;
|
|
}
|
|
|
|
cur_trans->state = TRANS_STATE_COMMIT_START;
|
|
wake_up(&fs_info->transaction_blocked_wait);
|
|
btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
|
|
|
|
if (cur_trans->list.prev != &fs_info->trans_list) {
|
|
enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
|
|
|
|
if (trans->in_fsync)
|
|
want_state = TRANS_STATE_SUPER_COMMITTED;
|
|
|
|
prev_trans = list_entry(cur_trans->list.prev,
|
|
struct btrfs_transaction, list);
|
|
if (prev_trans->state < want_state) {
|
|
refcount_inc(&prev_trans->use_count);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
wait_for_commit(prev_trans, want_state);
|
|
|
|
ret = READ_ONCE(prev_trans->aborted);
|
|
|
|
btrfs_put_transaction(prev_trans);
|
|
if (ret)
|
|
goto lockdep_release;
|
|
} else {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
}
|
|
} else {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
/*
|
|
* The previous transaction was aborted and was already removed
|
|
* from the list of transactions at fs_info->trans_list. So we
|
|
* abort to prevent writing a new superblock that reflects a
|
|
* corrupt state (pointing to trees with unwritten nodes/leafs).
|
|
*/
|
|
if (BTRFS_FS_ERROR(fs_info)) {
|
|
ret = -EROFS;
|
|
goto lockdep_release;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the time spent on the work done by the commit thread and not
|
|
* the time spent waiting on a previous commit
|
|
*/
|
|
start_time = ktime_get_ns();
|
|
|
|
extwriter_counter_dec(cur_trans, trans->type);
|
|
|
|
ret = btrfs_start_delalloc_flush(fs_info);
|
|
if (ret)
|
|
goto lockdep_release;
|
|
|
|
ret = btrfs_run_delayed_items(trans);
|
|
if (ret)
|
|
goto lockdep_release;
|
|
|
|
/*
|
|
* The thread has started/joined the transaction thus it holds the
|
|
* lockdep map as a reader. It has to release it before acquiring the
|
|
* lockdep map as a writer.
|
|
*/
|
|
btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
|
|
btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
|
|
wait_event(cur_trans->writer_wait,
|
|
extwriter_counter_read(cur_trans) == 0);
|
|
|
|
/* some pending stuffs might be added after the previous flush. */
|
|
ret = btrfs_run_delayed_items(trans);
|
|
if (ret) {
|
|
btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
btrfs_wait_delalloc_flush(fs_info);
|
|
|
|
/*
|
|
* Wait for all ordered extents started by a fast fsync that joined this
|
|
* transaction. Otherwise if this transaction commits before the ordered
|
|
* extents complete we lose logged data after a power failure.
|
|
*/
|
|
btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
|
|
wait_event(cur_trans->pending_wait,
|
|
atomic_read(&cur_trans->pending_ordered) == 0);
|
|
|
|
btrfs_scrub_pause(fs_info);
|
|
/*
|
|
* Ok now we need to make sure to block out any other joins while we
|
|
* commit the transaction. We could have started a join before setting
|
|
* COMMIT_DOING so make sure to wait for num_writers to == 1 again.
|
|
*/
|
|
spin_lock(&fs_info->trans_lock);
|
|
add_pending_snapshot(trans);
|
|
cur_trans->state = TRANS_STATE_COMMIT_DOING;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
/*
|
|
* The thread has started/joined the transaction thus it holds the
|
|
* lockdep map as a reader. It has to release it before acquiring the
|
|
* lockdep map as a writer.
|
|
*/
|
|
btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
|
|
btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
|
|
wait_event(cur_trans->writer_wait,
|
|
atomic_read(&cur_trans->num_writers) == 1);
|
|
|
|
/*
|
|
* Make lockdep happy by acquiring the state locks after
|
|
* btrfs_trans_num_writers is released. If we acquired the state locks
|
|
* before releasing the btrfs_trans_num_writers lock then lockdep would
|
|
* complain because we did not follow the reverse order unlocking rule.
|
|
*/
|
|
btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
|
|
btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
|
|
btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
|
|
|
|
/*
|
|
* We've started the commit, clear the flag in case we were triggered to
|
|
* do an async commit but somebody else started before the transaction
|
|
* kthread could do the work.
|
|
*/
|
|
clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
|
|
|
|
if (TRANS_ABORTED(cur_trans)) {
|
|
ret = cur_trans->aborted;
|
|
btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
|
|
goto scrub_continue;
|
|
}
|
|
/*
|
|
* the reloc mutex makes sure that we stop
|
|
* the balancing code from coming in and moving
|
|
* extents around in the middle of the commit
|
|
*/
|
|
mutex_lock(&fs_info->reloc_mutex);
|
|
|
|
/*
|
|
* We needn't worry about the delayed items because we will
|
|
* deal with them in create_pending_snapshot(), which is the
|
|
* core function of the snapshot creation.
|
|
*/
|
|
ret = create_pending_snapshots(trans);
|
|
if (ret)
|
|
goto unlock_reloc;
|
|
|
|
/*
|
|
* We insert the dir indexes of the snapshots and update the inode
|
|
* of the snapshots' parents after the snapshot creation, so there
|
|
* are some delayed items which are not dealt with. Now deal with
|
|
* them.
|
|
*
|
|
* We needn't worry that this operation will corrupt the snapshots,
|
|
* because all the tree which are snapshoted will be forced to COW
|
|
* the nodes and leaves.
|
|
*/
|
|
ret = btrfs_run_delayed_items(trans);
|
|
if (ret)
|
|
goto unlock_reloc;
|
|
|
|
ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
|
|
if (ret)
|
|
goto unlock_reloc;
|
|
|
|
/*
|
|
* make sure none of the code above managed to slip in a
|
|
* delayed item
|
|
*/
|
|
btrfs_assert_delayed_root_empty(fs_info);
|
|
|
|
WARN_ON(cur_trans != trans->transaction);
|
|
|
|
ret = commit_fs_roots(trans);
|
|
if (ret)
|
|
goto unlock_reloc;
|
|
|
|
/* commit_fs_roots gets rid of all the tree log roots, it is now
|
|
* safe to free the root of tree log roots
|
|
*/
|
|
btrfs_free_log_root_tree(trans, fs_info);
|
|
|
|
/*
|
|
* Since fs roots are all committed, we can get a quite accurate
|
|
* new_roots. So let's do quota accounting.
|
|
*/
|
|
ret = btrfs_qgroup_account_extents(trans);
|
|
if (ret < 0)
|
|
goto unlock_reloc;
|
|
|
|
ret = commit_cowonly_roots(trans);
|
|
if (ret)
|
|
goto unlock_reloc;
|
|
|
|
/*
|
|
* The tasks which save the space cache and inode cache may also
|
|
* update ->aborted, check it.
|
|
*/
|
|
if (TRANS_ABORTED(cur_trans)) {
|
|
ret = cur_trans->aborted;
|
|
goto unlock_reloc;
|
|
}
|
|
|
|
cur_trans = fs_info->running_transaction;
|
|
|
|
btrfs_set_root_node(&fs_info->tree_root->root_item,
|
|
fs_info->tree_root->node);
|
|
list_add_tail(&fs_info->tree_root->dirty_list,
|
|
&cur_trans->switch_commits);
|
|
|
|
btrfs_set_root_node(&fs_info->chunk_root->root_item,
|
|
fs_info->chunk_root->node);
|
|
list_add_tail(&fs_info->chunk_root->dirty_list,
|
|
&cur_trans->switch_commits);
|
|
|
|
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
|
|
btrfs_set_root_node(&fs_info->block_group_root->root_item,
|
|
fs_info->block_group_root->node);
|
|
list_add_tail(&fs_info->block_group_root->dirty_list,
|
|
&cur_trans->switch_commits);
|
|
}
|
|
|
|
switch_commit_roots(trans);
|
|
|
|
ASSERT(list_empty(&cur_trans->dirty_bgs));
|
|
ASSERT(list_empty(&cur_trans->io_bgs));
|
|
update_super_roots(fs_info);
|
|
|
|
btrfs_set_super_log_root(fs_info->super_copy, 0);
|
|
btrfs_set_super_log_root_level(fs_info->super_copy, 0);
|
|
memcpy(fs_info->super_for_commit, fs_info->super_copy,
|
|
sizeof(*fs_info->super_copy));
|
|
|
|
btrfs_commit_device_sizes(cur_trans);
|
|
|
|
clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
|
|
clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
|
|
|
|
btrfs_trans_release_chunk_metadata(trans);
|
|
|
|
/*
|
|
* Before changing the transaction state to TRANS_STATE_UNBLOCKED and
|
|
* setting fs_info->running_transaction to NULL, lock tree_log_mutex to
|
|
* make sure that before we commit our superblock, no other task can
|
|
* start a new transaction and commit a log tree before we commit our
|
|
* superblock. Anyone trying to commit a log tree locks this mutex before
|
|
* writing its superblock.
|
|
*/
|
|
mutex_lock(&fs_info->tree_log_mutex);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
cur_trans->state = TRANS_STATE_UNBLOCKED;
|
|
fs_info->running_transaction = NULL;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
mutex_unlock(&fs_info->reloc_mutex);
|
|
|
|
wake_up(&fs_info->transaction_wait);
|
|
btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
|
|
|
|
/* If we have features changed, wake up the cleaner to update sysfs. */
|
|
if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
|
|
fs_info->cleaner_kthread)
|
|
wake_up_process(fs_info->cleaner_kthread);
|
|
|
|
ret = btrfs_write_and_wait_transaction(trans);
|
|
if (ret) {
|
|
btrfs_handle_fs_error(fs_info, ret,
|
|
"Error while writing out transaction");
|
|
mutex_unlock(&fs_info->tree_log_mutex);
|
|
goto scrub_continue;
|
|
}
|
|
|
|
ret = write_all_supers(fs_info, 0);
|
|
/*
|
|
* the super is written, we can safely allow the tree-loggers
|
|
* to go about their business
|
|
*/
|
|
mutex_unlock(&fs_info->tree_log_mutex);
|
|
if (ret)
|
|
goto scrub_continue;
|
|
|
|
/*
|
|
* We needn't acquire the lock here because there is no other task
|
|
* which can change it.
|
|
*/
|
|
cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
|
|
wake_up(&cur_trans->commit_wait);
|
|
btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
|
|
|
|
btrfs_finish_extent_commit(trans);
|
|
|
|
if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
|
|
btrfs_clear_space_info_full(fs_info);
|
|
|
|
fs_info->last_trans_committed = cur_trans->transid;
|
|
/*
|
|
* We needn't acquire the lock here because there is no other task
|
|
* which can change it.
|
|
*/
|
|
cur_trans->state = TRANS_STATE_COMPLETED;
|
|
wake_up(&cur_trans->commit_wait);
|
|
btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
list_del_init(&cur_trans->list);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
btrfs_put_transaction(cur_trans);
|
|
btrfs_put_transaction(cur_trans);
|
|
|
|
if (trans->type & __TRANS_FREEZABLE)
|
|
sb_end_intwrite(fs_info->sb);
|
|
|
|
trace_btrfs_transaction_commit(fs_info);
|
|
|
|
interval = ktime_get_ns() - start_time;
|
|
|
|
btrfs_scrub_continue(fs_info);
|
|
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
|
|
kmem_cache_free(btrfs_trans_handle_cachep, trans);
|
|
|
|
update_commit_stats(fs_info, interval);
|
|
|
|
return ret;
|
|
|
|
unlock_reloc:
|
|
mutex_unlock(&fs_info->reloc_mutex);
|
|
btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
|
|
scrub_continue:
|
|
btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
|
|
btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
|
|
btrfs_scrub_continue(fs_info);
|
|
cleanup_transaction:
|
|
btrfs_trans_release_metadata(trans);
|
|
btrfs_cleanup_pending_block_groups(trans);
|
|
btrfs_trans_release_chunk_metadata(trans);
|
|
trans->block_rsv = NULL;
|
|
btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
cleanup_transaction(trans, ret);
|
|
|
|
return ret;
|
|
|
|
lockdep_release:
|
|
btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
|
|
btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
|
|
goto cleanup_transaction;
|
|
|
|
lockdep_trans_commit_start_release:
|
|
btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* return < 0 if error
|
|
* 0 if there are no more dead_roots at the time of call
|
|
* 1 there are more to be processed, call me again
|
|
*
|
|
* The return value indicates there are certainly more snapshots to delete, but
|
|
* if there comes a new one during processing, it may return 0. We don't mind,
|
|
* because btrfs_commit_super will poke cleaner thread and it will process it a
|
|
* few seconds later.
|
|
*/
|
|
int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root;
|
|
int ret;
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (list_empty(&fs_info->dead_roots)) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return 0;
|
|
}
|
|
root = list_first_entry(&fs_info->dead_roots,
|
|
struct btrfs_root, root_list);
|
|
list_del_init(&root->root_list);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
|
|
|
|
btrfs_kill_all_delayed_nodes(root);
|
|
|
|
if (btrfs_header_backref_rev(root->node) <
|
|
BTRFS_MIXED_BACKREF_REV)
|
|
ret = btrfs_drop_snapshot(root, 0, 0);
|
|
else
|
|
ret = btrfs_drop_snapshot(root, 1, 0);
|
|
|
|
btrfs_put_root(root);
|
|
return (ret < 0) ? 0 : 1;
|
|
}
|
|
|
|
/*
|
|
* We only mark the transaction aborted and then set the file system read-only.
|
|
* This will prevent new transactions from starting or trying to join this
|
|
* one.
|
|
*
|
|
* This means that error recovery at the call site is limited to freeing
|
|
* any local memory allocations and passing the error code up without
|
|
* further cleanup. The transaction should complete as it normally would
|
|
* in the call path but will return -EIO.
|
|
*
|
|
* We'll complete the cleanup in btrfs_end_transaction and
|
|
* btrfs_commit_transaction.
|
|
*/
|
|
void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
|
|
const char *function,
|
|
unsigned int line, int errno, bool first_hit)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
|
|
WRITE_ONCE(trans->aborted, errno);
|
|
WRITE_ONCE(trans->transaction->aborted, errno);
|
|
if (first_hit && errno == -ENOSPC)
|
|
btrfs_dump_space_info_for_trans_abort(fs_info);
|
|
/* Wake up anybody who may be waiting on this transaction */
|
|
wake_up(&fs_info->transaction_wait);
|
|
wake_up(&fs_info->transaction_blocked_wait);
|
|
__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
|
|
}
|
|
|
|
int __init btrfs_transaction_init(void)
|
|
{
|
|
btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
|
|
sizeof(struct btrfs_trans_handle), 0,
|
|
SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
|
|
if (!btrfs_trans_handle_cachep)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void __cold btrfs_transaction_exit(void)
|
|
{
|
|
kmem_cache_destroy(btrfs_trans_handle_cachep);
|
|
}
|