600 lines
15 KiB
C
600 lines
15 KiB
C
/*
|
|
* Copyright 2011 Red Hat Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: Ben Skeggs
|
|
*/
|
|
|
|
#include "nouveau_drm.h"
|
|
#include "nouveau_bios.h"
|
|
#include "nouveau_pm.h"
|
|
|
|
#include <subdev/bios/pll.h>
|
|
#include <subdev/bios.h>
|
|
#include <subdev/clock.h>
|
|
#include <subdev/timer.h>
|
|
#include <subdev/fb.h>
|
|
|
|
static u32 read_div(struct drm_device *, int, u32, u32);
|
|
static u32 read_pll(struct drm_device *, u32);
|
|
|
|
static u32
|
|
read_vco(struct drm_device *dev, u32 dsrc)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
u32 ssrc = nv_rd32(device, dsrc);
|
|
if (!(ssrc & 0x00000100))
|
|
return read_pll(dev, 0x00e800);
|
|
return read_pll(dev, 0x00e820);
|
|
}
|
|
|
|
static u32
|
|
read_pll(struct drm_device *dev, u32 pll)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
u32 ctrl = nv_rd32(device, pll + 0);
|
|
u32 coef = nv_rd32(device, pll + 4);
|
|
u32 P = (coef & 0x003f0000) >> 16;
|
|
u32 N = (coef & 0x0000ff00) >> 8;
|
|
u32 M = (coef & 0x000000ff) >> 0;
|
|
u32 sclk, doff;
|
|
|
|
if (!(ctrl & 0x00000001))
|
|
return 0;
|
|
|
|
switch (pll & 0xfff000) {
|
|
case 0x00e000:
|
|
sclk = 27000;
|
|
P = 1;
|
|
break;
|
|
case 0x137000:
|
|
doff = (pll - 0x137000) / 0x20;
|
|
sclk = read_div(dev, doff, 0x137120, 0x137140);
|
|
break;
|
|
case 0x132000:
|
|
switch (pll) {
|
|
case 0x132000:
|
|
sclk = read_pll(dev, 0x132020);
|
|
break;
|
|
case 0x132020:
|
|
sclk = read_div(dev, 0, 0x137320, 0x137330);
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return sclk * N / M / P;
|
|
}
|
|
|
|
static u32
|
|
read_div(struct drm_device *dev, int doff, u32 dsrc, u32 dctl)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
u32 ssrc = nv_rd32(device, dsrc + (doff * 4));
|
|
u32 sctl = nv_rd32(device, dctl + (doff * 4));
|
|
|
|
switch (ssrc & 0x00000003) {
|
|
case 0:
|
|
if ((ssrc & 0x00030000) != 0x00030000)
|
|
return 27000;
|
|
return 108000;
|
|
case 2:
|
|
return 100000;
|
|
case 3:
|
|
if (sctl & 0x80000000) {
|
|
u32 sclk = read_vco(dev, dsrc + (doff * 4));
|
|
u32 sdiv = (sctl & 0x0000003f) + 2;
|
|
return (sclk * 2) / sdiv;
|
|
}
|
|
|
|
return read_vco(dev, dsrc + (doff * 4));
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static u32
|
|
read_mem(struct drm_device *dev)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
u32 ssel = nv_rd32(device, 0x1373f0);
|
|
if (ssel & 0x00000001)
|
|
return read_div(dev, 0, 0x137300, 0x137310);
|
|
return read_pll(dev, 0x132000);
|
|
}
|
|
|
|
static u32
|
|
read_clk(struct drm_device *dev, int clk)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
u32 sctl = nv_rd32(device, 0x137250 + (clk * 4));
|
|
u32 ssel = nv_rd32(device, 0x137100);
|
|
u32 sclk, sdiv;
|
|
|
|
if (ssel & (1 << clk)) {
|
|
if (clk < 7)
|
|
sclk = read_pll(dev, 0x137000 + (clk * 0x20));
|
|
else
|
|
sclk = read_pll(dev, 0x1370e0);
|
|
sdiv = ((sctl & 0x00003f00) >> 8) + 2;
|
|
} else {
|
|
sclk = read_div(dev, clk, 0x137160, 0x1371d0);
|
|
sdiv = ((sctl & 0x0000003f) >> 0) + 2;
|
|
}
|
|
|
|
if (sctl & 0x80000000)
|
|
return (sclk * 2) / sdiv;
|
|
return sclk;
|
|
}
|
|
|
|
int
|
|
nvc0_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
|
|
{
|
|
perflvl->shader = read_clk(dev, 0x00);
|
|
perflvl->core = perflvl->shader / 2;
|
|
perflvl->memory = read_mem(dev);
|
|
perflvl->rop = read_clk(dev, 0x01);
|
|
perflvl->hub07 = read_clk(dev, 0x02);
|
|
perflvl->hub06 = read_clk(dev, 0x07);
|
|
perflvl->hub01 = read_clk(dev, 0x08);
|
|
perflvl->copy = read_clk(dev, 0x09);
|
|
perflvl->daemon = read_clk(dev, 0x0c);
|
|
perflvl->vdec = read_clk(dev, 0x0e);
|
|
return 0;
|
|
}
|
|
|
|
struct nvc0_pm_clock {
|
|
u32 freq;
|
|
u32 ssel;
|
|
u32 mdiv;
|
|
u32 dsrc;
|
|
u32 ddiv;
|
|
u32 coef;
|
|
};
|
|
|
|
struct nvc0_pm_state {
|
|
struct nouveau_pm_level *perflvl;
|
|
struct nvc0_pm_clock eng[16];
|
|
struct nvc0_pm_clock mem;
|
|
};
|
|
|
|
static u32
|
|
calc_div(struct drm_device *dev, int clk, u32 ref, u32 freq, u32 *ddiv)
|
|
{
|
|
u32 div = min((ref * 2) / freq, (u32)65);
|
|
if (div < 2)
|
|
div = 2;
|
|
|
|
*ddiv = div - 2;
|
|
return (ref * 2) / div;
|
|
}
|
|
|
|
static u32
|
|
calc_src(struct drm_device *dev, int clk, u32 freq, u32 *dsrc, u32 *ddiv)
|
|
{
|
|
u32 sclk;
|
|
|
|
/* use one of the fixed frequencies if possible */
|
|
*ddiv = 0x00000000;
|
|
switch (freq) {
|
|
case 27000:
|
|
case 108000:
|
|
*dsrc = 0x00000000;
|
|
if (freq == 108000)
|
|
*dsrc |= 0x00030000;
|
|
return freq;
|
|
case 100000:
|
|
*dsrc = 0x00000002;
|
|
return freq;
|
|
default:
|
|
*dsrc = 0x00000003;
|
|
break;
|
|
}
|
|
|
|
/* otherwise, calculate the closest divider */
|
|
sclk = read_vco(dev, clk);
|
|
if (clk < 7)
|
|
sclk = calc_div(dev, clk, sclk, freq, ddiv);
|
|
return sclk;
|
|
}
|
|
|
|
static u32
|
|
calc_pll(struct drm_device *dev, int clk, u32 freq, u32 *coef)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_bios *bios = nouveau_bios(device);
|
|
struct nvbios_pll limits;
|
|
int N, M, P, ret;
|
|
|
|
ret = nvbios_pll_parse(bios, 0x137000 + (clk * 0x20), &limits);
|
|
if (ret)
|
|
return 0;
|
|
|
|
limits.refclk = read_div(dev, clk, 0x137120, 0x137140);
|
|
if (!limits.refclk)
|
|
return 0;
|
|
|
|
ret = nva3_calc_pll(dev, &limits, freq, &N, NULL, &M, &P);
|
|
if (ret <= 0)
|
|
return 0;
|
|
|
|
*coef = (P << 16) | (N << 8) | M;
|
|
return ret;
|
|
}
|
|
|
|
/* A (likely rather simplified and incomplete) view of the clock tree
|
|
*
|
|
* Key:
|
|
*
|
|
* S: source select
|
|
* D: divider
|
|
* P: pll
|
|
* F: switch
|
|
*
|
|
* Engine clocks:
|
|
*
|
|
* 137250(D) ---- 137100(F0) ---- 137160(S)/1371d0(D) ------------------- ref
|
|
* (F1) ---- 1370X0(P) ---- 137120(S)/137140(D) ---- ref
|
|
*
|
|
* Not all registers exist for all clocks. For example: clocks >= 8 don't
|
|
* have their own PLL (all tied to clock 7's PLL when in PLL mode), nor do
|
|
* they have the divider at 1371d0, though the source selection at 137160
|
|
* still exists. You must use the divider at 137250 for these instead.
|
|
*
|
|
* Memory clock:
|
|
*
|
|
* TBD, read_mem() above is likely very wrong...
|
|
*
|
|
*/
|
|
|
|
static int
|
|
calc_clk(struct drm_device *dev, int clk, struct nvc0_pm_clock *info, u32 freq)
|
|
{
|
|
u32 src0, div0, div1D, div1P = 0;
|
|
u32 clk0, clk1 = 0;
|
|
|
|
/* invalid clock domain */
|
|
if (!freq)
|
|
return 0;
|
|
|
|
/* first possible path, using only dividers */
|
|
clk0 = calc_src(dev, clk, freq, &src0, &div0);
|
|
clk0 = calc_div(dev, clk, clk0, freq, &div1D);
|
|
|
|
/* see if we can get any closer using PLLs */
|
|
if (clk0 != freq && (0x00004387 & (1 << clk))) {
|
|
if (clk < 7)
|
|
clk1 = calc_pll(dev, clk, freq, &info->coef);
|
|
else
|
|
clk1 = read_pll(dev, 0x1370e0);
|
|
clk1 = calc_div(dev, clk, clk1, freq, &div1P);
|
|
}
|
|
|
|
/* select the method which gets closest to target freq */
|
|
if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
|
|
info->dsrc = src0;
|
|
if (div0) {
|
|
info->ddiv |= 0x80000000;
|
|
info->ddiv |= div0 << 8;
|
|
info->ddiv |= div0;
|
|
}
|
|
if (div1D) {
|
|
info->mdiv |= 0x80000000;
|
|
info->mdiv |= div1D;
|
|
}
|
|
info->ssel = 0;
|
|
info->freq = clk0;
|
|
} else {
|
|
if (div1P) {
|
|
info->mdiv |= 0x80000000;
|
|
info->mdiv |= div1P << 8;
|
|
}
|
|
info->ssel = (1 << clk);
|
|
info->freq = clk1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
calc_mem(struct drm_device *dev, struct nvc0_pm_clock *info, u32 freq)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_bios *bios = nouveau_bios(device);
|
|
struct nvbios_pll pll;
|
|
int N, M, P, ret;
|
|
u32 ctrl;
|
|
|
|
/* mclk pll input freq comes from another pll, make sure it's on */
|
|
ctrl = nv_rd32(device, 0x132020);
|
|
if (!(ctrl & 0x00000001)) {
|
|
/* if not, program it to 567MHz. nfi where this value comes
|
|
* from - it looks like it's in the pll limits table for
|
|
* 132000 but the binary driver ignores all my attempts to
|
|
* change this value.
|
|
*/
|
|
nv_wr32(device, 0x137320, 0x00000103);
|
|
nv_wr32(device, 0x137330, 0x81200606);
|
|
nv_wait(device, 0x132020, 0x00010000, 0x00010000);
|
|
nv_wr32(device, 0x132024, 0x0001150f);
|
|
nv_mask(device, 0x132020, 0x00000001, 0x00000001);
|
|
nv_wait(device, 0x137390, 0x00020000, 0x00020000);
|
|
nv_mask(device, 0x132020, 0x00000004, 0x00000004);
|
|
}
|
|
|
|
/* for the moment, until the clock tree is better understood, use
|
|
* pll mode for all clock frequencies
|
|
*/
|
|
ret = nvbios_pll_parse(bios, 0x132000, &pll);
|
|
if (ret == 0) {
|
|
pll.refclk = read_pll(dev, 0x132020);
|
|
if (pll.refclk) {
|
|
ret = nva3_calc_pll(dev, &pll, freq, &N, NULL, &M, &P);
|
|
if (ret > 0) {
|
|
info->coef = (P << 16) | (N << 8) | M;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
void *
|
|
nvc0_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nvc0_pm_state *info;
|
|
int ret;
|
|
|
|
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* NFI why this is still in the performance table, the ROPCs appear
|
|
* to get their clock from clock 2 ("hub07", actually hub05 on this
|
|
* chip, but, anyway...) as well. nvatiming confirms hub05 and ROP
|
|
* are always the same freq with the binary driver even when the
|
|
* performance table says they should differ.
|
|
*/
|
|
if (device->chipset == 0xd9)
|
|
perflvl->rop = 0;
|
|
|
|
if ((ret = calc_clk(dev, 0x00, &info->eng[0x00], perflvl->shader)) ||
|
|
(ret = calc_clk(dev, 0x01, &info->eng[0x01], perflvl->rop)) ||
|
|
(ret = calc_clk(dev, 0x02, &info->eng[0x02], perflvl->hub07)) ||
|
|
(ret = calc_clk(dev, 0x07, &info->eng[0x07], perflvl->hub06)) ||
|
|
(ret = calc_clk(dev, 0x08, &info->eng[0x08], perflvl->hub01)) ||
|
|
(ret = calc_clk(dev, 0x09, &info->eng[0x09], perflvl->copy)) ||
|
|
(ret = calc_clk(dev, 0x0c, &info->eng[0x0c], perflvl->daemon)) ||
|
|
(ret = calc_clk(dev, 0x0e, &info->eng[0x0e], perflvl->vdec))) {
|
|
kfree(info);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
if (perflvl->memory) {
|
|
ret = calc_mem(dev, &info->mem, perflvl->memory);
|
|
if (ret) {
|
|
kfree(info);
|
|
return ERR_PTR(ret);
|
|
}
|
|
}
|
|
|
|
info->perflvl = perflvl;
|
|
return info;
|
|
}
|
|
|
|
static void
|
|
prog_clk(struct drm_device *dev, int clk, struct nvc0_pm_clock *info)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
|
|
/* program dividers at 137160/1371d0 first */
|
|
if (clk < 7 && !info->ssel) {
|
|
nv_mask(device, 0x1371d0 + (clk * 0x04), 0x80003f3f, info->ddiv);
|
|
nv_wr32(device, 0x137160 + (clk * 0x04), info->dsrc);
|
|
}
|
|
|
|
/* switch clock to non-pll mode */
|
|
nv_mask(device, 0x137100, (1 << clk), 0x00000000);
|
|
nv_wait(device, 0x137100, (1 << clk), 0x00000000);
|
|
|
|
/* reprogram pll */
|
|
if (clk < 7) {
|
|
/* make sure it's disabled first... */
|
|
u32 base = 0x137000 + (clk * 0x20);
|
|
u32 ctrl = nv_rd32(device, base + 0x00);
|
|
if (ctrl & 0x00000001) {
|
|
nv_mask(device, base + 0x00, 0x00000004, 0x00000000);
|
|
nv_mask(device, base + 0x00, 0x00000001, 0x00000000);
|
|
}
|
|
/* program it to new values, if necessary */
|
|
if (info->ssel) {
|
|
nv_wr32(device, base + 0x04, info->coef);
|
|
nv_mask(device, base + 0x00, 0x00000001, 0x00000001);
|
|
nv_wait(device, base + 0x00, 0x00020000, 0x00020000);
|
|
nv_mask(device, base + 0x00, 0x00020004, 0x00000004);
|
|
}
|
|
}
|
|
|
|
/* select pll/non-pll mode, and program final clock divider */
|
|
nv_mask(device, 0x137100, (1 << clk), info->ssel);
|
|
nv_wait(device, 0x137100, (1 << clk), info->ssel);
|
|
nv_mask(device, 0x137250 + (clk * 0x04), 0x00003f3f, info->mdiv);
|
|
}
|
|
|
|
static void
|
|
mclk_precharge(struct nouveau_mem_exec_func *exec)
|
|
{
|
|
}
|
|
|
|
static void
|
|
mclk_refresh(struct nouveau_mem_exec_func *exec)
|
|
{
|
|
}
|
|
|
|
static void
|
|
mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
nv_wr32(device, 0x10f210, enable ? 0x80000000 : 0x00000000);
|
|
}
|
|
|
|
static void
|
|
mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
|
|
{
|
|
}
|
|
|
|
static void
|
|
mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
|
|
{
|
|
udelay((nsec + 500) / 1000);
|
|
}
|
|
|
|
static u32
|
|
mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
struct nouveau_fb *pfb = nouveau_fb(device);
|
|
if (pfb->ram.type != NV_MEM_TYPE_GDDR5) {
|
|
if (mr <= 1)
|
|
return nv_rd32(device, 0x10f300 + ((mr - 0) * 4));
|
|
return nv_rd32(device, 0x10f320 + ((mr - 2) * 4));
|
|
} else {
|
|
if (mr == 0)
|
|
return nv_rd32(device, 0x10f300 + (mr * 4));
|
|
else
|
|
if (mr <= 7)
|
|
return nv_rd32(device, 0x10f32c + (mr * 4));
|
|
return nv_rd32(device, 0x10f34c);
|
|
}
|
|
}
|
|
|
|
static void
|
|
mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
struct nouveau_fb *pfb = nouveau_fb(device);
|
|
if (pfb->ram.type != NV_MEM_TYPE_GDDR5) {
|
|
if (mr <= 1) {
|
|
nv_wr32(device, 0x10f300 + ((mr - 0) * 4), data);
|
|
if (pfb->ram.ranks > 1)
|
|
nv_wr32(device, 0x10f308 + ((mr - 0) * 4), data);
|
|
} else
|
|
if (mr <= 3) {
|
|
nv_wr32(device, 0x10f320 + ((mr - 2) * 4), data);
|
|
if (pfb->ram.ranks > 1)
|
|
nv_wr32(device, 0x10f328 + ((mr - 2) * 4), data);
|
|
}
|
|
} else {
|
|
if (mr == 0) nv_wr32(device, 0x10f300 + (mr * 4), data);
|
|
else if (mr <= 7) nv_wr32(device, 0x10f32c + (mr * 4), data);
|
|
else if (mr == 15) nv_wr32(device, 0x10f34c, data);
|
|
}
|
|
}
|
|
|
|
static void
|
|
mclk_clock_set(struct nouveau_mem_exec_func *exec)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
struct nvc0_pm_state *info = exec->priv;
|
|
u32 ctrl = nv_rd32(device, 0x132000);
|
|
|
|
nv_wr32(device, 0x137360, 0x00000001);
|
|
nv_wr32(device, 0x137370, 0x00000000);
|
|
nv_wr32(device, 0x137380, 0x00000000);
|
|
if (ctrl & 0x00000001)
|
|
nv_wr32(device, 0x132000, (ctrl &= ~0x00000001));
|
|
|
|
nv_wr32(device, 0x132004, info->mem.coef);
|
|
nv_wr32(device, 0x132000, (ctrl |= 0x00000001));
|
|
nv_wait(device, 0x137390, 0x00000002, 0x00000002);
|
|
nv_wr32(device, 0x132018, 0x00005000);
|
|
|
|
nv_wr32(device, 0x137370, 0x00000001);
|
|
nv_wr32(device, 0x137380, 0x00000001);
|
|
nv_wr32(device, 0x137360, 0x00000000);
|
|
}
|
|
|
|
static void
|
|
mclk_timing_set(struct nouveau_mem_exec_func *exec)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
struct nvc0_pm_state *info = exec->priv;
|
|
struct nouveau_pm_level *perflvl = info->perflvl;
|
|
int i;
|
|
|
|
for (i = 0; i < 5; i++)
|
|
nv_wr32(device, 0x10f290 + (i * 4), perflvl->timing.reg[i]);
|
|
}
|
|
|
|
static void
|
|
prog_mem(struct drm_device *dev, struct nvc0_pm_state *info)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_mem_exec_func exec = {
|
|
.dev = dev,
|
|
.precharge = mclk_precharge,
|
|
.refresh = mclk_refresh,
|
|
.refresh_auto = mclk_refresh_auto,
|
|
.refresh_self = mclk_refresh_self,
|
|
.wait = mclk_wait,
|
|
.mrg = mclk_mrg,
|
|
.mrs = mclk_mrs,
|
|
.clock_set = mclk_clock_set,
|
|
.timing_set = mclk_timing_set,
|
|
.priv = info
|
|
};
|
|
|
|
if (device->chipset < 0xd0)
|
|
nv_wr32(device, 0x611200, 0x00003300);
|
|
else
|
|
nv_wr32(device, 0x62c000, 0x03030000);
|
|
|
|
nouveau_mem_exec(&exec, info->perflvl);
|
|
|
|
if (device->chipset < 0xd0)
|
|
nv_wr32(device, 0x611200, 0x00003330);
|
|
else
|
|
nv_wr32(device, 0x62c000, 0x03030300);
|
|
}
|
|
int
|
|
nvc0_pm_clocks_set(struct drm_device *dev, void *data)
|
|
{
|
|
struct nvc0_pm_state *info = data;
|
|
int i;
|
|
|
|
if (info->mem.coef)
|
|
prog_mem(dev, info);
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
if (!info->eng[i].freq)
|
|
continue;
|
|
prog_clk(dev, i, &info->eng[i]);
|
|
}
|
|
|
|
kfree(info);
|
|
return 0;
|
|
}
|