OpenCloudOS-Kernel/kernel/seccomp.c

937 lines
25 KiB
C

/*
* linux/kernel/seccomp.c
*
* Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com>
*
* Copyright (C) 2012 Google, Inc.
* Will Drewry <wad@chromium.org>
*
* This defines a simple but solid secure-computing facility.
*
* Mode 1 uses a fixed list of allowed system calls.
* Mode 2 allows user-defined system call filters in the form
* of Berkeley Packet Filters/Linux Socket Filters.
*/
#include <linux/atomic.h>
#include <linux/audit.h>
#include <linux/compat.h>
#include <linux/sched.h>
#include <linux/seccomp.h>
#include <linux/slab.h>
#include <linux/syscalls.h>
#ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
#include <asm/syscall.h>
#endif
#ifdef CONFIG_SECCOMP_FILTER
#include <linux/filter.h>
#include <linux/pid.h>
#include <linux/ptrace.h>
#include <linux/security.h>
#include <linux/tracehook.h>
#include <linux/uaccess.h>
/**
* struct seccomp_filter - container for seccomp BPF programs
*
* @usage: reference count to manage the object lifetime.
* get/put helpers should be used when accessing an instance
* outside of a lifetime-guarded section. In general, this
* is only needed for handling filters shared across tasks.
* @prev: points to a previously installed, or inherited, filter
* @len: the number of instructions in the program
* @insnsi: the BPF program instructions to evaluate
*
* seccomp_filter objects are organized in a tree linked via the @prev
* pointer. For any task, it appears to be a singly-linked list starting
* with current->seccomp.filter, the most recently attached or inherited filter.
* However, multiple filters may share a @prev node, by way of fork(), which
* results in a unidirectional tree existing in memory. This is similar to
* how namespaces work.
*
* seccomp_filter objects should never be modified after being attached
* to a task_struct (other than @usage).
*/
struct seccomp_filter {
atomic_t usage;
struct seccomp_filter *prev;
struct bpf_prog *prog;
};
/* Limit any path through the tree to 256KB worth of instructions. */
#define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
/*
* Endianness is explicitly ignored and left for BPF program authors to manage
* as per the specific architecture.
*/
static void populate_seccomp_data(struct seccomp_data *sd)
{
struct task_struct *task = current;
struct pt_regs *regs = task_pt_regs(task);
unsigned long args[6];
sd->nr = syscall_get_nr(task, regs);
sd->arch = syscall_get_arch();
syscall_get_arguments(task, regs, 0, 6, args);
sd->args[0] = args[0];
sd->args[1] = args[1];
sd->args[2] = args[2];
sd->args[3] = args[3];
sd->args[4] = args[4];
sd->args[5] = args[5];
sd->instruction_pointer = KSTK_EIP(task);
}
/**
* seccomp_check_filter - verify seccomp filter code
* @filter: filter to verify
* @flen: length of filter
*
* Takes a previously checked filter (by bpf_check_classic) and
* redirects all filter code that loads struct sk_buff data
* and related data through seccomp_bpf_load. It also
* enforces length and alignment checking of those loads.
*
* Returns 0 if the rule set is legal or -EINVAL if not.
*/
static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
{
int pc;
for (pc = 0; pc < flen; pc++) {
struct sock_filter *ftest = &filter[pc];
u16 code = ftest->code;
u32 k = ftest->k;
switch (code) {
case BPF_LD | BPF_W | BPF_ABS:
ftest->code = BPF_LDX | BPF_W | BPF_ABS;
/* 32-bit aligned and not out of bounds. */
if (k >= sizeof(struct seccomp_data) || k & 3)
return -EINVAL;
continue;
case BPF_LD | BPF_W | BPF_LEN:
ftest->code = BPF_LD | BPF_IMM;
ftest->k = sizeof(struct seccomp_data);
continue;
case BPF_LDX | BPF_W | BPF_LEN:
ftest->code = BPF_LDX | BPF_IMM;
ftest->k = sizeof(struct seccomp_data);
continue;
/* Explicitly include allowed calls. */
case BPF_RET | BPF_K:
case BPF_RET | BPF_A:
case BPF_ALU | BPF_ADD | BPF_K:
case BPF_ALU | BPF_ADD | BPF_X:
case BPF_ALU | BPF_SUB | BPF_K:
case BPF_ALU | BPF_SUB | BPF_X:
case BPF_ALU | BPF_MUL | BPF_K:
case BPF_ALU | BPF_MUL | BPF_X:
case BPF_ALU | BPF_DIV | BPF_K:
case BPF_ALU | BPF_DIV | BPF_X:
case BPF_ALU | BPF_AND | BPF_K:
case BPF_ALU | BPF_AND | BPF_X:
case BPF_ALU | BPF_OR | BPF_K:
case BPF_ALU | BPF_OR | BPF_X:
case BPF_ALU | BPF_XOR | BPF_K:
case BPF_ALU | BPF_XOR | BPF_X:
case BPF_ALU | BPF_LSH | BPF_K:
case BPF_ALU | BPF_LSH | BPF_X:
case BPF_ALU | BPF_RSH | BPF_K:
case BPF_ALU | BPF_RSH | BPF_X:
case BPF_ALU | BPF_NEG:
case BPF_LD | BPF_IMM:
case BPF_LDX | BPF_IMM:
case BPF_MISC | BPF_TAX:
case BPF_MISC | BPF_TXA:
case BPF_LD | BPF_MEM:
case BPF_LDX | BPF_MEM:
case BPF_ST:
case BPF_STX:
case BPF_JMP | BPF_JA:
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JSET | BPF_K:
case BPF_JMP | BPF_JSET | BPF_X:
continue;
default:
return -EINVAL;
}
}
return 0;
}
/**
* seccomp_run_filters - evaluates all seccomp filters against @syscall
* @syscall: number of the current system call
*
* Returns valid seccomp BPF response codes.
*/
static u32 seccomp_run_filters(struct seccomp_data *sd)
{
struct seccomp_data sd_local;
u32 ret = SECCOMP_RET_ALLOW;
/* Make sure cross-thread synced filter points somewhere sane. */
struct seccomp_filter *f =
lockless_dereference(current->seccomp.filter);
/* Ensure unexpected behavior doesn't result in failing open. */
if (unlikely(WARN_ON(f == NULL)))
return SECCOMP_RET_KILL;
if (!sd) {
populate_seccomp_data(&sd_local);
sd = &sd_local;
}
/*
* All filters in the list are evaluated and the lowest BPF return
* value always takes priority (ignoring the DATA).
*/
for (; f; f = f->prev) {
u32 cur_ret = BPF_PROG_RUN(f->prog, (void *)sd);
if ((cur_ret & SECCOMP_RET_ACTION) < (ret & SECCOMP_RET_ACTION))
ret = cur_ret;
}
return ret;
}
#endif /* CONFIG_SECCOMP_FILTER */
static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
{
assert_spin_locked(&current->sighand->siglock);
if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)
return false;
return true;
}
static inline void seccomp_assign_mode(struct task_struct *task,
unsigned long seccomp_mode)
{
assert_spin_locked(&task->sighand->siglock);
task->seccomp.mode = seccomp_mode;
/*
* Make sure TIF_SECCOMP cannot be set before the mode (and
* filter) is set.
*/
smp_mb__before_atomic();
set_tsk_thread_flag(task, TIF_SECCOMP);
}
#ifdef CONFIG_SECCOMP_FILTER
/* Returns 1 if the parent is an ancestor of the child. */
static int is_ancestor(struct seccomp_filter *parent,
struct seccomp_filter *child)
{
/* NULL is the root ancestor. */
if (parent == NULL)
return 1;
for (; child; child = child->prev)
if (child == parent)
return 1;
return 0;
}
/**
* seccomp_can_sync_threads: checks if all threads can be synchronized
*
* Expects sighand and cred_guard_mutex locks to be held.
*
* Returns 0 on success, -ve on error, or the pid of a thread which was
* either not in the correct seccomp mode or it did not have an ancestral
* seccomp filter.
*/
static inline pid_t seccomp_can_sync_threads(void)
{
struct task_struct *thread, *caller;
BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
assert_spin_locked(&current->sighand->siglock);
/* Validate all threads being eligible for synchronization. */
caller = current;
for_each_thread(caller, thread) {
pid_t failed;
/* Skip current, since it is initiating the sync. */
if (thread == caller)
continue;
if (thread->seccomp.mode == SECCOMP_MODE_DISABLED ||
(thread->seccomp.mode == SECCOMP_MODE_FILTER &&
is_ancestor(thread->seccomp.filter,
caller->seccomp.filter)))
continue;
/* Return the first thread that cannot be synchronized. */
failed = task_pid_vnr(thread);
/* If the pid cannot be resolved, then return -ESRCH */
if (unlikely(WARN_ON(failed == 0)))
failed = -ESRCH;
return failed;
}
return 0;
}
/**
* seccomp_sync_threads: sets all threads to use current's filter
*
* Expects sighand and cred_guard_mutex locks to be held, and for
* seccomp_can_sync_threads() to have returned success already
* without dropping the locks.
*
*/
static inline void seccomp_sync_threads(void)
{
struct task_struct *thread, *caller;
BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
assert_spin_locked(&current->sighand->siglock);
/* Synchronize all threads. */
caller = current;
for_each_thread(caller, thread) {
/* Skip current, since it needs no changes. */
if (thread == caller)
continue;
/* Get a task reference for the new leaf node. */
get_seccomp_filter(caller);
/*
* Drop the task reference to the shared ancestor since
* current's path will hold a reference. (This also
* allows a put before the assignment.)
*/
put_seccomp_filter(thread);
smp_store_release(&thread->seccomp.filter,
caller->seccomp.filter);
/*
* Don't let an unprivileged task work around
* the no_new_privs restriction by creating
* a thread that sets it up, enters seccomp,
* then dies.
*/
if (task_no_new_privs(caller))
task_set_no_new_privs(thread);
/*
* Opt the other thread into seccomp if needed.
* As threads are considered to be trust-realm
* equivalent (see ptrace_may_access), it is safe to
* allow one thread to transition the other.
*/
if (thread->seccomp.mode == SECCOMP_MODE_DISABLED)
seccomp_assign_mode(thread, SECCOMP_MODE_FILTER);
}
}
/**
* seccomp_prepare_filter: Prepares a seccomp filter for use.
* @fprog: BPF program to install
*
* Returns filter on success or an ERR_PTR on failure.
*/
static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog)
{
struct seccomp_filter *sfilter;
int ret;
const bool save_orig = config_enabled(CONFIG_CHECKPOINT_RESTORE);
if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
return ERR_PTR(-EINVAL);
BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter));
/*
* Installing a seccomp filter requires that the task has
* CAP_SYS_ADMIN in its namespace or be running with no_new_privs.
* This avoids scenarios where unprivileged tasks can affect the
* behavior of privileged children.
*/
if (!task_no_new_privs(current) &&
security_capable_noaudit(current_cred(), current_user_ns(),
CAP_SYS_ADMIN) != 0)
return ERR_PTR(-EACCES);
/* Allocate a new seccomp_filter */
sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN);
if (!sfilter)
return ERR_PTR(-ENOMEM);
ret = bpf_prog_create_from_user(&sfilter->prog, fprog,
seccomp_check_filter, save_orig);
if (ret < 0) {
kfree(sfilter);
return ERR_PTR(ret);
}
atomic_set(&sfilter->usage, 1);
return sfilter;
}
/**
* seccomp_prepare_user_filter - prepares a user-supplied sock_fprog
* @user_filter: pointer to the user data containing a sock_fprog.
*
* Returns 0 on success and non-zero otherwise.
*/
static struct seccomp_filter *
seccomp_prepare_user_filter(const char __user *user_filter)
{
struct sock_fprog fprog;
struct seccomp_filter *filter = ERR_PTR(-EFAULT);
#ifdef CONFIG_COMPAT
if (in_compat_syscall()) {
struct compat_sock_fprog fprog32;
if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))
goto out;
fprog.len = fprog32.len;
fprog.filter = compat_ptr(fprog32.filter);
} else /* falls through to the if below. */
#endif
if (copy_from_user(&fprog, user_filter, sizeof(fprog)))
goto out;
filter = seccomp_prepare_filter(&fprog);
out:
return filter;
}
/**
* seccomp_attach_filter: validate and attach filter
* @flags: flags to change filter behavior
* @filter: seccomp filter to add to the current process
*
* Caller must be holding current->sighand->siglock lock.
*
* Returns 0 on success, -ve on error.
*/
static long seccomp_attach_filter(unsigned int flags,
struct seccomp_filter *filter)
{
unsigned long total_insns;
struct seccomp_filter *walker;
assert_spin_locked(&current->sighand->siglock);
/* Validate resulting filter length. */
total_insns = filter->prog->len;
for (walker = current->seccomp.filter; walker; walker = walker->prev)
total_insns += walker->prog->len + 4; /* 4 instr penalty */
if (total_insns > MAX_INSNS_PER_PATH)
return -ENOMEM;
/* If thread sync has been requested, check that it is possible. */
if (flags & SECCOMP_FILTER_FLAG_TSYNC) {
int ret;
ret = seccomp_can_sync_threads();
if (ret)
return ret;
}
/*
* If there is an existing filter, make it the prev and don't drop its
* task reference.
*/
filter->prev = current->seccomp.filter;
current->seccomp.filter = filter;
/* Now that the new filter is in place, synchronize to all threads. */
if (flags & SECCOMP_FILTER_FLAG_TSYNC)
seccomp_sync_threads();
return 0;
}
/* get_seccomp_filter - increments the reference count of the filter on @tsk */
void get_seccomp_filter(struct task_struct *tsk)
{
struct seccomp_filter *orig = tsk->seccomp.filter;
if (!orig)
return;
/* Reference count is bounded by the number of total processes. */
atomic_inc(&orig->usage);
}
static inline void seccomp_filter_free(struct seccomp_filter *filter)
{
if (filter) {
bpf_prog_destroy(filter->prog);
kfree(filter);
}
}
/* put_seccomp_filter - decrements the ref count of tsk->seccomp.filter */
void put_seccomp_filter(struct task_struct *tsk)
{
struct seccomp_filter *orig = tsk->seccomp.filter;
/* Clean up single-reference branches iteratively. */
while (orig && atomic_dec_and_test(&orig->usage)) {
struct seccomp_filter *freeme = orig;
orig = orig->prev;
seccomp_filter_free(freeme);
}
}
/**
* seccomp_send_sigsys - signals the task to allow in-process syscall emulation
* @syscall: syscall number to send to userland
* @reason: filter-supplied reason code to send to userland (via si_errno)
*
* Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
*/
static void seccomp_send_sigsys(int syscall, int reason)
{
struct siginfo info;
memset(&info, 0, sizeof(info));
info.si_signo = SIGSYS;
info.si_code = SYS_SECCOMP;
info.si_call_addr = (void __user *)KSTK_EIP(current);
info.si_errno = reason;
info.si_arch = syscall_get_arch();
info.si_syscall = syscall;
force_sig_info(SIGSYS, &info, current);
}
#endif /* CONFIG_SECCOMP_FILTER */
/*
* Secure computing mode 1 allows only read/write/exit/sigreturn.
* To be fully secure this must be combined with rlimit
* to limit the stack allocations too.
*/
static const int mode1_syscalls[] = {
__NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn,
0, /* null terminated */
};
static void __secure_computing_strict(int this_syscall)
{
const int *syscall_whitelist = mode1_syscalls;
#ifdef CONFIG_COMPAT
if (in_compat_syscall())
syscall_whitelist = get_compat_mode1_syscalls();
#endif
do {
if (*syscall_whitelist == this_syscall)
return;
} while (*++syscall_whitelist);
#ifdef SECCOMP_DEBUG
dump_stack();
#endif
audit_seccomp(this_syscall, SIGKILL, SECCOMP_RET_KILL);
do_exit(SIGKILL);
}
#ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER
void secure_computing_strict(int this_syscall)
{
int mode = current->seccomp.mode;
if (config_enabled(CONFIG_CHECKPOINT_RESTORE) &&
unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
return;
if (mode == SECCOMP_MODE_DISABLED)
return;
else if (mode == SECCOMP_MODE_STRICT)
__secure_computing_strict(this_syscall);
else
BUG();
}
#else
int __secure_computing(void)
{
u32 phase1_result = seccomp_phase1(NULL);
if (likely(phase1_result == SECCOMP_PHASE1_OK))
return 0;
else if (likely(phase1_result == SECCOMP_PHASE1_SKIP))
return -1;
else
return seccomp_phase2(phase1_result);
}
#ifdef CONFIG_SECCOMP_FILTER
static u32 __seccomp_phase1_filter(int this_syscall, struct seccomp_data *sd)
{
u32 filter_ret, action;
int data;
/*
* Make sure that any changes to mode from another thread have
* been seen after TIF_SECCOMP was seen.
*/
rmb();
filter_ret = seccomp_run_filters(sd);
data = filter_ret & SECCOMP_RET_DATA;
action = filter_ret & SECCOMP_RET_ACTION;
switch (action) {
case SECCOMP_RET_ERRNO:
/* Set low-order bits as an errno, capped at MAX_ERRNO. */
if (data > MAX_ERRNO)
data = MAX_ERRNO;
syscall_set_return_value(current, task_pt_regs(current),
-data, 0);
goto skip;
case SECCOMP_RET_TRAP:
/* Show the handler the original registers. */
syscall_rollback(current, task_pt_regs(current));
/* Let the filter pass back 16 bits of data. */
seccomp_send_sigsys(this_syscall, data);
goto skip;
case SECCOMP_RET_TRACE:
return filter_ret; /* Save the rest for phase 2. */
case SECCOMP_RET_ALLOW:
return SECCOMP_PHASE1_OK;
case SECCOMP_RET_KILL:
default:
audit_seccomp(this_syscall, SIGSYS, action);
do_exit(SIGSYS);
}
unreachable();
skip:
audit_seccomp(this_syscall, 0, action);
return SECCOMP_PHASE1_SKIP;
}
#endif
/**
* seccomp_phase1() - run fast path seccomp checks on the current syscall
* @arg sd: The seccomp_data or NULL
*
* This only reads pt_regs via the syscall_xyz helpers. The only change
* it will make to pt_regs is via syscall_set_return_value, and it will
* only do that if it returns SECCOMP_PHASE1_SKIP.
*
* If sd is provided, it will not read pt_regs at all.
*
* It may also call do_exit or force a signal; these actions must be
* safe.
*
* If it returns SECCOMP_PHASE1_OK, the syscall passes checks and should
* be processed normally.
*
* If it returns SECCOMP_PHASE1_SKIP, then the syscall should not be
* invoked. In this case, seccomp_phase1 will have set the return value
* using syscall_set_return_value.
*
* If it returns anything else, then the return value should be passed
* to seccomp_phase2 from a context in which ptrace hooks are safe.
*/
u32 seccomp_phase1(struct seccomp_data *sd)
{
int mode = current->seccomp.mode;
int this_syscall = sd ? sd->nr :
syscall_get_nr(current, task_pt_regs(current));
if (config_enabled(CONFIG_CHECKPOINT_RESTORE) &&
unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
return SECCOMP_PHASE1_OK;
switch (mode) {
case SECCOMP_MODE_STRICT:
__secure_computing_strict(this_syscall); /* may call do_exit */
return SECCOMP_PHASE1_OK;
#ifdef CONFIG_SECCOMP_FILTER
case SECCOMP_MODE_FILTER:
return __seccomp_phase1_filter(this_syscall, sd);
#endif
default:
BUG();
}
}
/**
* seccomp_phase2() - finish slow path seccomp work for the current syscall
* @phase1_result: The return value from seccomp_phase1()
*
* This must be called from a context in which ptrace hooks can be used.
*
* Returns 0 if the syscall should be processed or -1 to skip the syscall.
*/
int seccomp_phase2(u32 phase1_result)
{
struct pt_regs *regs = task_pt_regs(current);
u32 action = phase1_result & SECCOMP_RET_ACTION;
int data = phase1_result & SECCOMP_RET_DATA;
BUG_ON(action != SECCOMP_RET_TRACE);
audit_seccomp(syscall_get_nr(current, regs), 0, action);
/* Skip these calls if there is no tracer. */
if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) {
syscall_set_return_value(current, regs,
-ENOSYS, 0);
return -1;
}
/* Allow the BPF to provide the event message */
ptrace_event(PTRACE_EVENT_SECCOMP, data);
/*
* The delivery of a fatal signal during event
* notification may silently skip tracer notification.
* Terminating the task now avoids executing a system
* call that may not be intended.
*/
if (fatal_signal_pending(current))
do_exit(SIGSYS);
if (syscall_get_nr(current, regs) < 0)
return -1; /* Explicit request to skip. */
return 0;
}
#endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */
long prctl_get_seccomp(void)
{
return current->seccomp.mode;
}
/**
* seccomp_set_mode_strict: internal function for setting strict seccomp
*
* Once current->seccomp.mode is non-zero, it may not be changed.
*
* Returns 0 on success or -EINVAL on failure.
*/
static long seccomp_set_mode_strict(void)
{
const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;
long ret = -EINVAL;
spin_lock_irq(&current->sighand->siglock);
if (!seccomp_may_assign_mode(seccomp_mode))
goto out;
#ifdef TIF_NOTSC
disable_TSC();
#endif
seccomp_assign_mode(current, seccomp_mode);
ret = 0;
out:
spin_unlock_irq(&current->sighand->siglock);
return ret;
}
#ifdef CONFIG_SECCOMP_FILTER
/**
* seccomp_set_mode_filter: internal function for setting seccomp filter
* @flags: flags to change filter behavior
* @filter: struct sock_fprog containing filter
*
* This function may be called repeatedly to install additional filters.
* Every filter successfully installed will be evaluated (in reverse order)
* for each system call the task makes.
*
* Once current->seccomp.mode is non-zero, it may not be changed.
*
* Returns 0 on success or -EINVAL on failure.
*/
static long seccomp_set_mode_filter(unsigned int flags,
const char __user *filter)
{
const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;
struct seccomp_filter *prepared = NULL;
long ret = -EINVAL;
/* Validate flags. */
if (flags & ~SECCOMP_FILTER_FLAG_MASK)
return -EINVAL;
/* Prepare the new filter before holding any locks. */
prepared = seccomp_prepare_user_filter(filter);
if (IS_ERR(prepared))
return PTR_ERR(prepared);
/*
* Make sure we cannot change seccomp or nnp state via TSYNC
* while another thread is in the middle of calling exec.
*/
if (flags & SECCOMP_FILTER_FLAG_TSYNC &&
mutex_lock_killable(&current->signal->cred_guard_mutex))
goto out_free;
spin_lock_irq(&current->sighand->siglock);
if (!seccomp_may_assign_mode(seccomp_mode))
goto out;
ret = seccomp_attach_filter(flags, prepared);
if (ret)
goto out;
/* Do not free the successfully attached filter. */
prepared = NULL;
seccomp_assign_mode(current, seccomp_mode);
out:
spin_unlock_irq(&current->sighand->siglock);
if (flags & SECCOMP_FILTER_FLAG_TSYNC)
mutex_unlock(&current->signal->cred_guard_mutex);
out_free:
seccomp_filter_free(prepared);
return ret;
}
#else
static inline long seccomp_set_mode_filter(unsigned int flags,
const char __user *filter)
{
return -EINVAL;
}
#endif
/* Common entry point for both prctl and syscall. */
static long do_seccomp(unsigned int op, unsigned int flags,
const char __user *uargs)
{
switch (op) {
case SECCOMP_SET_MODE_STRICT:
if (flags != 0 || uargs != NULL)
return -EINVAL;
return seccomp_set_mode_strict();
case SECCOMP_SET_MODE_FILTER:
return seccomp_set_mode_filter(flags, uargs);
default:
return -EINVAL;
}
}
SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,
const char __user *, uargs)
{
return do_seccomp(op, flags, uargs);
}
/**
* prctl_set_seccomp: configures current->seccomp.mode
* @seccomp_mode: requested mode to use
* @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER
*
* Returns 0 on success or -EINVAL on failure.
*/
long prctl_set_seccomp(unsigned long seccomp_mode, char __user *filter)
{
unsigned int op;
char __user *uargs;
switch (seccomp_mode) {
case SECCOMP_MODE_STRICT:
op = SECCOMP_SET_MODE_STRICT;
/*
* Setting strict mode through prctl always ignored filter,
* so make sure it is always NULL here to pass the internal
* check in do_seccomp().
*/
uargs = NULL;
break;
case SECCOMP_MODE_FILTER:
op = SECCOMP_SET_MODE_FILTER;
uargs = filter;
break;
default:
return -EINVAL;
}
/* prctl interface doesn't have flags, so they are always zero. */
return do_seccomp(op, 0, uargs);
}
#if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE)
long seccomp_get_filter(struct task_struct *task, unsigned long filter_off,
void __user *data)
{
struct seccomp_filter *filter;
struct sock_fprog_kern *fprog;
long ret;
unsigned long count = 0;
if (!capable(CAP_SYS_ADMIN) ||
current->seccomp.mode != SECCOMP_MODE_DISABLED) {
return -EACCES;
}
spin_lock_irq(&task->sighand->siglock);
if (task->seccomp.mode != SECCOMP_MODE_FILTER) {
ret = -EINVAL;
goto out;
}
filter = task->seccomp.filter;
while (filter) {
filter = filter->prev;
count++;
}
if (filter_off >= count) {
ret = -ENOENT;
goto out;
}
count -= filter_off;
filter = task->seccomp.filter;
while (filter && count > 1) {
filter = filter->prev;
count--;
}
if (WARN_ON(count != 1 || !filter)) {
/* The filter tree shouldn't shrink while we're using it. */
ret = -ENOENT;
goto out;
}
fprog = filter->prog->orig_prog;
if (!fprog) {
/* This must be a new non-cBPF filter, since we save
* every cBPF filter's orig_prog above when
* CONFIG_CHECKPOINT_RESTORE is enabled.
*/
ret = -EMEDIUMTYPE;
goto out;
}
ret = fprog->len;
if (!data)
goto out;
get_seccomp_filter(task);
spin_unlock_irq(&task->sighand->siglock);
if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog)))
ret = -EFAULT;
put_seccomp_filter(task);
return ret;
out:
spin_unlock_irq(&task->sighand->siglock);
return ret;
}
#endif