OpenCloudOS-Kernel/include/linux/mtd/nand.h

996 lines
29 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright 2017 - Free Electrons
*
* Authors:
* Boris Brezillon <boris.brezillon@free-electrons.com>
* Peter Pan <peterpandong@micron.com>
*/
#ifndef __LINUX_MTD_NAND_H
#define __LINUX_MTD_NAND_H
#include <linux/mtd/mtd.h>
struct nand_device;
/**
* struct nand_memory_organization - Memory organization structure
* @bits_per_cell: number of bits per NAND cell
* @pagesize: page size
* @oobsize: OOB area size
* @pages_per_eraseblock: number of pages per eraseblock
* @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
* @max_bad_eraseblocks_per_lun: maximum number of eraseblocks per LUN
* @planes_per_lun: number of planes per LUN
* @luns_per_target: number of LUN per target (target is a synonym for die)
* @ntargets: total number of targets exposed by the NAND device
*/
struct nand_memory_organization {
unsigned int bits_per_cell;
unsigned int pagesize;
unsigned int oobsize;
unsigned int pages_per_eraseblock;
unsigned int eraseblocks_per_lun;
unsigned int max_bad_eraseblocks_per_lun;
unsigned int planes_per_lun;
unsigned int luns_per_target;
unsigned int ntargets;
};
#define NAND_MEMORG(bpc, ps, os, ppe, epl, mbb, ppl, lpt, nt) \
{ \
.bits_per_cell = (bpc), \
.pagesize = (ps), \
.oobsize = (os), \
.pages_per_eraseblock = (ppe), \
.eraseblocks_per_lun = (epl), \
.max_bad_eraseblocks_per_lun = (mbb), \
.planes_per_lun = (ppl), \
.luns_per_target = (lpt), \
.ntargets = (nt), \
}
/**
* struct nand_row_converter - Information needed to convert an absolute offset
* into a row address
* @lun_addr_shift: position of the LUN identifier in the row address
* @eraseblock_addr_shift: position of the eraseblock identifier in the row
* address
*/
struct nand_row_converter {
unsigned int lun_addr_shift;
unsigned int eraseblock_addr_shift;
};
/**
* struct nand_pos - NAND position object
* @target: the NAND target/die
* @lun: the LUN identifier
* @plane: the plane within the LUN
* @eraseblock: the eraseblock within the LUN
* @page: the page within the LUN
*
* These information are usually used by specific sub-layers to select the
* appropriate target/die and generate a row address to pass to the device.
*/
struct nand_pos {
unsigned int target;
unsigned int lun;
unsigned int plane;
unsigned int eraseblock;
unsigned int page;
};
/**
* enum nand_page_io_req_type - Direction of an I/O request
* @NAND_PAGE_READ: from the chip, to the controller
* @NAND_PAGE_WRITE: from the controller, to the chip
*/
enum nand_page_io_req_type {
NAND_PAGE_READ = 0,
NAND_PAGE_WRITE,
};
/**
* struct nand_page_io_req - NAND I/O request object
* @type: the type of page I/O: read or write
* @pos: the position this I/O request is targeting
* @dataoffs: the offset within the page
* @datalen: number of data bytes to read from/write to this page
* @databuf: buffer to store data in or get data from
* @ooboffs: the OOB offset within the page
* @ooblen: the number of OOB bytes to read from/write to this page
* @oobbuf: buffer to store OOB data in or get OOB data from
* @mode: one of the %MTD_OPS_XXX mode
*
* This object is used to pass per-page I/O requests to NAND sub-layers. This
* way all useful information are already formatted in a useful way and
* specific NAND layers can focus on translating these information into
* specific commands/operations.
*/
struct nand_page_io_req {
enum nand_page_io_req_type type;
struct nand_pos pos;
unsigned int dataoffs;
unsigned int datalen;
union {
const void *out;
void *in;
} databuf;
unsigned int ooboffs;
unsigned int ooblen;
union {
const void *out;
void *in;
} oobbuf;
int mode;
};
const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void);
const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void);
const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void);
/**
* enum nand_ecc_engine_type - NAND ECC engine type
* @NAND_ECC_ENGINE_TYPE_INVALID: Invalid value
* @NAND_ECC_ENGINE_TYPE_NONE: No ECC correction
* @NAND_ECC_ENGINE_TYPE_SOFT: Software ECC correction
* @NAND_ECC_ENGINE_TYPE_ON_HOST: On host hardware ECC correction
* @NAND_ECC_ENGINE_TYPE_ON_DIE: On chip hardware ECC correction
*/
enum nand_ecc_engine_type {
NAND_ECC_ENGINE_TYPE_INVALID,
NAND_ECC_ENGINE_TYPE_NONE,
NAND_ECC_ENGINE_TYPE_SOFT,
NAND_ECC_ENGINE_TYPE_ON_HOST,
NAND_ECC_ENGINE_TYPE_ON_DIE,
};
/**
* enum nand_ecc_placement - NAND ECC bytes placement
* @NAND_ECC_PLACEMENT_UNKNOWN: The actual position of the ECC bytes is unknown
* @NAND_ECC_PLACEMENT_OOB: The ECC bytes are located in the OOB area
* @NAND_ECC_PLACEMENT_INTERLEAVED: Syndrome layout, there are ECC bytes
* interleaved with regular data in the main
* area
*/
enum nand_ecc_placement {
NAND_ECC_PLACEMENT_UNKNOWN,
NAND_ECC_PLACEMENT_OOB,
NAND_ECC_PLACEMENT_INTERLEAVED,
};
/**
* enum nand_ecc_algo - NAND ECC algorithm
* @NAND_ECC_ALGO_UNKNOWN: Unknown algorithm
* @NAND_ECC_ALGO_HAMMING: Hamming algorithm
* @NAND_ECC_ALGO_BCH: Bose-Chaudhuri-Hocquenghem algorithm
* @NAND_ECC_ALGO_RS: Reed-Solomon algorithm
*/
enum nand_ecc_algo {
NAND_ECC_ALGO_UNKNOWN,
NAND_ECC_ALGO_HAMMING,
NAND_ECC_ALGO_BCH,
NAND_ECC_ALGO_RS,
};
/**
* struct nand_ecc_props - NAND ECC properties
* @engine_type: ECC engine type
* @placement: OOB placement (if relevant)
* @algo: ECC algorithm (if relevant)
* @strength: ECC strength
* @step_size: Number of bytes per step
* @flags: Misc properties
*/
struct nand_ecc_props {
enum nand_ecc_engine_type engine_type;
enum nand_ecc_placement placement;
enum nand_ecc_algo algo;
unsigned int strength;
unsigned int step_size;
unsigned int flags;
};
#define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
/* NAND ECC misc flags */
#define NAND_ECC_MAXIMIZE_STRENGTH BIT(0)
/**
* struct nand_bbt - bad block table object
* @cache: in memory BBT cache
*/
struct nand_bbt {
unsigned long *cache;
};
/**
* struct nand_ops - NAND operations
* @erase: erase a specific block. No need to check if the block is bad before
* erasing, this has been taken care of by the generic NAND layer
* @markbad: mark a specific block bad. No need to check if the block is
* already marked bad, this has been taken care of by the generic
* NAND layer. This method should just write the BBM (Bad Block
* Marker) so that future call to struct_nand_ops->isbad() return
* true
* @isbad: check whether a block is bad or not. This method should just read
* the BBM and return whether the block is bad or not based on what it
* reads
*
* These are all low level operations that should be implemented by specialized
* NAND layers (SPI NAND, raw NAND, ...).
*/
struct nand_ops {
int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
};
/**
* struct nand_ecc_context - Context for the ECC engine
* @conf: basic ECC engine parameters
* @total: total number of bytes used for storing ECC codes, this is used by
* generic OOB layouts
* @priv: ECC engine driver private data
*/
struct nand_ecc_context {
struct nand_ecc_props conf;
unsigned int total;
void *priv;
};
/**
* struct nand_ecc_engine_ops - ECC engine operations
* @init_ctx: given a desired user configuration for the pointed NAND device,
* requests the ECC engine driver to setup a configuration with
* values it supports.
* @cleanup_ctx: clean the context initialized by @init_ctx.
* @prepare_io_req: is called before reading/writing a page to prepare the I/O
* request to be performed with ECC correction.
* @finish_io_req: is called after reading/writing a page to terminate the I/O
* request and ensure proper ECC correction.
*/
struct nand_ecc_engine_ops {
int (*init_ctx)(struct nand_device *nand);
void (*cleanup_ctx)(struct nand_device *nand);
int (*prepare_io_req)(struct nand_device *nand,
struct nand_page_io_req *req);
int (*finish_io_req)(struct nand_device *nand,
struct nand_page_io_req *req);
};
/**
* struct nand_ecc_engine - ECC engine abstraction for NAND devices
* @ops: ECC engine operations
*/
struct nand_ecc_engine {
struct nand_ecc_engine_ops *ops;
};
void of_get_nand_ecc_user_config(struct nand_device *nand);
int nand_ecc_init_ctx(struct nand_device *nand);
void nand_ecc_cleanup_ctx(struct nand_device *nand);
int nand_ecc_prepare_io_req(struct nand_device *nand,
struct nand_page_io_req *req);
int nand_ecc_finish_io_req(struct nand_device *nand,
struct nand_page_io_req *req);
bool nand_ecc_is_strong_enough(struct nand_device *nand);
struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand);
struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand);
#if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING)
struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void);
#else
static inline struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void)
{
return NULL;
}
#endif /* CONFIG_MTD_NAND_ECC_SW_HAMMING */
#if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)
struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void);
#else
static inline struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void)
{
return NULL;
}
#endif /* CONFIG_MTD_NAND_ECC_SW_BCH */
/**
* struct nand_ecc_req_tweak_ctx - Help for automatically tweaking requests
* @orig_req: Pointer to the original IO request
* @nand: Related NAND device, to have access to its memory organization
* @page_buffer_size: Real size of the page buffer to use (can be set by the
* user before the tweaking mechanism initialization)
* @oob_buffer_size: Real size of the OOB buffer to use (can be set by the
* user before the tweaking mechanism initialization)
* @spare_databuf: Data bounce buffer
* @spare_oobbuf: OOB bounce buffer
* @bounce_data: Flag indicating a data bounce buffer is used
* @bounce_oob: Flag indicating an OOB bounce buffer is used
*/
struct nand_ecc_req_tweak_ctx {
struct nand_page_io_req orig_req;
struct nand_device *nand;
unsigned int page_buffer_size;
unsigned int oob_buffer_size;
void *spare_databuf;
void *spare_oobbuf;
bool bounce_data;
bool bounce_oob;
};
int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx,
struct nand_device *nand);
void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx);
void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx,
struct nand_page_io_req *req);
void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx,
struct nand_page_io_req *req);
/**
* struct nand_ecc - Information relative to the ECC
* @defaults: Default values, depend on the underlying subsystem
* @requirements: ECC requirements from the NAND chip perspective
* @user_conf: User desires in terms of ECC parameters
* @ctx: ECC context for the ECC engine, derived from the device @requirements
* the @user_conf and the @defaults
* @ondie_engine: On-die ECC engine reference, if any
* @engine: ECC engine actually bound
*/
struct nand_ecc {
struct nand_ecc_props defaults;
struct nand_ecc_props requirements;
struct nand_ecc_props user_conf;
struct nand_ecc_context ctx;
struct nand_ecc_engine *ondie_engine;
struct nand_ecc_engine *engine;
};
/**
* struct nand_device - NAND device
* @mtd: MTD instance attached to the NAND device
* @memorg: memory layout
* @ecc: NAND ECC object attached to the NAND device
* @rowconv: position to row address converter
* @bbt: bad block table info
* @ops: NAND operations attached to the NAND device
*
* Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
* should declare their own NAND object embedding a nand_device struct (that's
* how inheritance is done).
* struct_nand_device->memorg and struct_nand_device->ecc.requirements should
* be filled at device detection time to reflect the NAND device
* capabilities/requirements. Once this is done nanddev_init() can be called.
* It will take care of converting NAND information into MTD ones, which means
* the specialized NAND layers should never manually tweak
* struct_nand_device->mtd except for the ->_read/write() hooks.
*/
struct nand_device {
struct mtd_info mtd;
struct nand_memory_organization memorg;
struct nand_ecc ecc;
struct nand_row_converter rowconv;
struct nand_bbt bbt;
const struct nand_ops *ops;
};
/**
* struct nand_io_iter - NAND I/O iterator
* @req: current I/O request
* @oobbytes_per_page: maximum number of OOB bytes per page
* @dataleft: remaining number of data bytes to read/write
* @oobleft: remaining number of OOB bytes to read/write
*
* Can be used by specialized NAND layers to iterate over all pages covered
* by an MTD I/O request, which should greatly simplifies the boiler-plate
* code needed to read/write data from/to a NAND device.
*/
struct nand_io_iter {
struct nand_page_io_req req;
unsigned int oobbytes_per_page;
unsigned int dataleft;
unsigned int oobleft;
};
/**
* mtd_to_nanddev() - Get the NAND device attached to the MTD instance
* @mtd: MTD instance
*
* Return: the NAND device embedding @mtd.
*/
static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
{
return container_of(mtd, struct nand_device, mtd);
}
/**
* nanddev_to_mtd() - Get the MTD device attached to a NAND device
* @nand: NAND device
*
* Return: the MTD device embedded in @nand.
*/
static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
{
return &nand->mtd;
}
/*
* nanddev_bits_per_cell() - Get the number of bits per cell
* @nand: NAND device
*
* Return: the number of bits per cell.
*/
static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
{
return nand->memorg.bits_per_cell;
}
/**
* nanddev_page_size() - Get NAND page size
* @nand: NAND device
*
* Return: the page size.
*/
static inline size_t nanddev_page_size(const struct nand_device *nand)
{
return nand->memorg.pagesize;
}
/**
* nanddev_per_page_oobsize() - Get NAND OOB size
* @nand: NAND device
*
* Return: the OOB size.
*/
static inline unsigned int
nanddev_per_page_oobsize(const struct nand_device *nand)
{
return nand->memorg.oobsize;
}
/**
* nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
* @nand: NAND device
*
* Return: the number of pages per eraseblock.
*/
static inline unsigned int
nanddev_pages_per_eraseblock(const struct nand_device *nand)
{
return nand->memorg.pages_per_eraseblock;
}
/**
* nanddev_pages_per_target() - Get the number of pages per target
* @nand: NAND device
*
* Return: the number of pages per target.
*/
static inline unsigned int
nanddev_pages_per_target(const struct nand_device *nand)
{
return nand->memorg.pages_per_eraseblock *
nand->memorg.eraseblocks_per_lun *
nand->memorg.luns_per_target;
}
/**
* nanddev_per_page_oobsize() - Get NAND erase block size
* @nand: NAND device
*
* Return: the eraseblock size.
*/
static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
{
return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
}
/**
* nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
* @nand: NAND device
*
* Return: the number of eraseblocks per LUN.
*/
static inline unsigned int
nanddev_eraseblocks_per_lun(const struct nand_device *nand)
{
return nand->memorg.eraseblocks_per_lun;
}
/**
* nanddev_eraseblocks_per_target() - Get the number of eraseblocks per target
* @nand: NAND device
*
* Return: the number of eraseblocks per target.
*/
static inline unsigned int
nanddev_eraseblocks_per_target(const struct nand_device *nand)
{
return nand->memorg.eraseblocks_per_lun * nand->memorg.luns_per_target;
}
/**
* nanddev_target_size() - Get the total size provided by a single target/die
* @nand: NAND device
*
* Return: the total size exposed by a single target/die in bytes.
*/
static inline u64 nanddev_target_size(const struct nand_device *nand)
{
return (u64)nand->memorg.luns_per_target *
nand->memorg.eraseblocks_per_lun *
nand->memorg.pages_per_eraseblock *
nand->memorg.pagesize;
}
/**
* nanddev_ntarget() - Get the total of targets
* @nand: NAND device
*
* Return: the number of targets/dies exposed by @nand.
*/
static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
{
return nand->memorg.ntargets;
}
/**
* nanddev_neraseblocks() - Get the total number of eraseblocks
* @nand: NAND device
*
* Return: the total number of eraseblocks exposed by @nand.
*/
static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
{
return nand->memorg.ntargets * nand->memorg.luns_per_target *
nand->memorg.eraseblocks_per_lun;
}
/**
* nanddev_size() - Get NAND size
* @nand: NAND device
*
* Return: the total size (in bytes) exposed by @nand.
*/
static inline u64 nanddev_size(const struct nand_device *nand)
{
return nanddev_target_size(nand) * nanddev_ntargets(nand);
}
/**
* nanddev_get_memorg() - Extract memory organization info from a NAND device
* @nand: NAND device
*
* This can be used by the upper layer to fill the memorg info before calling
* nanddev_init().
*
* Return: the memorg object embedded in the NAND device.
*/
static inline struct nand_memory_organization *
nanddev_get_memorg(struct nand_device *nand)
{
return &nand->memorg;
}
/**
* nanddev_get_ecc_conf() - Extract the ECC configuration from a NAND device
* @nand: NAND device
*/
static inline const struct nand_ecc_props *
nanddev_get_ecc_conf(struct nand_device *nand)
{
return &nand->ecc.ctx.conf;
}
/**
* nanddev_get_ecc_requirements() - Extract the ECC requirements from a NAND
* device
* @nand: NAND device
*/
static inline const struct nand_ecc_props *
nanddev_get_ecc_requirements(struct nand_device *nand)
{
return &nand->ecc.requirements;
}
/**
* nanddev_set_ecc_requirements() - Assign the ECC requirements of a NAND
* device
* @nand: NAND device
* @reqs: Requirements
*/
static inline void
nanddev_set_ecc_requirements(struct nand_device *nand,
const struct nand_ecc_props *reqs)
{
nand->ecc.requirements = *reqs;
}
int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
struct module *owner);
void nanddev_cleanup(struct nand_device *nand);
/**
* nanddev_register() - Register a NAND device
* @nand: NAND device
*
* Register a NAND device.
* This function is just a wrapper around mtd_device_register()
* registering the MTD device embedded in @nand.
*
* Return: 0 in case of success, a negative error code otherwise.
*/
static inline int nanddev_register(struct nand_device *nand)
{
return mtd_device_register(&nand->mtd, NULL, 0);
}
/**
* nanddev_unregister() - Unregister a NAND device
* @nand: NAND device
*
* Unregister a NAND device.
* This function is just a wrapper around mtd_device_unregister()
* unregistering the MTD device embedded in @nand.
*
* Return: 0 in case of success, a negative error code otherwise.
*/
static inline int nanddev_unregister(struct nand_device *nand)
{
return mtd_device_unregister(&nand->mtd);
}
/**
* nanddev_set_of_node() - Attach a DT node to a NAND device
* @nand: NAND device
* @np: DT node
*
* Attach a DT node to a NAND device.
*/
static inline void nanddev_set_of_node(struct nand_device *nand,
struct device_node *np)
{
mtd_set_of_node(&nand->mtd, np);
}
/**
* nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
* @nand: NAND device
*
* Return: the DT node attached to @nand.
*/
static inline struct device_node *nanddev_get_of_node(struct nand_device *nand)
{
return mtd_get_of_node(&nand->mtd);
}
/**
* nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
* @nand: NAND device
* @offs: absolute NAND offset (usually passed by the MTD layer)
* @pos: a NAND position object to fill in
*
* Converts @offs into a nand_pos representation.
*
* Return: the offset within the NAND page pointed by @pos.
*/
static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
loff_t offs,
struct nand_pos *pos)
{
unsigned int pageoffs;
u64 tmp = offs;
pageoffs = do_div(tmp, nand->memorg.pagesize);
pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
pos->lun = do_div(tmp, nand->memorg.luns_per_target);
pos->target = tmp;
return pageoffs;
}
/**
* nanddev_pos_cmp() - Compare two NAND positions
* @a: First NAND position
* @b: Second NAND position
*
* Compares two NAND positions.
*
* Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
*/
static inline int nanddev_pos_cmp(const struct nand_pos *a,
const struct nand_pos *b)
{
if (a->target != b->target)
return a->target < b->target ? -1 : 1;
if (a->lun != b->lun)
return a->lun < b->lun ? -1 : 1;
if (a->eraseblock != b->eraseblock)
return a->eraseblock < b->eraseblock ? -1 : 1;
if (a->page != b->page)
return a->page < b->page ? -1 : 1;
return 0;
}
/**
* nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
* @nand: NAND device
* @pos: the NAND position to convert
*
* Converts @pos NAND position into an absolute offset.
*
* Return: the absolute offset. Note that @pos points to the beginning of a
* page, if one wants to point to a specific offset within this page
* the returned offset has to be adjusted manually.
*/
static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
const struct nand_pos *pos)
{
unsigned int npages;
npages = pos->page +
((pos->eraseblock +
(pos->lun +
(pos->target * nand->memorg.luns_per_target)) *
nand->memorg.eraseblocks_per_lun) *
nand->memorg.pages_per_eraseblock);
return (loff_t)npages * nand->memorg.pagesize;
}
/**
* nanddev_pos_to_row() - Extract a row address from a NAND position
* @nand: NAND device
* @pos: the position to convert
*
* Converts a NAND position into a row address that can then be passed to the
* device.
*
* Return: the row address extracted from @pos.
*/
static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
const struct nand_pos *pos)
{
return (pos->lun << nand->rowconv.lun_addr_shift) |
(pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
pos->page;
}
/**
* nanddev_pos_next_target() - Move a position to the next target/die
* @nand: NAND device
* @pos: the position to update
*
* Updates @pos to point to the start of the next target/die. Useful when you
* want to iterate over all targets/dies of a NAND device.
*/
static inline void nanddev_pos_next_target(struct nand_device *nand,
struct nand_pos *pos)
{
pos->page = 0;
pos->plane = 0;
pos->eraseblock = 0;
pos->lun = 0;
pos->target++;
}
/**
* nanddev_pos_next_lun() - Move a position to the next LUN
* @nand: NAND device
* @pos: the position to update
*
* Updates @pos to point to the start of the next LUN. Useful when you want to
* iterate over all LUNs of a NAND device.
*/
static inline void nanddev_pos_next_lun(struct nand_device *nand,
struct nand_pos *pos)
{
if (pos->lun >= nand->memorg.luns_per_target - 1)
return nanddev_pos_next_target(nand, pos);
pos->lun++;
pos->page = 0;
pos->plane = 0;
pos->eraseblock = 0;
}
/**
* nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
* @nand: NAND device
* @pos: the position to update
*
* Updates @pos to point to the start of the next eraseblock. Useful when you
* want to iterate over all eraseblocks of a NAND device.
*/
static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
struct nand_pos *pos)
{
if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
return nanddev_pos_next_lun(nand, pos);
pos->eraseblock++;
pos->page = 0;
pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
}
/**
* nanddev_pos_next_page() - Move a position to the next page
* @nand: NAND device
* @pos: the position to update
*
* Updates @pos to point to the start of the next page. Useful when you want to
* iterate over all pages of a NAND device.
*/
static inline void nanddev_pos_next_page(struct nand_device *nand,
struct nand_pos *pos)
{
if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
return nanddev_pos_next_eraseblock(nand, pos);
pos->page++;
}
/**
* nand_io_iter_init - Initialize a NAND I/O iterator
* @nand: NAND device
* @offs: absolute offset
* @req: MTD request
* @iter: NAND I/O iterator
*
* Initializes a NAND iterator based on the information passed by the MTD
* layer.
*/
static inline void nanddev_io_iter_init(struct nand_device *nand,
enum nand_page_io_req_type reqtype,
loff_t offs, struct mtd_oob_ops *req,
struct nand_io_iter *iter)
{
struct mtd_info *mtd = nanddev_to_mtd(nand);
iter->req.type = reqtype;
iter->req.mode = req->mode;
iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
iter->req.ooboffs = req->ooboffs;
iter->oobbytes_per_page = mtd_oobavail(mtd, req);
iter->dataleft = req->len;
iter->oobleft = req->ooblen;
iter->req.databuf.in = req->datbuf;
iter->req.datalen = min_t(unsigned int,
nand->memorg.pagesize - iter->req.dataoffs,
iter->dataleft);
iter->req.oobbuf.in = req->oobbuf;
iter->req.ooblen = min_t(unsigned int,
iter->oobbytes_per_page - iter->req.ooboffs,
iter->oobleft);
}
/**
* nand_io_iter_next_page - Move to the next page
* @nand: NAND device
* @iter: NAND I/O iterator
*
* Updates the @iter to point to the next page.
*/
static inline void nanddev_io_iter_next_page(struct nand_device *nand,
struct nand_io_iter *iter)
{
nanddev_pos_next_page(nand, &iter->req.pos);
iter->dataleft -= iter->req.datalen;
iter->req.databuf.in += iter->req.datalen;
iter->oobleft -= iter->req.ooblen;
iter->req.oobbuf.in += iter->req.ooblen;
iter->req.dataoffs = 0;
iter->req.ooboffs = 0;
iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
iter->dataleft);
iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
iter->oobleft);
}
/**
* nand_io_iter_end - Should end iteration or not
* @nand: NAND device
* @iter: NAND I/O iterator
*
* Check whether @iter has reached the end of the NAND portion it was asked to
* iterate on or not.
*
* Return: true if @iter has reached the end of the iteration request, false
* otherwise.
*/
static inline bool nanddev_io_iter_end(struct nand_device *nand,
const struct nand_io_iter *iter)
{
if (iter->dataleft || iter->oobleft)
return false;
return true;
}
/**
* nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
* request
* @nand: NAND device
* @start: start address to read/write from
* @req: MTD I/O request
* @iter: NAND I/O iterator
*
* Should be used for iterate over pages that are contained in an MTD request.
*/
#define nanddev_io_for_each_page(nand, type, start, req, iter) \
for (nanddev_io_iter_init(nand, type, start, req, iter); \
!nanddev_io_iter_end(nand, iter); \
nanddev_io_iter_next_page(nand, iter))
bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos);
int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
/* ECC related functions */
int nanddev_ecc_engine_init(struct nand_device *nand);
void nanddev_ecc_engine_cleanup(struct nand_device *nand);
/* BBT related functions */
enum nand_bbt_block_status {
NAND_BBT_BLOCK_STATUS_UNKNOWN,
NAND_BBT_BLOCK_GOOD,
NAND_BBT_BLOCK_WORN,
NAND_BBT_BLOCK_RESERVED,
NAND_BBT_BLOCK_FACTORY_BAD,
NAND_BBT_BLOCK_NUM_STATUS,
};
int nanddev_bbt_init(struct nand_device *nand);
void nanddev_bbt_cleanup(struct nand_device *nand);
int nanddev_bbt_update(struct nand_device *nand);
int nanddev_bbt_get_block_status(const struct nand_device *nand,
unsigned int entry);
int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
enum nand_bbt_block_status status);
int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
/**
* nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
* @nand: NAND device
* @pos: the NAND position we want to get BBT entry for
*
* Return the BBT entry used to store information about the eraseblock pointed
* by @pos.
*
* Return: the BBT entry storing information about eraseblock pointed by @pos.
*/
static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
const struct nand_pos *pos)
{
return pos->eraseblock +
((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
nand->memorg.eraseblocks_per_lun);
}
/**
* nanddev_bbt_is_initialized() - Check if the BBT has been initialized
* @nand: NAND device
*
* Return: true if the BBT has been initialized, false otherwise.
*/
static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
{
return !!nand->bbt.cache;
}
/* MTD -> NAND helper functions. */
int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len);
#endif /* __LINUX_MTD_NAND_H */