OpenCloudOS-Kernel/drivers/input/touchscreen/cyttsp4_core.c

2175 lines
55 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* cyttsp4_core.c
* Cypress TrueTouch(TM) Standard Product V4 Core driver module.
* For use with Cypress Txx4xx parts.
* Supported parts include:
* TMA4XX
* TMA1036
*
* Copyright (C) 2012 Cypress Semiconductor
*
* Contact Cypress Semiconductor at www.cypress.com <ttdrivers@cypress.com>
*/
#include "cyttsp4_core.h"
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/input/mt.h>
#include <linux/interrupt.h>
#include <linux/pm_runtime.h>
#include <linux/sched.h>
#include <linux/slab.h>
/* Timeout in ms. */
#define CY_CORE_REQUEST_EXCLUSIVE_TIMEOUT 500
#define CY_CORE_SLEEP_REQUEST_EXCLUSIVE_TIMEOUT 5000
#define CY_CORE_MODE_CHANGE_TIMEOUT 1000
#define CY_CORE_RESET_AND_WAIT_TIMEOUT 500
#define CY_CORE_WAKEUP_TIMEOUT 500
#define CY_CORE_STARTUP_RETRY_COUNT 3
static const u8 ldr_exit[] = {
0xFF, 0x01, 0x3B, 0x00, 0x00, 0x4F, 0x6D, 0x17
};
static const u8 ldr_err_app[] = {
0x01, 0x02, 0x00, 0x00, 0x55, 0xDD, 0x17
};
static inline size_t merge_bytes(u8 high, u8 low)
{
return (high << 8) + low;
}
#ifdef VERBOSE_DEBUG
static void cyttsp4_pr_buf(struct device *dev, u8 *pr_buf, u8 *dptr, int size,
const char *data_name)
{
int i, k;
const char fmt[] = "%02X ";
int max;
if (!size)
return;
max = (CY_MAX_PRBUF_SIZE - 1) - sizeof(CY_PR_TRUNCATED);
pr_buf[0] = 0;
for (i = k = 0; i < size && k < max; i++, k += 3)
scnprintf(pr_buf + k, CY_MAX_PRBUF_SIZE, fmt, dptr[i]);
dev_vdbg(dev, "%s: %s[0..%d]=%s%s\n", __func__, data_name, size - 1,
pr_buf, size <= max ? "" : CY_PR_TRUNCATED);
}
#else
#define cyttsp4_pr_buf(dev, pr_buf, dptr, size, data_name) do { } while (0)
#endif
static int cyttsp4_load_status_regs(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
struct device *dev = cd->dev;
int rc;
rc = cyttsp4_adap_read(cd, CY_REG_BASE, si->si_ofs.mode_size,
si->xy_mode);
if (rc < 0)
dev_err(dev, "%s: fail read mode regs r=%d\n",
__func__, rc);
else
cyttsp4_pr_buf(dev, cd->pr_buf, si->xy_mode,
si->si_ofs.mode_size, "xy_mode");
return rc;
}
static int cyttsp4_handshake(struct cyttsp4 *cd, u8 mode)
{
u8 cmd = mode ^ CY_HST_TOGGLE;
int rc;
/*
* Mode change issued, handshaking now will cause endless mode change
* requests, for sync mode modechange will do same with handshake
* */
if (mode & CY_HST_MODE_CHANGE)
return 0;
rc = cyttsp4_adap_write(cd, CY_REG_BASE, sizeof(cmd), &cmd);
if (rc < 0)
dev_err(cd->dev, "%s: bus write fail on handshake (ret=%d)\n",
__func__, rc);
return rc;
}
static int cyttsp4_hw_soft_reset(struct cyttsp4 *cd)
{
u8 cmd = CY_HST_RESET;
int rc = cyttsp4_adap_write(cd, CY_REG_BASE, sizeof(cmd), &cmd);
if (rc < 0) {
dev_err(cd->dev, "%s: FAILED to execute SOFT reset\n",
__func__);
return rc;
}
return 0;
}
static int cyttsp4_hw_hard_reset(struct cyttsp4 *cd)
{
if (cd->cpdata->xres) {
cd->cpdata->xres(cd->cpdata, cd->dev);
dev_dbg(cd->dev, "%s: execute HARD reset\n", __func__);
return 0;
}
dev_err(cd->dev, "%s: FAILED to execute HARD reset\n", __func__);
return -ENOSYS;
}
static int cyttsp4_hw_reset(struct cyttsp4 *cd)
{
int rc = cyttsp4_hw_hard_reset(cd);
if (rc == -ENOSYS)
rc = cyttsp4_hw_soft_reset(cd);
return rc;
}
/*
* Gets number of bits for a touch filed as parameter,
* sets maximum value for field which is used as bit mask
* and returns number of bytes required for that field
*/
static int cyttsp4_bits_2_bytes(unsigned int nbits, size_t *max)
{
*max = 1UL << nbits;
return (nbits + 7) / 8;
}
static int cyttsp4_si_data_offsets(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
int rc = cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(si->si_data),
&si->si_data);
if (rc < 0) {
dev_err(cd->dev, "%s: fail read sysinfo data offsets r=%d\n",
__func__, rc);
return rc;
}
/* Print sysinfo data offsets */
cyttsp4_pr_buf(cd->dev, cd->pr_buf, (u8 *)&si->si_data,
sizeof(si->si_data), "sysinfo_data_offsets");
/* convert sysinfo data offset bytes into integers */
si->si_ofs.map_sz = merge_bytes(si->si_data.map_szh,
si->si_data.map_szl);
si->si_ofs.map_sz = merge_bytes(si->si_data.map_szh,
si->si_data.map_szl);
si->si_ofs.cydata_ofs = merge_bytes(si->si_data.cydata_ofsh,
si->si_data.cydata_ofsl);
si->si_ofs.test_ofs = merge_bytes(si->si_data.test_ofsh,
si->si_data.test_ofsl);
si->si_ofs.pcfg_ofs = merge_bytes(si->si_data.pcfg_ofsh,
si->si_data.pcfg_ofsl);
si->si_ofs.opcfg_ofs = merge_bytes(si->si_data.opcfg_ofsh,
si->si_data.opcfg_ofsl);
si->si_ofs.ddata_ofs = merge_bytes(si->si_data.ddata_ofsh,
si->si_data.ddata_ofsl);
si->si_ofs.mdata_ofs = merge_bytes(si->si_data.mdata_ofsh,
si->si_data.mdata_ofsl);
return rc;
}
static int cyttsp4_si_get_cydata(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
int read_offset;
int mfgid_sz, calc_mfgid_sz;
void *p;
int rc;
if (si->si_ofs.test_ofs <= si->si_ofs.cydata_ofs) {
dev_err(cd->dev,
"%s: invalid offset test_ofs: %zu, cydata_ofs: %zu\n",
__func__, si->si_ofs.test_ofs, si->si_ofs.cydata_ofs);
return -EINVAL;
}
si->si_ofs.cydata_size = si->si_ofs.test_ofs - si->si_ofs.cydata_ofs;
dev_dbg(cd->dev, "%s: cydata size: %zd\n", __func__,
si->si_ofs.cydata_size);
p = krealloc(si->si_ptrs.cydata, si->si_ofs.cydata_size, GFP_KERNEL);
if (p == NULL) {
dev_err(cd->dev, "%s: failed to allocate cydata memory\n",
__func__);
return -ENOMEM;
}
si->si_ptrs.cydata = p;
read_offset = si->si_ofs.cydata_ofs;
/* Read the CYDA registers up to MFGID field */
rc = cyttsp4_adap_read(cd, read_offset,
offsetof(struct cyttsp4_cydata, mfgid_sz)
+ sizeof(si->si_ptrs.cydata->mfgid_sz),
si->si_ptrs.cydata);
if (rc < 0) {
dev_err(cd->dev, "%s: fail read cydata r=%d\n",
__func__, rc);
return rc;
}
/* Check MFGID size */
mfgid_sz = si->si_ptrs.cydata->mfgid_sz;
calc_mfgid_sz = si->si_ofs.cydata_size - sizeof(struct cyttsp4_cydata);
if (mfgid_sz != calc_mfgid_sz) {
dev_err(cd->dev, "%s: mismatch in MFGID size, reported:%d calculated:%d\n",
__func__, mfgid_sz, calc_mfgid_sz);
return -EINVAL;
}
read_offset += offsetof(struct cyttsp4_cydata, mfgid_sz)
+ sizeof(si->si_ptrs.cydata->mfgid_sz);
/* Read the CYDA registers for MFGID field */
rc = cyttsp4_adap_read(cd, read_offset, si->si_ptrs.cydata->mfgid_sz,
si->si_ptrs.cydata->mfg_id);
if (rc < 0) {
dev_err(cd->dev, "%s: fail read cydata r=%d\n",
__func__, rc);
return rc;
}
read_offset += si->si_ptrs.cydata->mfgid_sz;
/* Read the rest of the CYDA registers */
rc = cyttsp4_adap_read(cd, read_offset,
sizeof(struct cyttsp4_cydata)
- offsetof(struct cyttsp4_cydata, cyito_idh),
&si->si_ptrs.cydata->cyito_idh);
if (rc < 0) {
dev_err(cd->dev, "%s: fail read cydata r=%d\n",
__func__, rc);
return rc;
}
cyttsp4_pr_buf(cd->dev, cd->pr_buf, (u8 *)si->si_ptrs.cydata,
si->si_ofs.cydata_size, "sysinfo_cydata");
return rc;
}
static int cyttsp4_si_get_test_data(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
void *p;
int rc;
if (si->si_ofs.pcfg_ofs <= si->si_ofs.test_ofs) {
dev_err(cd->dev,
"%s: invalid offset pcfg_ofs: %zu, test_ofs: %zu\n",
__func__, si->si_ofs.pcfg_ofs, si->si_ofs.test_ofs);
return -EINVAL;
}
si->si_ofs.test_size = si->si_ofs.pcfg_ofs - si->si_ofs.test_ofs;
p = krealloc(si->si_ptrs.test, si->si_ofs.test_size, GFP_KERNEL);
if (p == NULL) {
dev_err(cd->dev, "%s: failed to allocate test memory\n",
__func__);
return -ENOMEM;
}
si->si_ptrs.test = p;
rc = cyttsp4_adap_read(cd, si->si_ofs.test_ofs, si->si_ofs.test_size,
si->si_ptrs.test);
if (rc < 0) {
dev_err(cd->dev, "%s: fail read test data r=%d\n",
__func__, rc);
return rc;
}
cyttsp4_pr_buf(cd->dev, cd->pr_buf,
(u8 *)si->si_ptrs.test, si->si_ofs.test_size,
"sysinfo_test_data");
if (si->si_ptrs.test->post_codel &
CY_POST_CODEL_WDG_RST)
dev_info(cd->dev, "%s: %s codel=%02X\n",
__func__, "Reset was a WATCHDOG RESET",
si->si_ptrs.test->post_codel);
if (!(si->si_ptrs.test->post_codel &
CY_POST_CODEL_CFG_DATA_CRC_FAIL))
dev_info(cd->dev, "%s: %s codel=%02X\n", __func__,
"Config Data CRC FAIL",
si->si_ptrs.test->post_codel);
if (!(si->si_ptrs.test->post_codel &
CY_POST_CODEL_PANEL_TEST_FAIL))
dev_info(cd->dev, "%s: %s codel=%02X\n",
__func__, "PANEL TEST FAIL",
si->si_ptrs.test->post_codel);
dev_info(cd->dev, "%s: SCANNING is %s codel=%02X\n",
__func__, si->si_ptrs.test->post_codel & 0x08 ?
"ENABLED" : "DISABLED",
si->si_ptrs.test->post_codel);
return rc;
}
static int cyttsp4_si_get_pcfg_data(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
void *p;
int rc;
if (si->si_ofs.opcfg_ofs <= si->si_ofs.pcfg_ofs) {
dev_err(cd->dev,
"%s: invalid offset opcfg_ofs: %zu, pcfg_ofs: %zu\n",
__func__, si->si_ofs.opcfg_ofs, si->si_ofs.pcfg_ofs);
return -EINVAL;
}
si->si_ofs.pcfg_size = si->si_ofs.opcfg_ofs - si->si_ofs.pcfg_ofs;
p = krealloc(si->si_ptrs.pcfg, si->si_ofs.pcfg_size, GFP_KERNEL);
if (p == NULL) {
dev_err(cd->dev, "%s: failed to allocate pcfg memory\n",
__func__);
return -ENOMEM;
}
si->si_ptrs.pcfg = p;
rc = cyttsp4_adap_read(cd, si->si_ofs.pcfg_ofs, si->si_ofs.pcfg_size,
si->si_ptrs.pcfg);
if (rc < 0) {
dev_err(cd->dev, "%s: fail read pcfg data r=%d\n",
__func__, rc);
return rc;
}
si->si_ofs.max_x = merge_bytes((si->si_ptrs.pcfg->res_xh
& CY_PCFG_RESOLUTION_X_MASK), si->si_ptrs.pcfg->res_xl);
si->si_ofs.x_origin = !!(si->si_ptrs.pcfg->res_xh
& CY_PCFG_ORIGIN_X_MASK);
si->si_ofs.max_y = merge_bytes((si->si_ptrs.pcfg->res_yh
& CY_PCFG_RESOLUTION_Y_MASK), si->si_ptrs.pcfg->res_yl);
si->si_ofs.y_origin = !!(si->si_ptrs.pcfg->res_yh
& CY_PCFG_ORIGIN_Y_MASK);
si->si_ofs.max_p = merge_bytes(si->si_ptrs.pcfg->max_zh,
si->si_ptrs.pcfg->max_zl);
cyttsp4_pr_buf(cd->dev, cd->pr_buf,
(u8 *)si->si_ptrs.pcfg,
si->si_ofs.pcfg_size, "sysinfo_pcfg_data");
return rc;
}
static int cyttsp4_si_get_opcfg_data(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
struct cyttsp4_tch_abs_params *tch;
struct cyttsp4_tch_rec_params *tch_old, *tch_new;
enum cyttsp4_tch_abs abs;
int i;
void *p;
int rc;
if (si->si_ofs.ddata_ofs <= si->si_ofs.opcfg_ofs) {
dev_err(cd->dev,
"%s: invalid offset ddata_ofs: %zu, opcfg_ofs: %zu\n",
__func__, si->si_ofs.ddata_ofs, si->si_ofs.opcfg_ofs);
return -EINVAL;
}
si->si_ofs.opcfg_size = si->si_ofs.ddata_ofs - si->si_ofs.opcfg_ofs;
p = krealloc(si->si_ptrs.opcfg, si->si_ofs.opcfg_size, GFP_KERNEL);
if (p == NULL) {
dev_err(cd->dev, "%s: failed to allocate opcfg memory\n",
__func__);
return -ENOMEM;
}
si->si_ptrs.opcfg = p;
rc = cyttsp4_adap_read(cd, si->si_ofs.opcfg_ofs, si->si_ofs.opcfg_size,
si->si_ptrs.opcfg);
if (rc < 0) {
dev_err(cd->dev, "%s: fail read opcfg data r=%d\n",
__func__, rc);
return rc;
}
si->si_ofs.cmd_ofs = si->si_ptrs.opcfg->cmd_ofs;
si->si_ofs.rep_ofs = si->si_ptrs.opcfg->rep_ofs;
si->si_ofs.rep_sz = (si->si_ptrs.opcfg->rep_szh * 256) +
si->si_ptrs.opcfg->rep_szl;
si->si_ofs.num_btns = si->si_ptrs.opcfg->num_btns;
si->si_ofs.num_btn_regs = (si->si_ofs.num_btns +
CY_NUM_BTN_PER_REG - 1) / CY_NUM_BTN_PER_REG;
si->si_ofs.tt_stat_ofs = si->si_ptrs.opcfg->tt_stat_ofs;
si->si_ofs.obj_cfg0 = si->si_ptrs.opcfg->obj_cfg0;
si->si_ofs.max_tchs = si->si_ptrs.opcfg->max_tchs &
CY_BYTE_OFS_MASK;
si->si_ofs.tch_rec_size = si->si_ptrs.opcfg->tch_rec_size &
CY_BYTE_OFS_MASK;
/* Get the old touch fields */
for (abs = CY_TCH_X; abs < CY_NUM_TCH_FIELDS; abs++) {
tch = &si->si_ofs.tch_abs[abs];
tch_old = &si->si_ptrs.opcfg->tch_rec_old[abs];
tch->ofs = tch_old->loc & CY_BYTE_OFS_MASK;
tch->size = cyttsp4_bits_2_bytes(tch_old->size,
&tch->max);
tch->bofs = (tch_old->loc & CY_BOFS_MASK) >> CY_BOFS_SHIFT;
}
/* button fields */
si->si_ofs.btn_rec_size = si->si_ptrs.opcfg->btn_rec_size;
si->si_ofs.btn_diff_ofs = si->si_ptrs.opcfg->btn_diff_ofs;
si->si_ofs.btn_diff_size = si->si_ptrs.opcfg->btn_diff_size;
if (si->si_ofs.tch_rec_size > CY_TMA1036_TCH_REC_SIZE) {
/* Get the extended touch fields */
for (i = 0; i < CY_NUM_EXT_TCH_FIELDS; abs++, i++) {
tch = &si->si_ofs.tch_abs[abs];
tch_new = &si->si_ptrs.opcfg->tch_rec_new[i];
tch->ofs = tch_new->loc & CY_BYTE_OFS_MASK;
tch->size = cyttsp4_bits_2_bytes(tch_new->size,
&tch->max);
tch->bofs = (tch_new->loc & CY_BOFS_MASK) >> CY_BOFS_SHIFT;
}
}
for (abs = 0; abs < CY_TCH_NUM_ABS; abs++) {
dev_dbg(cd->dev, "%s: tch_rec_%s\n", __func__,
cyttsp4_tch_abs_string[abs]);
dev_dbg(cd->dev, "%s: ofs =%2zd\n", __func__,
si->si_ofs.tch_abs[abs].ofs);
dev_dbg(cd->dev, "%s: siz =%2zd\n", __func__,
si->si_ofs.tch_abs[abs].size);
dev_dbg(cd->dev, "%s: max =%2zd\n", __func__,
si->si_ofs.tch_abs[abs].max);
dev_dbg(cd->dev, "%s: bofs=%2zd\n", __func__,
si->si_ofs.tch_abs[abs].bofs);
}
si->si_ofs.mode_size = si->si_ofs.tt_stat_ofs + 1;
si->si_ofs.data_size = si->si_ofs.max_tchs *
si->si_ptrs.opcfg->tch_rec_size;
cyttsp4_pr_buf(cd->dev, cd->pr_buf, (u8 *)si->si_ptrs.opcfg,
si->si_ofs.opcfg_size, "sysinfo_opcfg_data");
return 0;
}
static int cyttsp4_si_get_ddata(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
void *p;
int rc;
si->si_ofs.ddata_size = si->si_ofs.mdata_ofs - si->si_ofs.ddata_ofs;
p = krealloc(si->si_ptrs.ddata, si->si_ofs.ddata_size, GFP_KERNEL);
if (p == NULL) {
dev_err(cd->dev, "%s: fail alloc ddata memory\n", __func__);
return -ENOMEM;
}
si->si_ptrs.ddata = p;
rc = cyttsp4_adap_read(cd, si->si_ofs.ddata_ofs, si->si_ofs.ddata_size,
si->si_ptrs.ddata);
if (rc < 0)
dev_err(cd->dev, "%s: fail read ddata data r=%d\n",
__func__, rc);
else
cyttsp4_pr_buf(cd->dev, cd->pr_buf,
(u8 *)si->si_ptrs.ddata,
si->si_ofs.ddata_size, "sysinfo_ddata");
return rc;
}
static int cyttsp4_si_get_mdata(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
void *p;
int rc;
si->si_ofs.mdata_size = si->si_ofs.map_sz - si->si_ofs.mdata_ofs;
p = krealloc(si->si_ptrs.mdata, si->si_ofs.mdata_size, GFP_KERNEL);
if (p == NULL) {
dev_err(cd->dev, "%s: fail alloc mdata memory\n", __func__);
return -ENOMEM;
}
si->si_ptrs.mdata = p;
rc = cyttsp4_adap_read(cd, si->si_ofs.mdata_ofs, si->si_ofs.mdata_size,
si->si_ptrs.mdata);
if (rc < 0)
dev_err(cd->dev, "%s: fail read mdata data r=%d\n",
__func__, rc);
else
cyttsp4_pr_buf(cd->dev, cd->pr_buf,
(u8 *)si->si_ptrs.mdata,
si->si_ofs.mdata_size, "sysinfo_mdata");
return rc;
}
static int cyttsp4_si_get_btn_data(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
int btn;
int num_defined_keys;
u16 *key_table;
void *p;
int rc = 0;
if (si->si_ofs.num_btns) {
si->si_ofs.btn_keys_size = si->si_ofs.num_btns *
sizeof(struct cyttsp4_btn);
p = krealloc(si->btn, si->si_ofs.btn_keys_size,
GFP_KERNEL|__GFP_ZERO);
if (p == NULL) {
dev_err(cd->dev, "%s: %s\n", __func__,
"fail alloc btn_keys memory");
return -ENOMEM;
}
si->btn = p;
if (cd->cpdata->sett[CY_IC_GRPNUM_BTN_KEYS] == NULL)
num_defined_keys = 0;
else if (cd->cpdata->sett[CY_IC_GRPNUM_BTN_KEYS]->data == NULL)
num_defined_keys = 0;
else
num_defined_keys = cd->cpdata->sett
[CY_IC_GRPNUM_BTN_KEYS]->size;
for (btn = 0; btn < si->si_ofs.num_btns &&
btn < num_defined_keys; btn++) {
key_table = (u16 *)cd->cpdata->sett
[CY_IC_GRPNUM_BTN_KEYS]->data;
si->btn[btn].key_code = key_table[btn];
si->btn[btn].state = CY_BTN_RELEASED;
si->btn[btn].enabled = true;
}
for (; btn < si->si_ofs.num_btns; btn++) {
si->btn[btn].key_code = KEY_RESERVED;
si->btn[btn].state = CY_BTN_RELEASED;
si->btn[btn].enabled = true;
}
return rc;
}
si->si_ofs.btn_keys_size = 0;
kfree(si->btn);
si->btn = NULL;
return rc;
}
static int cyttsp4_si_get_op_data_ptrs(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
void *p;
p = krealloc(si->xy_mode, si->si_ofs.mode_size, GFP_KERNEL|__GFP_ZERO);
if (p == NULL)
return -ENOMEM;
si->xy_mode = p;
p = krealloc(si->xy_data, si->si_ofs.data_size, GFP_KERNEL|__GFP_ZERO);
if (p == NULL)
return -ENOMEM;
si->xy_data = p;
p = krealloc(si->btn_rec_data,
si->si_ofs.btn_rec_size * si->si_ofs.num_btns,
GFP_KERNEL|__GFP_ZERO);
if (p == NULL)
return -ENOMEM;
si->btn_rec_data = p;
return 0;
}
static void cyttsp4_si_put_log_data(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
dev_dbg(cd->dev, "%s: cydata_ofs =%4zd siz=%4zd\n", __func__,
si->si_ofs.cydata_ofs, si->si_ofs.cydata_size);
dev_dbg(cd->dev, "%s: test_ofs =%4zd siz=%4zd\n", __func__,
si->si_ofs.test_ofs, si->si_ofs.test_size);
dev_dbg(cd->dev, "%s: pcfg_ofs =%4zd siz=%4zd\n", __func__,
si->si_ofs.pcfg_ofs, si->si_ofs.pcfg_size);
dev_dbg(cd->dev, "%s: opcfg_ofs =%4zd siz=%4zd\n", __func__,
si->si_ofs.opcfg_ofs, si->si_ofs.opcfg_size);
dev_dbg(cd->dev, "%s: ddata_ofs =%4zd siz=%4zd\n", __func__,
si->si_ofs.ddata_ofs, si->si_ofs.ddata_size);
dev_dbg(cd->dev, "%s: mdata_ofs =%4zd siz=%4zd\n", __func__,
si->si_ofs.mdata_ofs, si->si_ofs.mdata_size);
dev_dbg(cd->dev, "%s: cmd_ofs =%4zd\n", __func__,
si->si_ofs.cmd_ofs);
dev_dbg(cd->dev, "%s: rep_ofs =%4zd\n", __func__,
si->si_ofs.rep_ofs);
dev_dbg(cd->dev, "%s: rep_sz =%4zd\n", __func__,
si->si_ofs.rep_sz);
dev_dbg(cd->dev, "%s: num_btns =%4zd\n", __func__,
si->si_ofs.num_btns);
dev_dbg(cd->dev, "%s: num_btn_regs =%4zd\n", __func__,
si->si_ofs.num_btn_regs);
dev_dbg(cd->dev, "%s: tt_stat_ofs =%4zd\n", __func__,
si->si_ofs.tt_stat_ofs);
dev_dbg(cd->dev, "%s: tch_rec_size =%4zd\n", __func__,
si->si_ofs.tch_rec_size);
dev_dbg(cd->dev, "%s: max_tchs =%4zd\n", __func__,
si->si_ofs.max_tchs);
dev_dbg(cd->dev, "%s: mode_size =%4zd\n", __func__,
si->si_ofs.mode_size);
dev_dbg(cd->dev, "%s: data_size =%4zd\n", __func__,
si->si_ofs.data_size);
dev_dbg(cd->dev, "%s: map_sz =%4zd\n", __func__,
si->si_ofs.map_sz);
dev_dbg(cd->dev, "%s: btn_rec_size =%2zd\n", __func__,
si->si_ofs.btn_rec_size);
dev_dbg(cd->dev, "%s: btn_diff_ofs =%2zd\n", __func__,
si->si_ofs.btn_diff_ofs);
dev_dbg(cd->dev, "%s: btn_diff_size =%2zd\n", __func__,
si->si_ofs.btn_diff_size);
dev_dbg(cd->dev, "%s: max_x = 0x%04zX (%zd)\n", __func__,
si->si_ofs.max_x, si->si_ofs.max_x);
dev_dbg(cd->dev, "%s: x_origin = %zd (%s)\n", __func__,
si->si_ofs.x_origin,
si->si_ofs.x_origin == CY_NORMAL_ORIGIN ?
"left corner" : "right corner");
dev_dbg(cd->dev, "%s: max_y = 0x%04zX (%zd)\n", __func__,
si->si_ofs.max_y, si->si_ofs.max_y);
dev_dbg(cd->dev, "%s: y_origin = %zd (%s)\n", __func__,
si->si_ofs.y_origin,
si->si_ofs.y_origin == CY_NORMAL_ORIGIN ?
"upper corner" : "lower corner");
dev_dbg(cd->dev, "%s: max_p = 0x%04zX (%zd)\n", __func__,
si->si_ofs.max_p, si->si_ofs.max_p);
dev_dbg(cd->dev, "%s: xy_mode=%p xy_data=%p\n", __func__,
si->xy_mode, si->xy_data);
}
static int cyttsp4_get_sysinfo_regs(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
int rc;
rc = cyttsp4_si_data_offsets(cd);
if (rc < 0)
return rc;
rc = cyttsp4_si_get_cydata(cd);
if (rc < 0)
return rc;
rc = cyttsp4_si_get_test_data(cd);
if (rc < 0)
return rc;
rc = cyttsp4_si_get_pcfg_data(cd);
if (rc < 0)
return rc;
rc = cyttsp4_si_get_opcfg_data(cd);
if (rc < 0)
return rc;
rc = cyttsp4_si_get_ddata(cd);
if (rc < 0)
return rc;
rc = cyttsp4_si_get_mdata(cd);
if (rc < 0)
return rc;
rc = cyttsp4_si_get_btn_data(cd);
if (rc < 0)
return rc;
rc = cyttsp4_si_get_op_data_ptrs(cd);
if (rc < 0) {
dev_err(cd->dev, "%s: failed to get_op_data\n",
__func__);
return rc;
}
cyttsp4_si_put_log_data(cd);
/* provide flow control handshake */
rc = cyttsp4_handshake(cd, si->si_data.hst_mode);
if (rc < 0)
dev_err(cd->dev, "%s: handshake fail on sysinfo reg\n",
__func__);
si->ready = true;
return rc;
}
static void cyttsp4_queue_startup_(struct cyttsp4 *cd)
{
if (cd->startup_state == STARTUP_NONE) {
cd->startup_state = STARTUP_QUEUED;
schedule_work(&cd->startup_work);
dev_dbg(cd->dev, "%s: cyttsp4_startup queued\n", __func__);
} else {
dev_dbg(cd->dev, "%s: startup_state = %d\n", __func__,
cd->startup_state);
}
}
static void cyttsp4_report_slot_liftoff(struct cyttsp4_mt_data *md,
int max_slots)
{
int t;
if (md->num_prv_tch == 0)
return;
for (t = 0; t < max_slots; t++) {
input_mt_slot(md->input, t);
input_mt_report_slot_state(md->input,
MT_TOOL_FINGER, false);
}
}
static void cyttsp4_lift_all(struct cyttsp4_mt_data *md)
{
if (!md->si)
return;
if (md->num_prv_tch != 0) {
cyttsp4_report_slot_liftoff(md,
md->si->si_ofs.tch_abs[CY_TCH_T].max);
input_sync(md->input);
md->num_prv_tch = 0;
}
}
static void cyttsp4_get_touch_axis(struct cyttsp4_mt_data *md,
int *axis, int size, int max, u8 *xy_data, int bofs)
{
int nbyte;
int next;
for (nbyte = 0, *axis = 0, next = 0; nbyte < size; nbyte++) {
dev_vdbg(&md->input->dev,
"%s: *axis=%02X(%d) size=%d max=%08X xy_data=%p"
" xy_data[%d]=%02X(%d) bofs=%d\n",
__func__, *axis, *axis, size, max, xy_data, next,
xy_data[next], xy_data[next], bofs);
*axis = (*axis * 256) + (xy_data[next] >> bofs);
next++;
}
*axis &= max - 1;
dev_vdbg(&md->input->dev,
"%s: *axis=%02X(%d) size=%d max=%08X xy_data=%p"
" xy_data[%d]=%02X(%d)\n",
__func__, *axis, *axis, size, max, xy_data, next,
xy_data[next], xy_data[next]);
}
static void cyttsp4_get_touch(struct cyttsp4_mt_data *md,
struct cyttsp4_touch *touch, u8 *xy_data)
{
struct device *dev = &md->input->dev;
struct cyttsp4_sysinfo *si = md->si;
enum cyttsp4_tch_abs abs;
bool flipped;
for (abs = CY_TCH_X; abs < CY_TCH_NUM_ABS; abs++) {
cyttsp4_get_touch_axis(md, &touch->abs[abs],
si->si_ofs.tch_abs[abs].size,
si->si_ofs.tch_abs[abs].max,
xy_data + si->si_ofs.tch_abs[abs].ofs,
si->si_ofs.tch_abs[abs].bofs);
dev_vdbg(dev, "%s: get %s=%04X(%d)\n", __func__,
cyttsp4_tch_abs_string[abs],
touch->abs[abs], touch->abs[abs]);
}
if (md->pdata->flags & CY_FLAG_FLIP) {
swap(touch->abs[CY_TCH_X], touch->abs[CY_TCH_Y]);
flipped = true;
} else
flipped = false;
if (md->pdata->flags & CY_FLAG_INV_X) {
if (flipped)
touch->abs[CY_TCH_X] = md->si->si_ofs.max_y -
touch->abs[CY_TCH_X];
else
touch->abs[CY_TCH_X] = md->si->si_ofs.max_x -
touch->abs[CY_TCH_X];
}
if (md->pdata->flags & CY_FLAG_INV_Y) {
if (flipped)
touch->abs[CY_TCH_Y] = md->si->si_ofs.max_x -
touch->abs[CY_TCH_Y];
else
touch->abs[CY_TCH_Y] = md->si->si_ofs.max_y -
touch->abs[CY_TCH_Y];
}
dev_vdbg(dev, "%s: flip=%s inv-x=%s inv-y=%s x=%04X(%d) y=%04X(%d)\n",
__func__, flipped ? "true" : "false",
md->pdata->flags & CY_FLAG_INV_X ? "true" : "false",
md->pdata->flags & CY_FLAG_INV_Y ? "true" : "false",
touch->abs[CY_TCH_X], touch->abs[CY_TCH_X],
touch->abs[CY_TCH_Y], touch->abs[CY_TCH_Y]);
}
static void cyttsp4_final_sync(struct input_dev *input, int max_slots, int *ids)
{
int t;
for (t = 0; t < max_slots; t++) {
if (ids[t])
continue;
input_mt_slot(input, t);
input_mt_report_slot_state(input, MT_TOOL_FINGER, false);
}
input_sync(input);
}
static void cyttsp4_get_mt_touches(struct cyttsp4_mt_data *md, int num_cur_tch)
{
struct device *dev = &md->input->dev;
struct cyttsp4_sysinfo *si = md->si;
struct cyttsp4_touch tch;
int sig;
int i, j, t = 0;
int ids[max(CY_TMA1036_MAX_TCH, CY_TMA4XX_MAX_TCH)];
memset(ids, 0, si->si_ofs.tch_abs[CY_TCH_T].max * sizeof(int));
for (i = 0; i < num_cur_tch; i++) {
cyttsp4_get_touch(md, &tch, si->xy_data +
(i * si->si_ofs.tch_rec_size));
if ((tch.abs[CY_TCH_T] < md->pdata->frmwrk->abs
[(CY_ABS_ID_OST * CY_NUM_ABS_SET) + CY_MIN_OST]) ||
(tch.abs[CY_TCH_T] > md->pdata->frmwrk->abs
[(CY_ABS_ID_OST * CY_NUM_ABS_SET) + CY_MAX_OST])) {
dev_err(dev, "%s: tch=%d -> bad trk_id=%d max_id=%d\n",
__func__, i, tch.abs[CY_TCH_T],
md->pdata->frmwrk->abs[(CY_ABS_ID_OST *
CY_NUM_ABS_SET) + CY_MAX_OST]);
continue;
}
/* use 0 based track id's */
sig = md->pdata->frmwrk->abs
[(CY_ABS_ID_OST * CY_NUM_ABS_SET) + 0];
if (sig != CY_IGNORE_VALUE) {
t = tch.abs[CY_TCH_T] - md->pdata->frmwrk->abs
[(CY_ABS_ID_OST * CY_NUM_ABS_SET) + CY_MIN_OST];
if (tch.abs[CY_TCH_E] == CY_EV_LIFTOFF) {
dev_dbg(dev, "%s: t=%d e=%d lift-off\n",
__func__, t, tch.abs[CY_TCH_E]);
goto cyttsp4_get_mt_touches_pr_tch;
}
input_mt_slot(md->input, t);
input_mt_report_slot_state(md->input, MT_TOOL_FINGER,
true);
ids[t] = true;
}
/* all devices: position and pressure fields */
for (j = 0; j <= CY_ABS_W_OST; j++) {
sig = md->pdata->frmwrk->abs[((CY_ABS_X_OST + j) *
CY_NUM_ABS_SET) + 0];
if (sig != CY_IGNORE_VALUE)
input_report_abs(md->input, sig,
tch.abs[CY_TCH_X + j]);
}
if (si->si_ofs.tch_rec_size > CY_TMA1036_TCH_REC_SIZE) {
/*
* TMA400 size and orientation fields:
* if pressure is non-zero and major touch
* signal is zero, then set major and minor touch
* signals to minimum non-zero value
*/
if (tch.abs[CY_TCH_P] > 0 && tch.abs[CY_TCH_MAJ] == 0)
tch.abs[CY_TCH_MAJ] = tch.abs[CY_TCH_MIN] = 1;
/* Get the extended touch fields */
for (j = 0; j < CY_NUM_EXT_TCH_FIELDS; j++) {
sig = md->pdata->frmwrk->abs
[((CY_ABS_MAJ_OST + j) *
CY_NUM_ABS_SET) + 0];
if (sig != CY_IGNORE_VALUE)
input_report_abs(md->input, sig,
tch.abs[CY_TCH_MAJ + j]);
}
}
cyttsp4_get_mt_touches_pr_tch:
if (si->si_ofs.tch_rec_size > CY_TMA1036_TCH_REC_SIZE)
dev_dbg(dev,
"%s: t=%d x=%d y=%d z=%d M=%d m=%d o=%d e=%d\n",
__func__, t,
tch.abs[CY_TCH_X],
tch.abs[CY_TCH_Y],
tch.abs[CY_TCH_P],
tch.abs[CY_TCH_MAJ],
tch.abs[CY_TCH_MIN],
tch.abs[CY_TCH_OR],
tch.abs[CY_TCH_E]);
else
dev_dbg(dev,
"%s: t=%d x=%d y=%d z=%d e=%d\n", __func__,
t,
tch.abs[CY_TCH_X],
tch.abs[CY_TCH_Y],
tch.abs[CY_TCH_P],
tch.abs[CY_TCH_E]);
}
cyttsp4_final_sync(md->input, si->si_ofs.tch_abs[CY_TCH_T].max, ids);
md->num_prv_tch = num_cur_tch;
return;
}
/* read xy_data for all current touches */
static int cyttsp4_xy_worker(struct cyttsp4 *cd)
{
struct cyttsp4_mt_data *md = &cd->md;
struct device *dev = &md->input->dev;
struct cyttsp4_sysinfo *si = md->si;
u8 num_cur_tch;
u8 hst_mode;
u8 rep_len;
u8 rep_stat;
u8 tt_stat;
int rc = 0;
/*
* Get event data from cyttsp4 device.
* The event data includes all data
* for all active touches.
* Event data also includes button data
*/
/*
* Use 2 reads:
* 1st read to get mode + button bytes + touch count (core)
* 2nd read (optional) to get touch 1 - touch n data
*/
hst_mode = si->xy_mode[CY_REG_BASE];
rep_len = si->xy_mode[si->si_ofs.rep_ofs];
rep_stat = si->xy_mode[si->si_ofs.rep_ofs + 1];
tt_stat = si->xy_mode[si->si_ofs.tt_stat_ofs];
dev_vdbg(dev, "%s: %s%02X %s%d %s%02X %s%02X\n", __func__,
"hst_mode=", hst_mode, "rep_len=", rep_len,
"rep_stat=", rep_stat, "tt_stat=", tt_stat);
num_cur_tch = GET_NUM_TOUCHES(tt_stat);
dev_vdbg(dev, "%s: num_cur_tch=%d\n", __func__, num_cur_tch);
if (rep_len == 0 && num_cur_tch > 0) {
dev_err(dev, "%s: report length error rep_len=%d num_tch=%d\n",
__func__, rep_len, num_cur_tch);
goto cyttsp4_xy_worker_exit;
}
/* read touches */
if (num_cur_tch > 0) {
rc = cyttsp4_adap_read(cd, si->si_ofs.tt_stat_ofs + 1,
num_cur_tch * si->si_ofs.tch_rec_size,
si->xy_data);
if (rc < 0) {
dev_err(dev, "%s: read fail on touch regs r=%d\n",
__func__, rc);
goto cyttsp4_xy_worker_exit;
}
}
/* print xy data */
cyttsp4_pr_buf(dev, cd->pr_buf, si->xy_data, num_cur_tch *
si->si_ofs.tch_rec_size, "xy_data");
/* check any error conditions */
if (IS_BAD_PKT(rep_stat)) {
dev_dbg(dev, "%s: Invalid buffer detected\n", __func__);
rc = 0;
goto cyttsp4_xy_worker_exit;
}
if (IS_LARGE_AREA(tt_stat))
dev_dbg(dev, "%s: Large area detected\n", __func__);
if (num_cur_tch > si->si_ofs.max_tchs) {
dev_err(dev, "%s: too many tch; set to max tch (n=%d c=%zd)\n",
__func__, num_cur_tch, si->si_ofs.max_tchs);
num_cur_tch = si->si_ofs.max_tchs;
}
/* extract xy_data for all currently reported touches */
dev_vdbg(dev, "%s: extract data num_cur_tch=%d\n", __func__,
num_cur_tch);
if (num_cur_tch)
cyttsp4_get_mt_touches(md, num_cur_tch);
else
cyttsp4_lift_all(md);
rc = 0;
cyttsp4_xy_worker_exit:
return rc;
}
static int cyttsp4_mt_attention(struct cyttsp4 *cd)
{
struct device *dev = cd->dev;
struct cyttsp4_mt_data *md = &cd->md;
int rc = 0;
if (!md->si)
return 0;
mutex_lock(&md->report_lock);
if (!md->is_suspended) {
/* core handles handshake */
rc = cyttsp4_xy_worker(cd);
} else {
dev_vdbg(dev, "%s: Ignoring report while suspended\n",
__func__);
}
mutex_unlock(&md->report_lock);
if (rc < 0)
dev_err(dev, "%s: xy_worker error r=%d\n", __func__, rc);
return rc;
}
static irqreturn_t cyttsp4_irq(int irq, void *handle)
{
struct cyttsp4 *cd = handle;
struct device *dev = cd->dev;
enum cyttsp4_mode cur_mode;
u8 cmd_ofs = cd->sysinfo.si_ofs.cmd_ofs;
u8 mode[3];
int rc;
/*
* Check whether this IRQ should be ignored (external)
* This should be the very first thing to check since
* ignore_irq may be set for a very short period of time
*/
if (atomic_read(&cd->ignore_irq)) {
dev_vdbg(dev, "%s: Ignoring IRQ\n", __func__);
return IRQ_HANDLED;
}
dev_dbg(dev, "%s int:0x%x\n", __func__, cd->int_status);
mutex_lock(&cd->system_lock);
/* Just to debug */
if (cd->sleep_state == SS_SLEEP_ON || cd->sleep_state == SS_SLEEPING)
dev_vdbg(dev, "%s: Received IRQ while in sleep\n", __func__);
rc = cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(mode), mode);
if (rc) {
dev_err(cd->dev, "%s: Fail read adapter r=%d\n", __func__, rc);
goto cyttsp4_irq_exit;
}
dev_vdbg(dev, "%s mode[0-2]:0x%X 0x%X 0x%X\n", __func__,
mode[0], mode[1], mode[2]);
if (IS_BOOTLOADER(mode[0], mode[1])) {
cur_mode = CY_MODE_BOOTLOADER;
dev_vdbg(dev, "%s: bl running\n", __func__);
if (cd->mode == CY_MODE_BOOTLOADER) {
/* Signal bootloader heartbeat heard */
wake_up(&cd->wait_q);
goto cyttsp4_irq_exit;
}
/* switch to bootloader */
dev_dbg(dev, "%s: restart switch to bl m=%d -> m=%d\n",
__func__, cd->mode, cur_mode);
/* catch operation->bl glitch */
if (cd->mode != CY_MODE_UNKNOWN) {
/* Incase startup_state do not let startup_() */
cd->mode = CY_MODE_UNKNOWN;
cyttsp4_queue_startup_(cd);
goto cyttsp4_irq_exit;
}
/*
* do not wake thread on this switch since
* it is possible to get an early heartbeat
* prior to performing the reset
*/
cd->mode = cur_mode;
goto cyttsp4_irq_exit;
}
switch (mode[0] & CY_HST_MODE) {
case CY_HST_OPERATE:
cur_mode = CY_MODE_OPERATIONAL;
dev_vdbg(dev, "%s: operational\n", __func__);
break;
case CY_HST_CAT:
cur_mode = CY_MODE_CAT;
dev_vdbg(dev, "%s: CaT\n", __func__);
break;
case CY_HST_SYSINFO:
cur_mode = CY_MODE_SYSINFO;
dev_vdbg(dev, "%s: sysinfo\n", __func__);
break;
default:
cur_mode = CY_MODE_UNKNOWN;
dev_err(dev, "%s: unknown HST mode 0x%02X\n", __func__,
mode[0]);
break;
}
/* Check whether this IRQ should be ignored (internal) */
if (cd->int_status & CY_INT_IGNORE) {
dev_vdbg(dev, "%s: Ignoring IRQ\n", __func__);
goto cyttsp4_irq_exit;
}
/* Check for wake up interrupt */
if (cd->int_status & CY_INT_AWAKE) {
cd->int_status &= ~CY_INT_AWAKE;
wake_up(&cd->wait_q);
dev_vdbg(dev, "%s: Received wake up interrupt\n", __func__);
goto cyttsp4_irq_handshake;
}
/* Expecting mode change interrupt */
if ((cd->int_status & CY_INT_MODE_CHANGE)
&& (mode[0] & CY_HST_MODE_CHANGE) == 0) {
cd->int_status &= ~CY_INT_MODE_CHANGE;
dev_dbg(dev, "%s: finish mode switch m=%d -> m=%d\n",
__func__, cd->mode, cur_mode);
cd->mode = cur_mode;
wake_up(&cd->wait_q);
goto cyttsp4_irq_handshake;
}
/* compare current core mode to current device mode */
dev_vdbg(dev, "%s: cd->mode=%d cur_mode=%d\n",
__func__, cd->mode, cur_mode);
if ((mode[0] & CY_HST_MODE_CHANGE) == 0 && cd->mode != cur_mode) {
/* Unexpected mode change occurred */
dev_err(dev, "%s %d->%d 0x%x\n", __func__, cd->mode,
cur_mode, cd->int_status);
dev_dbg(dev, "%s: Unexpected mode change, startup\n",
__func__);
cyttsp4_queue_startup_(cd);
goto cyttsp4_irq_exit;
}
/* Expecting command complete interrupt */
dev_vdbg(dev, "%s: command byte:0x%x\n", __func__, mode[cmd_ofs]);
if ((cd->int_status & CY_INT_EXEC_CMD)
&& mode[cmd_ofs] & CY_CMD_COMPLETE) {
cd->int_status &= ~CY_INT_EXEC_CMD;
dev_vdbg(dev, "%s: Received command complete interrupt\n",
__func__);
wake_up(&cd->wait_q);
/*
* It is possible to receive a single interrupt for
* command complete and touch/button status report.
* Continue processing for a possible status report.
*/
}
/* This should be status report, read status regs */
if (cd->mode == CY_MODE_OPERATIONAL) {
dev_vdbg(dev, "%s: Read status registers\n", __func__);
rc = cyttsp4_load_status_regs(cd);
if (rc < 0)
dev_err(dev, "%s: fail read mode regs r=%d\n",
__func__, rc);
}
cyttsp4_mt_attention(cd);
cyttsp4_irq_handshake:
/* handshake the event */
dev_vdbg(dev, "%s: Handshake mode=0x%02X r=%d\n",
__func__, mode[0], rc);
rc = cyttsp4_handshake(cd, mode[0]);
if (rc < 0)
dev_err(dev, "%s: Fail handshake mode=0x%02X r=%d\n",
__func__, mode[0], rc);
/*
* a non-zero udelay period is required for using
* IRQF_TRIGGER_LOW in order to delay until the
* device completes isr deassert
*/
udelay(cd->cpdata->level_irq_udelay);
cyttsp4_irq_exit:
mutex_unlock(&cd->system_lock);
return IRQ_HANDLED;
}
static void cyttsp4_start_wd_timer(struct cyttsp4 *cd)
{
if (!CY_WATCHDOG_TIMEOUT)
return;
mod_timer(&cd->watchdog_timer, jiffies +
msecs_to_jiffies(CY_WATCHDOG_TIMEOUT));
}
static void cyttsp4_stop_wd_timer(struct cyttsp4 *cd)
{
if (!CY_WATCHDOG_TIMEOUT)
return;
/*
* Ensure we wait until the watchdog timer
* running on a different CPU finishes
*/
del_timer_sync(&cd->watchdog_timer);
cancel_work_sync(&cd->watchdog_work);
del_timer_sync(&cd->watchdog_timer);
}
static void cyttsp4_watchdog_timer(struct timer_list *t)
{
struct cyttsp4 *cd = from_timer(cd, t, watchdog_timer);
dev_vdbg(cd->dev, "%s: Watchdog timer triggered\n", __func__);
schedule_work(&cd->watchdog_work);
return;
}
static int cyttsp4_request_exclusive(struct cyttsp4 *cd, void *ownptr,
int timeout_ms)
{
int t = msecs_to_jiffies(timeout_ms);
bool with_timeout = (timeout_ms != 0);
mutex_lock(&cd->system_lock);
if (!cd->exclusive_dev && cd->exclusive_waits == 0) {
cd->exclusive_dev = ownptr;
goto exit;
}
cd->exclusive_waits++;
wait:
mutex_unlock(&cd->system_lock);
if (with_timeout) {
t = wait_event_timeout(cd->wait_q, !cd->exclusive_dev, t);
if (IS_TMO(t)) {
dev_err(cd->dev, "%s: tmo waiting exclusive access\n",
__func__);
mutex_lock(&cd->system_lock);
cd->exclusive_waits--;
mutex_unlock(&cd->system_lock);
return -ETIME;
}
} else {
wait_event(cd->wait_q, !cd->exclusive_dev);
}
mutex_lock(&cd->system_lock);
if (cd->exclusive_dev)
goto wait;
cd->exclusive_dev = ownptr;
cd->exclusive_waits--;
exit:
mutex_unlock(&cd->system_lock);
return 0;
}
/*
* returns error if was not owned
*/
static int cyttsp4_release_exclusive(struct cyttsp4 *cd, void *ownptr)
{
mutex_lock(&cd->system_lock);
if (cd->exclusive_dev != ownptr) {
mutex_unlock(&cd->system_lock);
return -EINVAL;
}
dev_vdbg(cd->dev, "%s: exclusive_dev %p freed\n",
__func__, cd->exclusive_dev);
cd->exclusive_dev = NULL;
wake_up(&cd->wait_q);
mutex_unlock(&cd->system_lock);
return 0;
}
static int cyttsp4_wait_bl_heartbeat(struct cyttsp4 *cd)
{
long t;
int rc = 0;
/* wait heartbeat */
dev_vdbg(cd->dev, "%s: wait heartbeat...\n", __func__);
t = wait_event_timeout(cd->wait_q, cd->mode == CY_MODE_BOOTLOADER,
msecs_to_jiffies(CY_CORE_RESET_AND_WAIT_TIMEOUT));
if (IS_TMO(t)) {
dev_err(cd->dev, "%s: tmo waiting bl heartbeat cd->mode=%d\n",
__func__, cd->mode);
rc = -ETIME;
}
return rc;
}
static int cyttsp4_wait_sysinfo_mode(struct cyttsp4 *cd)
{
long t;
dev_vdbg(cd->dev, "%s: wait sysinfo...\n", __func__);
t = wait_event_timeout(cd->wait_q, cd->mode == CY_MODE_SYSINFO,
msecs_to_jiffies(CY_CORE_MODE_CHANGE_TIMEOUT));
if (IS_TMO(t)) {
dev_err(cd->dev, "%s: tmo waiting exit bl cd->mode=%d\n",
__func__, cd->mode);
mutex_lock(&cd->system_lock);
cd->int_status &= ~CY_INT_MODE_CHANGE;
mutex_unlock(&cd->system_lock);
return -ETIME;
}
return 0;
}
static int cyttsp4_reset_and_wait(struct cyttsp4 *cd)
{
int rc;
/* reset hardware */
mutex_lock(&cd->system_lock);
dev_dbg(cd->dev, "%s: reset hw...\n", __func__);
rc = cyttsp4_hw_reset(cd);
cd->mode = CY_MODE_UNKNOWN;
mutex_unlock(&cd->system_lock);
if (rc < 0) {
dev_err(cd->dev, "%s:Fail hw reset r=%d\n", __func__, rc);
return rc;
}
return cyttsp4_wait_bl_heartbeat(cd);
}
/*
* returns err if refused or timeout; block until mode change complete
* bit is set (mode change interrupt)
*/
static int cyttsp4_set_mode(struct cyttsp4 *cd, int new_mode)
{
u8 new_dev_mode;
u8 mode;
long t;
int rc;
switch (new_mode) {
case CY_MODE_OPERATIONAL:
new_dev_mode = CY_HST_OPERATE;
break;
case CY_MODE_SYSINFO:
new_dev_mode = CY_HST_SYSINFO;
break;
case CY_MODE_CAT:
new_dev_mode = CY_HST_CAT;
break;
default:
dev_err(cd->dev, "%s: invalid mode: %02X(%d)\n",
__func__, new_mode, new_mode);
return -EINVAL;
}
/* change mode */
dev_dbg(cd->dev, "%s: %s=%p new_dev_mode=%02X new_mode=%d\n",
__func__, "have exclusive", cd->exclusive_dev,
new_dev_mode, new_mode);
mutex_lock(&cd->system_lock);
rc = cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(mode), &mode);
if (rc < 0) {
mutex_unlock(&cd->system_lock);
dev_err(cd->dev, "%s: Fail read mode r=%d\n",
__func__, rc);
goto exit;
}
/* Clear device mode bits and set to new mode */
mode &= ~CY_HST_MODE;
mode |= new_dev_mode | CY_HST_MODE_CHANGE;
cd->int_status |= CY_INT_MODE_CHANGE;
rc = cyttsp4_adap_write(cd, CY_REG_BASE, sizeof(mode), &mode);
mutex_unlock(&cd->system_lock);
if (rc < 0) {
dev_err(cd->dev, "%s: Fail write mode change r=%d\n",
__func__, rc);
goto exit;
}
/* wait for mode change done interrupt */
t = wait_event_timeout(cd->wait_q,
(cd->int_status & CY_INT_MODE_CHANGE) == 0,
msecs_to_jiffies(CY_CORE_MODE_CHANGE_TIMEOUT));
dev_dbg(cd->dev, "%s: back from wait t=%ld cd->mode=%d\n",
__func__, t, cd->mode);
if (IS_TMO(t)) {
dev_err(cd->dev, "%s: %s\n", __func__,
"tmo waiting mode change");
mutex_lock(&cd->system_lock);
cd->int_status &= ~CY_INT_MODE_CHANGE;
mutex_unlock(&cd->system_lock);
rc = -EINVAL;
}
exit:
return rc;
}
static void cyttsp4_watchdog_work(struct work_struct *work)
{
struct cyttsp4 *cd =
container_of(work, struct cyttsp4, watchdog_work);
u8 *mode;
int retval;
mutex_lock(&cd->system_lock);
retval = cyttsp4_load_status_regs(cd);
if (retval < 0) {
dev_err(cd->dev,
"%s: failed to access device in watchdog timer r=%d\n",
__func__, retval);
cyttsp4_queue_startup_(cd);
goto cyttsp4_timer_watchdog_exit_error;
}
mode = &cd->sysinfo.xy_mode[CY_REG_BASE];
if (IS_BOOTLOADER(mode[0], mode[1])) {
dev_err(cd->dev,
"%s: device found in bootloader mode when operational mode\n",
__func__);
cyttsp4_queue_startup_(cd);
goto cyttsp4_timer_watchdog_exit_error;
}
cyttsp4_start_wd_timer(cd);
cyttsp4_timer_watchdog_exit_error:
mutex_unlock(&cd->system_lock);
return;
}
static int cyttsp4_core_sleep_(struct cyttsp4 *cd)
{
enum cyttsp4_sleep_state ss = SS_SLEEP_ON;
enum cyttsp4_int_state int_status = CY_INT_IGNORE;
int rc = 0;
u8 mode[2];
/* Already in sleep mode? */
mutex_lock(&cd->system_lock);
if (cd->sleep_state == SS_SLEEP_ON) {
mutex_unlock(&cd->system_lock);
return 0;
}
cd->sleep_state = SS_SLEEPING;
mutex_unlock(&cd->system_lock);
cyttsp4_stop_wd_timer(cd);
/* Wait until currently running IRQ handler exits and disable IRQ */
disable_irq(cd->irq);
dev_vdbg(cd->dev, "%s: write DEEP SLEEP...\n", __func__);
mutex_lock(&cd->system_lock);
rc = cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(mode), &mode);
if (rc) {
mutex_unlock(&cd->system_lock);
dev_err(cd->dev, "%s: Fail read adapter r=%d\n", __func__, rc);
goto error;
}
if (IS_BOOTLOADER(mode[0], mode[1])) {
mutex_unlock(&cd->system_lock);
dev_err(cd->dev, "%s: Device in BOOTLOADER mode.\n", __func__);
rc = -EINVAL;
goto error;
}
mode[0] |= CY_HST_SLEEP;
rc = cyttsp4_adap_write(cd, CY_REG_BASE, sizeof(mode[0]), &mode[0]);
mutex_unlock(&cd->system_lock);
if (rc) {
dev_err(cd->dev, "%s: Fail write adapter r=%d\n", __func__, rc);
goto error;
}
dev_vdbg(cd->dev, "%s: write DEEP SLEEP succeeded\n", __func__);
if (cd->cpdata->power) {
dev_dbg(cd->dev, "%s: Power down HW\n", __func__);
rc = cd->cpdata->power(cd->cpdata, 0, cd->dev, &cd->ignore_irq);
} else {
dev_dbg(cd->dev, "%s: No power function\n", __func__);
rc = 0;
}
if (rc < 0) {
dev_err(cd->dev, "%s: HW Power down fails r=%d\n",
__func__, rc);
goto error;
}
/* Give time to FW to sleep */
msleep(50);
goto exit;
error:
ss = SS_SLEEP_OFF;
int_status = CY_INT_NONE;
cyttsp4_start_wd_timer(cd);
exit:
mutex_lock(&cd->system_lock);
cd->sleep_state = ss;
cd->int_status |= int_status;
mutex_unlock(&cd->system_lock);
enable_irq(cd->irq);
return rc;
}
static int cyttsp4_startup_(struct cyttsp4 *cd)
{
int retry = CY_CORE_STARTUP_RETRY_COUNT;
int rc;
cyttsp4_stop_wd_timer(cd);
reset:
if (retry != CY_CORE_STARTUP_RETRY_COUNT)
dev_dbg(cd->dev, "%s: Retry %d\n", __func__,
CY_CORE_STARTUP_RETRY_COUNT - retry);
/* reset hardware and wait for heartbeat */
rc = cyttsp4_reset_and_wait(cd);
if (rc < 0) {
dev_err(cd->dev, "%s: Error on h/w reset r=%d\n", __func__, rc);
if (retry--)
goto reset;
goto exit;
}
/* exit bl into sysinfo mode */
dev_vdbg(cd->dev, "%s: write exit ldr...\n", __func__);
mutex_lock(&cd->system_lock);
cd->int_status &= ~CY_INT_IGNORE;
cd->int_status |= CY_INT_MODE_CHANGE;
rc = cyttsp4_adap_write(cd, CY_REG_BASE, sizeof(ldr_exit),
(u8 *)ldr_exit);
mutex_unlock(&cd->system_lock);
if (rc < 0) {
dev_err(cd->dev, "%s: Fail write r=%d\n", __func__, rc);
if (retry--)
goto reset;
goto exit;
}
rc = cyttsp4_wait_sysinfo_mode(cd);
if (rc < 0) {
u8 buf[sizeof(ldr_err_app)];
int rc1;
/* Check for invalid/corrupted touch application */
rc1 = cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(ldr_err_app),
buf);
if (rc1) {
dev_err(cd->dev, "%s: Fail read r=%d\n", __func__, rc1);
} else if (!memcmp(buf, ldr_err_app, sizeof(ldr_err_app))) {
dev_err(cd->dev, "%s: Error launching touch application\n",
__func__);
mutex_lock(&cd->system_lock);
cd->invalid_touch_app = true;
mutex_unlock(&cd->system_lock);
goto exit_no_wd;
}
if (retry--)
goto reset;
goto exit;
}
mutex_lock(&cd->system_lock);
cd->invalid_touch_app = false;
mutex_unlock(&cd->system_lock);
/* read sysinfo data */
dev_vdbg(cd->dev, "%s: get sysinfo regs..\n", __func__);
rc = cyttsp4_get_sysinfo_regs(cd);
if (rc < 0) {
dev_err(cd->dev, "%s: failed to get sysinfo regs rc=%d\n",
__func__, rc);
if (retry--)
goto reset;
goto exit;
}
rc = cyttsp4_set_mode(cd, CY_MODE_OPERATIONAL);
if (rc < 0) {
dev_err(cd->dev, "%s: failed to set mode to operational rc=%d\n",
__func__, rc);
if (retry--)
goto reset;
goto exit;
}
cyttsp4_lift_all(&cd->md);
/* restore to sleep if was suspended */
mutex_lock(&cd->system_lock);
if (cd->sleep_state == SS_SLEEP_ON) {
cd->sleep_state = SS_SLEEP_OFF;
mutex_unlock(&cd->system_lock);
cyttsp4_core_sleep_(cd);
goto exit_no_wd;
}
mutex_unlock(&cd->system_lock);
exit:
cyttsp4_start_wd_timer(cd);
exit_no_wd:
return rc;
}
static int cyttsp4_startup(struct cyttsp4 *cd)
{
int rc;
mutex_lock(&cd->system_lock);
cd->startup_state = STARTUP_RUNNING;
mutex_unlock(&cd->system_lock);
rc = cyttsp4_request_exclusive(cd, cd->dev,
CY_CORE_REQUEST_EXCLUSIVE_TIMEOUT);
if (rc < 0) {
dev_err(cd->dev, "%s: fail get exclusive ex=%p own=%p\n",
__func__, cd->exclusive_dev, cd->dev);
goto exit;
}
rc = cyttsp4_startup_(cd);
if (cyttsp4_release_exclusive(cd, cd->dev) < 0)
/* Don't return fail code, mode is already changed. */
dev_err(cd->dev, "%s: fail to release exclusive\n", __func__);
else
dev_vdbg(cd->dev, "%s: pass release exclusive\n", __func__);
exit:
mutex_lock(&cd->system_lock);
cd->startup_state = STARTUP_NONE;
mutex_unlock(&cd->system_lock);
/* Wake the waiters for end of startup */
wake_up(&cd->wait_q);
return rc;
}
static void cyttsp4_startup_work_function(struct work_struct *work)
{
struct cyttsp4 *cd = container_of(work, struct cyttsp4, startup_work);
int rc;
rc = cyttsp4_startup(cd);
if (rc < 0)
dev_err(cd->dev, "%s: Fail queued startup r=%d\n",
__func__, rc);
}
static void cyttsp4_free_si_ptrs(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
if (!si)
return;
kfree(si->si_ptrs.cydata);
kfree(si->si_ptrs.test);
kfree(si->si_ptrs.pcfg);
kfree(si->si_ptrs.opcfg);
kfree(si->si_ptrs.ddata);
kfree(si->si_ptrs.mdata);
kfree(si->btn);
kfree(si->xy_mode);
kfree(si->xy_data);
kfree(si->btn_rec_data);
}
#ifdef CONFIG_PM
static int cyttsp4_core_sleep(struct cyttsp4 *cd)
{
int rc;
rc = cyttsp4_request_exclusive(cd, cd->dev,
CY_CORE_SLEEP_REQUEST_EXCLUSIVE_TIMEOUT);
if (rc < 0) {
dev_err(cd->dev, "%s: fail get exclusive ex=%p own=%p\n",
__func__, cd->exclusive_dev, cd->dev);
return 0;
}
rc = cyttsp4_core_sleep_(cd);
if (cyttsp4_release_exclusive(cd, cd->dev) < 0)
dev_err(cd->dev, "%s: fail to release exclusive\n", __func__);
else
dev_vdbg(cd->dev, "%s: pass release exclusive\n", __func__);
return rc;
}
static int cyttsp4_core_wake_(struct cyttsp4 *cd)
{
struct device *dev = cd->dev;
int rc;
u8 mode;
int t;
/* Already woken? */
mutex_lock(&cd->system_lock);
if (cd->sleep_state == SS_SLEEP_OFF) {
mutex_unlock(&cd->system_lock);
return 0;
}
cd->int_status &= ~CY_INT_IGNORE;
cd->int_status |= CY_INT_AWAKE;
cd->sleep_state = SS_WAKING;
if (cd->cpdata->power) {
dev_dbg(dev, "%s: Power up HW\n", __func__);
rc = cd->cpdata->power(cd->cpdata, 1, dev, &cd->ignore_irq);
} else {
dev_dbg(dev, "%s: No power function\n", __func__);
rc = -ENOSYS;
}
if (rc < 0) {
dev_err(dev, "%s: HW Power up fails r=%d\n",
__func__, rc);
/* Initiate a read transaction to wake up */
cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(mode), &mode);
} else
dev_vdbg(cd->dev, "%s: HW power up succeeds\n",
__func__);
mutex_unlock(&cd->system_lock);
t = wait_event_timeout(cd->wait_q,
(cd->int_status & CY_INT_AWAKE) == 0,
msecs_to_jiffies(CY_CORE_WAKEUP_TIMEOUT));
if (IS_TMO(t)) {
dev_err(dev, "%s: TMO waiting for wakeup\n", __func__);
mutex_lock(&cd->system_lock);
cd->int_status &= ~CY_INT_AWAKE;
/* Try starting up */
cyttsp4_queue_startup_(cd);
mutex_unlock(&cd->system_lock);
}
mutex_lock(&cd->system_lock);
cd->sleep_state = SS_SLEEP_OFF;
mutex_unlock(&cd->system_lock);
cyttsp4_start_wd_timer(cd);
return 0;
}
static int cyttsp4_core_wake(struct cyttsp4 *cd)
{
int rc;
rc = cyttsp4_request_exclusive(cd, cd->dev,
CY_CORE_REQUEST_EXCLUSIVE_TIMEOUT);
if (rc < 0) {
dev_err(cd->dev, "%s: fail get exclusive ex=%p own=%p\n",
__func__, cd->exclusive_dev, cd->dev);
return 0;
}
rc = cyttsp4_core_wake_(cd);
if (cyttsp4_release_exclusive(cd, cd->dev) < 0)
dev_err(cd->dev, "%s: fail to release exclusive\n", __func__);
else
dev_vdbg(cd->dev, "%s: pass release exclusive\n", __func__);
return rc;
}
static int cyttsp4_core_suspend(struct device *dev)
{
struct cyttsp4 *cd = dev_get_drvdata(dev);
struct cyttsp4_mt_data *md = &cd->md;
int rc;
md->is_suspended = true;
rc = cyttsp4_core_sleep(cd);
if (rc < 0) {
dev_err(dev, "%s: Error on sleep\n", __func__);
return -EAGAIN;
}
return 0;
}
static int cyttsp4_core_resume(struct device *dev)
{
struct cyttsp4 *cd = dev_get_drvdata(dev);
struct cyttsp4_mt_data *md = &cd->md;
int rc;
md->is_suspended = false;
rc = cyttsp4_core_wake(cd);
if (rc < 0) {
dev_err(dev, "%s: Error on wake\n", __func__);
return -EAGAIN;
}
return 0;
}
#endif
const struct dev_pm_ops cyttsp4_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(cyttsp4_core_suspend, cyttsp4_core_resume)
SET_RUNTIME_PM_OPS(cyttsp4_core_suspend, cyttsp4_core_resume, NULL)
};
EXPORT_SYMBOL_GPL(cyttsp4_pm_ops);
static int cyttsp4_mt_open(struct input_dev *input)
{
pm_runtime_get(input->dev.parent);
return 0;
}
static void cyttsp4_mt_close(struct input_dev *input)
{
struct cyttsp4_mt_data *md = input_get_drvdata(input);
mutex_lock(&md->report_lock);
if (!md->is_suspended)
pm_runtime_put(input->dev.parent);
mutex_unlock(&md->report_lock);
}
static int cyttsp4_setup_input_device(struct cyttsp4 *cd)
{
struct device *dev = cd->dev;
struct cyttsp4_mt_data *md = &cd->md;
int signal = CY_IGNORE_VALUE;
int max_x, max_y, max_p, min, max;
int max_x_tmp, max_y_tmp;
int i;
int rc;
dev_vdbg(dev, "%s: Initialize event signals\n", __func__);
__set_bit(EV_ABS, md->input->evbit);
__set_bit(EV_REL, md->input->evbit);
__set_bit(EV_KEY, md->input->evbit);
max_x_tmp = md->si->si_ofs.max_x;
max_y_tmp = md->si->si_ofs.max_y;
/* get maximum values from the sysinfo data */
if (md->pdata->flags & CY_FLAG_FLIP) {
max_x = max_y_tmp - 1;
max_y = max_x_tmp - 1;
} else {
max_x = max_x_tmp - 1;
max_y = max_y_tmp - 1;
}
max_p = md->si->si_ofs.max_p;
/* set event signal capabilities */
for (i = 0; i < (md->pdata->frmwrk->size / CY_NUM_ABS_SET); i++) {
signal = md->pdata->frmwrk->abs
[(i * CY_NUM_ABS_SET) + CY_SIGNAL_OST];
if (signal != CY_IGNORE_VALUE) {
__set_bit(signal, md->input->absbit);
min = md->pdata->frmwrk->abs
[(i * CY_NUM_ABS_SET) + CY_MIN_OST];
max = md->pdata->frmwrk->abs
[(i * CY_NUM_ABS_SET) + CY_MAX_OST];
if (i == CY_ABS_ID_OST) {
/* shift track ids down to start at 0 */
max = max - min;
min = min - min;
} else if (i == CY_ABS_X_OST)
max = max_x;
else if (i == CY_ABS_Y_OST)
max = max_y;
else if (i == CY_ABS_P_OST)
max = max_p;
input_set_abs_params(md->input, signal, min, max,
md->pdata->frmwrk->abs
[(i * CY_NUM_ABS_SET) + CY_FUZZ_OST],
md->pdata->frmwrk->abs
[(i * CY_NUM_ABS_SET) + CY_FLAT_OST]);
dev_dbg(dev, "%s: register signal=%02X min=%d max=%d\n",
__func__, signal, min, max);
if ((i == CY_ABS_ID_OST) &&
(md->si->si_ofs.tch_rec_size <
CY_TMA4XX_TCH_REC_SIZE))
break;
}
}
input_mt_init_slots(md->input, md->si->si_ofs.tch_abs[CY_TCH_T].max,
INPUT_MT_DIRECT);
rc = input_register_device(md->input);
if (rc < 0)
dev_err(dev, "%s: Error, failed register input device r=%d\n",
__func__, rc);
return rc;
}
static int cyttsp4_mt_probe(struct cyttsp4 *cd)
{
struct device *dev = cd->dev;
struct cyttsp4_mt_data *md = &cd->md;
struct cyttsp4_mt_platform_data *pdata = cd->pdata->mt_pdata;
int rc = 0;
mutex_init(&md->report_lock);
md->pdata = pdata;
/* Create the input device and register it. */
dev_vdbg(dev, "%s: Create the input device and register it\n",
__func__);
md->input = input_allocate_device();
if (md->input == NULL) {
dev_err(dev, "%s: Error, failed to allocate input device\n",
__func__);
rc = -ENOSYS;
goto error_alloc_failed;
}
md->input->name = pdata->inp_dev_name;
scnprintf(md->phys, sizeof(md->phys)-1, "%s", dev_name(dev));
md->input->phys = md->phys;
md->input->id.bustype = cd->bus_ops->bustype;
md->input->dev.parent = dev;
md->input->open = cyttsp4_mt_open;
md->input->close = cyttsp4_mt_close;
input_set_drvdata(md->input, md);
/* get sysinfo */
md->si = &cd->sysinfo;
if (!md->si) {
dev_err(dev, "%s: Fail get sysinfo pointer from core p=%p\n",
__func__, md->si);
goto error_get_sysinfo;
}
rc = cyttsp4_setup_input_device(cd);
if (rc)
goto error_init_input;
return 0;
error_init_input:
input_free_device(md->input);
error_get_sysinfo:
input_set_drvdata(md->input, NULL);
error_alloc_failed:
dev_err(dev, "%s failed.\n", __func__);
return rc;
}
struct cyttsp4 *cyttsp4_probe(const struct cyttsp4_bus_ops *ops,
struct device *dev, u16 irq, size_t xfer_buf_size)
{
struct cyttsp4 *cd;
struct cyttsp4_platform_data *pdata = dev_get_platdata(dev);
unsigned long irq_flags;
int rc = 0;
if (!pdata || !pdata->core_pdata || !pdata->mt_pdata) {
dev_err(dev, "%s: Missing platform data\n", __func__);
rc = -ENODEV;
goto error_no_pdata;
}
cd = kzalloc(sizeof(*cd), GFP_KERNEL);
if (!cd) {
dev_err(dev, "%s: Error, kzalloc\n", __func__);
rc = -ENOMEM;
goto error_alloc_data;
}
cd->xfer_buf = kzalloc(xfer_buf_size, GFP_KERNEL);
if (!cd->xfer_buf) {
dev_err(dev, "%s: Error, kzalloc\n", __func__);
rc = -ENOMEM;
goto error_free_cd;
}
/* Initialize device info */
cd->dev = dev;
cd->pdata = pdata;
cd->cpdata = pdata->core_pdata;
cd->bus_ops = ops;
/* Initialize mutexes and spinlocks */
mutex_init(&cd->system_lock);
mutex_init(&cd->adap_lock);
/* Initialize wait queue */
init_waitqueue_head(&cd->wait_q);
/* Initialize works */
INIT_WORK(&cd->startup_work, cyttsp4_startup_work_function);
INIT_WORK(&cd->watchdog_work, cyttsp4_watchdog_work);
/* Initialize IRQ */
cd->irq = gpio_to_irq(cd->cpdata->irq_gpio);
if (cd->irq < 0) {
rc = -EINVAL;
goto error_free_xfer;
}
dev_set_drvdata(dev, cd);
/* Call platform init function */
if (cd->cpdata->init) {
dev_dbg(cd->dev, "%s: Init HW\n", __func__);
rc = cd->cpdata->init(cd->cpdata, 1, cd->dev);
} else {
dev_dbg(cd->dev, "%s: No HW INIT function\n", __func__);
rc = 0;
}
if (rc < 0)
dev_err(cd->dev, "%s: HW Init fail r=%d\n", __func__, rc);
dev_dbg(dev, "%s: initialize threaded irq=%d\n", __func__, cd->irq);
if (cd->cpdata->level_irq_udelay > 0)
/* use level triggered interrupts */
irq_flags = IRQF_TRIGGER_LOW | IRQF_ONESHOT;
else
/* use edge triggered interrupts */
irq_flags = IRQF_TRIGGER_FALLING | IRQF_ONESHOT;
rc = request_threaded_irq(cd->irq, NULL, cyttsp4_irq, irq_flags,
dev_name(dev), cd);
if (rc < 0) {
dev_err(dev, "%s: Error, could not request irq\n", __func__);
goto error_request_irq;
}
/* Setup watchdog timer */
timer_setup(&cd->watchdog_timer, cyttsp4_watchdog_timer, 0);
/*
* call startup directly to ensure that the device
* is tested before leaving the probe
*/
rc = cyttsp4_startup(cd);
/* Do not fail probe if startup fails but the device is detected */
if (rc < 0 && cd->mode == CY_MODE_UNKNOWN) {
dev_err(cd->dev, "%s: Fail initial startup r=%d\n",
__func__, rc);
goto error_startup;
}
rc = cyttsp4_mt_probe(cd);
if (rc < 0) {
dev_err(dev, "%s: Error, fail mt probe\n", __func__);
goto error_startup;
}
pm_runtime_enable(dev);
return cd;
error_startup:
cancel_work_sync(&cd->startup_work);
cyttsp4_stop_wd_timer(cd);
pm_runtime_disable(dev);
cyttsp4_free_si_ptrs(cd);
free_irq(cd->irq, cd);
error_request_irq:
if (cd->cpdata->init)
cd->cpdata->init(cd->cpdata, 0, dev);
error_free_xfer:
kfree(cd->xfer_buf);
error_free_cd:
kfree(cd);
error_alloc_data:
error_no_pdata:
dev_err(dev, "%s failed.\n", __func__);
return ERR_PTR(rc);
}
EXPORT_SYMBOL_GPL(cyttsp4_probe);
static void cyttsp4_mt_release(struct cyttsp4_mt_data *md)
{
input_unregister_device(md->input);
input_set_drvdata(md->input, NULL);
}
int cyttsp4_remove(struct cyttsp4 *cd)
{
struct device *dev = cd->dev;
cyttsp4_mt_release(&cd->md);
/*
* Suspend the device before freeing the startup_work and stopping
* the watchdog since sleep function restarts watchdog on failure
*/
pm_runtime_suspend(dev);
pm_runtime_disable(dev);
cancel_work_sync(&cd->startup_work);
cyttsp4_stop_wd_timer(cd);
free_irq(cd->irq, cd);
if (cd->cpdata->init)
cd->cpdata->init(cd->cpdata, 0, dev);
cyttsp4_free_si_ptrs(cd);
kfree(cd);
return 0;
}
EXPORT_SYMBOL_GPL(cyttsp4_remove);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Cypress TrueTouch(R) Standard touchscreen core driver");
MODULE_AUTHOR("Cypress");