OpenCloudOS-Kernel/drivers/gpu/drm/nouveau/nouveau_svm.c

1088 lines
28 KiB
C

/*
* Copyright 2018 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "nouveau_svm.h"
#include "nouveau_drv.h"
#include "nouveau_chan.h"
#include "nouveau_dmem.h"
#include <nvif/event.h>
#include <nvif/object.h>
#include <nvif/vmm.h>
#include <nvif/class.h>
#include <nvif/clb069.h>
#include <nvif/ifc00d.h>
#include <linux/sched/mm.h>
#include <linux/sort.h>
#include <linux/hmm.h>
#include <linux/memremap.h>
#include <linux/rmap.h>
struct nouveau_svm {
struct nouveau_drm *drm;
struct mutex mutex;
struct list_head inst;
struct nouveau_svm_fault_buffer {
int id;
struct nvif_object object;
u32 entries;
u32 getaddr;
u32 putaddr;
u32 get;
u32 put;
struct nvif_event notify;
struct work_struct work;
struct nouveau_svm_fault {
u64 inst;
u64 addr;
u64 time;
u32 engine;
u8 gpc;
u8 hub;
u8 access;
u8 client;
u8 fault;
struct nouveau_svmm *svmm;
} **fault;
int fault_nr;
} buffer[1];
};
#define FAULT_ACCESS_READ 0
#define FAULT_ACCESS_WRITE 1
#define FAULT_ACCESS_ATOMIC 2
#define FAULT_ACCESS_PREFETCH 3
#define SVM_DBG(s,f,a...) NV_DEBUG((s)->drm, "svm: "f"\n", ##a)
#define SVM_ERR(s,f,a...) NV_WARN((s)->drm, "svm: "f"\n", ##a)
struct nouveau_pfnmap_args {
struct nvif_ioctl_v0 i;
struct nvif_ioctl_mthd_v0 m;
struct nvif_vmm_pfnmap_v0 p;
};
struct nouveau_ivmm {
struct nouveau_svmm *svmm;
u64 inst;
struct list_head head;
};
static struct nouveau_ivmm *
nouveau_ivmm_find(struct nouveau_svm *svm, u64 inst)
{
struct nouveau_ivmm *ivmm;
list_for_each_entry(ivmm, &svm->inst, head) {
if (ivmm->inst == inst)
return ivmm;
}
return NULL;
}
#define SVMM_DBG(s,f,a...) \
NV_DEBUG((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
#define SVMM_ERR(s,f,a...) \
NV_WARN((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
int
nouveau_svmm_bind(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct nouveau_cli *cli = nouveau_cli(file_priv);
struct drm_nouveau_svm_bind *args = data;
unsigned target, cmd, priority;
unsigned long addr, end;
struct mm_struct *mm;
args->va_start &= PAGE_MASK;
args->va_end = ALIGN(args->va_end, PAGE_SIZE);
/* Sanity check arguments */
if (args->reserved0 || args->reserved1)
return -EINVAL;
if (args->header & (~NOUVEAU_SVM_BIND_VALID_MASK))
return -EINVAL;
if (args->va_start >= args->va_end)
return -EINVAL;
cmd = args->header >> NOUVEAU_SVM_BIND_COMMAND_SHIFT;
cmd &= NOUVEAU_SVM_BIND_COMMAND_MASK;
switch (cmd) {
case NOUVEAU_SVM_BIND_COMMAND__MIGRATE:
break;
default:
return -EINVAL;
}
priority = args->header >> NOUVEAU_SVM_BIND_PRIORITY_SHIFT;
priority &= NOUVEAU_SVM_BIND_PRIORITY_MASK;
/* FIXME support CPU target ie all target value < GPU_VRAM */
target = args->header >> NOUVEAU_SVM_BIND_TARGET_SHIFT;
target &= NOUVEAU_SVM_BIND_TARGET_MASK;
switch (target) {
case NOUVEAU_SVM_BIND_TARGET__GPU_VRAM:
break;
default:
return -EINVAL;
}
/*
* FIXME: For now refuse non 0 stride, we need to change the migrate
* kernel function to handle stride to avoid to create a mess within
* each device driver.
*/
if (args->stride)
return -EINVAL;
/*
* Ok we are ask to do something sane, for now we only support migrate
* commands but we will add things like memory policy (what to do on
* page fault) and maybe some other commands.
*/
mm = get_task_mm(current);
if (!mm) {
return -EINVAL;
}
mmap_read_lock(mm);
if (!cli->svm.svmm) {
mmap_read_unlock(mm);
mmput(mm);
return -EINVAL;
}
for (addr = args->va_start, end = args->va_end; addr < end;) {
struct vm_area_struct *vma;
unsigned long next;
vma = find_vma_intersection(mm, addr, end);
if (!vma)
break;
addr = max(addr, vma->vm_start);
next = min(vma->vm_end, end);
/* This is a best effort so we ignore errors */
nouveau_dmem_migrate_vma(cli->drm, cli->svm.svmm, vma, addr,
next);
addr = next;
}
/*
* FIXME Return the number of page we have migrated, again we need to
* update the migrate API to return that information so that we can
* report it to user space.
*/
args->result = 0;
mmap_read_unlock(mm);
mmput(mm);
return 0;
}
/* Unlink channel instance from SVMM. */
void
nouveau_svmm_part(struct nouveau_svmm *svmm, u64 inst)
{
struct nouveau_ivmm *ivmm;
if (svmm) {
mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
ivmm = nouveau_ivmm_find(svmm->vmm->cli->drm->svm, inst);
if (ivmm) {
list_del(&ivmm->head);
kfree(ivmm);
}
mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
}
}
/* Link channel instance to SVMM. */
int
nouveau_svmm_join(struct nouveau_svmm *svmm, u64 inst)
{
struct nouveau_ivmm *ivmm;
if (svmm) {
if (!(ivmm = kmalloc(sizeof(*ivmm), GFP_KERNEL)))
return -ENOMEM;
ivmm->svmm = svmm;
ivmm->inst = inst;
mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
list_add(&ivmm->head, &svmm->vmm->cli->drm->svm->inst);
mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
}
return 0;
}
/* Invalidate SVMM address-range on GPU. */
void
nouveau_svmm_invalidate(struct nouveau_svmm *svmm, u64 start, u64 limit)
{
if (limit > start) {
nvif_object_mthd(&svmm->vmm->vmm.object, NVIF_VMM_V0_PFNCLR,
&(struct nvif_vmm_pfnclr_v0) {
.addr = start,
.size = limit - start,
}, sizeof(struct nvif_vmm_pfnclr_v0));
}
}
static int
nouveau_svmm_invalidate_range_start(struct mmu_notifier *mn,
const struct mmu_notifier_range *update)
{
struct nouveau_svmm *svmm =
container_of(mn, struct nouveau_svmm, notifier);
unsigned long start = update->start;
unsigned long limit = update->end;
if (!mmu_notifier_range_blockable(update))
return -EAGAIN;
SVMM_DBG(svmm, "invalidate %016lx-%016lx", start, limit);
mutex_lock(&svmm->mutex);
if (unlikely(!svmm->vmm))
goto out;
/*
* Ignore invalidation callbacks for device private pages since
* the invalidation is handled as part of the migration process.
*/
if (update->event == MMU_NOTIFY_MIGRATE &&
update->owner == svmm->vmm->cli->drm->dev)
goto out;
if (limit > svmm->unmanaged.start && start < svmm->unmanaged.limit) {
if (start < svmm->unmanaged.start) {
nouveau_svmm_invalidate(svmm, start,
svmm->unmanaged.limit);
}
start = svmm->unmanaged.limit;
}
nouveau_svmm_invalidate(svmm, start, limit);
out:
mutex_unlock(&svmm->mutex);
return 0;
}
static void nouveau_svmm_free_notifier(struct mmu_notifier *mn)
{
kfree(container_of(mn, struct nouveau_svmm, notifier));
}
static const struct mmu_notifier_ops nouveau_mn_ops = {
.invalidate_range_start = nouveau_svmm_invalidate_range_start,
.free_notifier = nouveau_svmm_free_notifier,
};
void
nouveau_svmm_fini(struct nouveau_svmm **psvmm)
{
struct nouveau_svmm *svmm = *psvmm;
if (svmm) {
mutex_lock(&svmm->mutex);
svmm->vmm = NULL;
mutex_unlock(&svmm->mutex);
mmu_notifier_put(&svmm->notifier);
*psvmm = NULL;
}
}
int
nouveau_svmm_init(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct nouveau_cli *cli = nouveau_cli(file_priv);
struct nouveau_svmm *svmm;
struct drm_nouveau_svm_init *args = data;
int ret;
/* We need to fail if svm is disabled */
if (!cli->drm->svm)
return -ENOSYS;
/* Allocate tracking for SVM-enabled VMM. */
if (!(svmm = kzalloc(sizeof(*svmm), GFP_KERNEL)))
return -ENOMEM;
svmm->vmm = &cli->svm;
svmm->unmanaged.start = args->unmanaged_addr;
svmm->unmanaged.limit = args->unmanaged_addr + args->unmanaged_size;
mutex_init(&svmm->mutex);
/* Check that SVM isn't already enabled for the client. */
mutex_lock(&cli->mutex);
if (cli->svm.cli) {
ret = -EBUSY;
goto out_free;
}
/* Allocate a new GPU VMM that can support SVM (managed by the
* client, with replayable faults enabled).
*
* All future channel/memory allocations will make use of this
* VMM instead of the standard one.
*/
ret = nvif_vmm_ctor(&cli->mmu, "svmVmm",
cli->vmm.vmm.object.oclass, MANAGED,
args->unmanaged_addr, args->unmanaged_size,
&(struct gp100_vmm_v0) {
.fault_replay = true,
}, sizeof(struct gp100_vmm_v0), &cli->svm.vmm);
if (ret)
goto out_free;
mmap_write_lock(current->mm);
svmm->notifier.ops = &nouveau_mn_ops;
ret = __mmu_notifier_register(&svmm->notifier, current->mm);
if (ret)
goto out_mm_unlock;
/* Note, ownership of svmm transfers to mmu_notifier */
cli->svm.svmm = svmm;
cli->svm.cli = cli;
mmap_write_unlock(current->mm);
mutex_unlock(&cli->mutex);
return 0;
out_mm_unlock:
mmap_write_unlock(current->mm);
out_free:
mutex_unlock(&cli->mutex);
kfree(svmm);
return ret;
}
/* Issue fault replay for GPU to retry accesses that faulted previously. */
static void
nouveau_svm_fault_replay(struct nouveau_svm *svm)
{
SVM_DBG(svm, "replay");
WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
GP100_VMM_VN_FAULT_REPLAY,
&(struct gp100_vmm_fault_replay_vn) {},
sizeof(struct gp100_vmm_fault_replay_vn)));
}
/* Cancel a replayable fault that could not be handled.
*
* Cancelling the fault will trigger recovery to reset the engine
* and kill the offending channel (ie. GPU SIGSEGV).
*/
static void
nouveau_svm_fault_cancel(struct nouveau_svm *svm,
u64 inst, u8 hub, u8 gpc, u8 client)
{
SVM_DBG(svm, "cancel %016llx %d %02x %02x", inst, hub, gpc, client);
WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
GP100_VMM_VN_FAULT_CANCEL,
&(struct gp100_vmm_fault_cancel_v0) {
.hub = hub,
.gpc = gpc,
.client = client,
.inst = inst,
}, sizeof(struct gp100_vmm_fault_cancel_v0)));
}
static void
nouveau_svm_fault_cancel_fault(struct nouveau_svm *svm,
struct nouveau_svm_fault *fault)
{
nouveau_svm_fault_cancel(svm, fault->inst,
fault->hub,
fault->gpc,
fault->client);
}
static int
nouveau_svm_fault_priority(u8 fault)
{
switch (fault) {
case FAULT_ACCESS_PREFETCH:
return 0;
case FAULT_ACCESS_READ:
return 1;
case FAULT_ACCESS_WRITE:
return 2;
case FAULT_ACCESS_ATOMIC:
return 3;
default:
WARN_ON_ONCE(1);
return -1;
}
}
static int
nouveau_svm_fault_cmp(const void *a, const void *b)
{
const struct nouveau_svm_fault *fa = *(struct nouveau_svm_fault **)a;
const struct nouveau_svm_fault *fb = *(struct nouveau_svm_fault **)b;
int ret;
if ((ret = (s64)fa->inst - fb->inst))
return ret;
if ((ret = (s64)fa->addr - fb->addr))
return ret;
return nouveau_svm_fault_priority(fa->access) -
nouveau_svm_fault_priority(fb->access);
}
static void
nouveau_svm_fault_cache(struct nouveau_svm *svm,
struct nouveau_svm_fault_buffer *buffer, u32 offset)
{
struct nvif_object *memory = &buffer->object;
const u32 instlo = nvif_rd32(memory, offset + 0x00);
const u32 insthi = nvif_rd32(memory, offset + 0x04);
const u32 addrlo = nvif_rd32(memory, offset + 0x08);
const u32 addrhi = nvif_rd32(memory, offset + 0x0c);
const u32 timelo = nvif_rd32(memory, offset + 0x10);
const u32 timehi = nvif_rd32(memory, offset + 0x14);
const u32 engine = nvif_rd32(memory, offset + 0x18);
const u32 info = nvif_rd32(memory, offset + 0x1c);
const u64 inst = (u64)insthi << 32 | instlo;
const u8 gpc = (info & 0x1f000000) >> 24;
const u8 hub = (info & 0x00100000) >> 20;
const u8 client = (info & 0x00007f00) >> 8;
struct nouveau_svm_fault *fault;
//XXX: i think we're supposed to spin waiting */
if (WARN_ON(!(info & 0x80000000)))
return;
nvif_mask(memory, offset + 0x1c, 0x80000000, 0x00000000);
if (!buffer->fault[buffer->fault_nr]) {
fault = kmalloc(sizeof(*fault), GFP_KERNEL);
if (WARN_ON(!fault)) {
nouveau_svm_fault_cancel(svm, inst, hub, gpc, client);
return;
}
buffer->fault[buffer->fault_nr] = fault;
}
fault = buffer->fault[buffer->fault_nr++];
fault->inst = inst;
fault->addr = (u64)addrhi << 32 | addrlo;
fault->time = (u64)timehi << 32 | timelo;
fault->engine = engine;
fault->gpc = gpc;
fault->hub = hub;
fault->access = (info & 0x000f0000) >> 16;
fault->client = client;
fault->fault = (info & 0x0000001f);
SVM_DBG(svm, "fault %016llx %016llx %02x",
fault->inst, fault->addr, fault->access);
}
struct svm_notifier {
struct mmu_interval_notifier notifier;
struct nouveau_svmm *svmm;
};
static bool nouveau_svm_range_invalidate(struct mmu_interval_notifier *mni,
const struct mmu_notifier_range *range,
unsigned long cur_seq)
{
struct svm_notifier *sn =
container_of(mni, struct svm_notifier, notifier);
if (range->event == MMU_NOTIFY_EXCLUSIVE &&
range->owner == sn->svmm->vmm->cli->drm->dev)
return true;
/*
* serializes the update to mni->invalidate_seq done by caller and
* prevents invalidation of the PTE from progressing while HW is being
* programmed. This is very hacky and only works because the normal
* notifier that does invalidation is always called after the range
* notifier.
*/
if (mmu_notifier_range_blockable(range))
mutex_lock(&sn->svmm->mutex);
else if (!mutex_trylock(&sn->svmm->mutex))
return false;
mmu_interval_set_seq(mni, cur_seq);
mutex_unlock(&sn->svmm->mutex);
return true;
}
static const struct mmu_interval_notifier_ops nouveau_svm_mni_ops = {
.invalidate = nouveau_svm_range_invalidate,
};
static void nouveau_hmm_convert_pfn(struct nouveau_drm *drm,
struct hmm_range *range,
struct nouveau_pfnmap_args *args)
{
struct page *page;
/*
* The address prepared here is passed through nvif_object_ioctl()
* to an eventual DMA map in something like gp100_vmm_pgt_pfn()
*
* This is all just encoding the internal hmm representation into a
* different nouveau internal representation.
*/
if (!(range->hmm_pfns[0] & HMM_PFN_VALID)) {
args->p.phys[0] = 0;
return;
}
page = hmm_pfn_to_page(range->hmm_pfns[0]);
/*
* Only map compound pages to the GPU if the CPU is also mapping the
* page as a compound page. Otherwise, the PTE protections might not be
* consistent (e.g., CPU only maps part of a compound page).
* Note that the underlying page might still be larger than the
* CPU mapping (e.g., a PUD sized compound page partially mapped with
* a PMD sized page table entry).
*/
if (hmm_pfn_to_map_order(range->hmm_pfns[0])) {
unsigned long addr = args->p.addr;
args->p.page = hmm_pfn_to_map_order(range->hmm_pfns[0]) +
PAGE_SHIFT;
args->p.size = 1UL << args->p.page;
args->p.addr &= ~(args->p.size - 1);
page -= (addr - args->p.addr) >> PAGE_SHIFT;
}
if (is_device_private_page(page))
args->p.phys[0] = nouveau_dmem_page_addr(page) |
NVIF_VMM_PFNMAP_V0_V |
NVIF_VMM_PFNMAP_V0_VRAM;
else
args->p.phys[0] = page_to_phys(page) |
NVIF_VMM_PFNMAP_V0_V |
NVIF_VMM_PFNMAP_V0_HOST;
if (range->hmm_pfns[0] & HMM_PFN_WRITE)
args->p.phys[0] |= NVIF_VMM_PFNMAP_V0_W;
}
static int nouveau_atomic_range_fault(struct nouveau_svmm *svmm,
struct nouveau_drm *drm,
struct nouveau_pfnmap_args *args, u32 size,
struct svm_notifier *notifier)
{
unsigned long timeout =
jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
struct mm_struct *mm = svmm->notifier.mm;
struct page *page;
unsigned long start = args->p.addr;
unsigned long notifier_seq;
int ret = 0;
ret = mmu_interval_notifier_insert(&notifier->notifier, mm,
args->p.addr, args->p.size,
&nouveau_svm_mni_ops);
if (ret)
return ret;
while (true) {
if (time_after(jiffies, timeout)) {
ret = -EBUSY;
goto out;
}
notifier_seq = mmu_interval_read_begin(&notifier->notifier);
mmap_read_lock(mm);
ret = make_device_exclusive_range(mm, start, start + PAGE_SIZE,
&page, drm->dev);
mmap_read_unlock(mm);
if (ret <= 0 || !page) {
ret = -EINVAL;
goto out;
}
mutex_lock(&svmm->mutex);
if (!mmu_interval_read_retry(&notifier->notifier,
notifier_seq))
break;
mutex_unlock(&svmm->mutex);
}
/* Map the page on the GPU. */
args->p.page = 12;
args->p.size = PAGE_SIZE;
args->p.addr = start;
args->p.phys[0] = page_to_phys(page) |
NVIF_VMM_PFNMAP_V0_V |
NVIF_VMM_PFNMAP_V0_W |
NVIF_VMM_PFNMAP_V0_A |
NVIF_VMM_PFNMAP_V0_HOST;
ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
mutex_unlock(&svmm->mutex);
unlock_page(page);
put_page(page);
out:
mmu_interval_notifier_remove(&notifier->notifier);
return ret;
}
static int nouveau_range_fault(struct nouveau_svmm *svmm,
struct nouveau_drm *drm,
struct nouveau_pfnmap_args *args, u32 size,
unsigned long hmm_flags,
struct svm_notifier *notifier)
{
unsigned long timeout =
jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
/* Have HMM fault pages within the fault window to the GPU. */
unsigned long hmm_pfns[1];
struct hmm_range range = {
.notifier = &notifier->notifier,
.default_flags = hmm_flags,
.hmm_pfns = hmm_pfns,
.dev_private_owner = drm->dev,
};
struct mm_struct *mm = svmm->notifier.mm;
int ret;
ret = mmu_interval_notifier_insert(&notifier->notifier, mm,
args->p.addr, args->p.size,
&nouveau_svm_mni_ops);
if (ret)
return ret;
range.start = notifier->notifier.interval_tree.start;
range.end = notifier->notifier.interval_tree.last + 1;
while (true) {
if (time_after(jiffies, timeout)) {
ret = -EBUSY;
goto out;
}
range.notifier_seq = mmu_interval_read_begin(range.notifier);
mmap_read_lock(mm);
ret = hmm_range_fault(&range);
mmap_read_unlock(mm);
if (ret) {
if (ret == -EBUSY)
continue;
goto out;
}
mutex_lock(&svmm->mutex);
if (mmu_interval_read_retry(range.notifier,
range.notifier_seq)) {
mutex_unlock(&svmm->mutex);
continue;
}
break;
}
nouveau_hmm_convert_pfn(drm, &range, args);
ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
mutex_unlock(&svmm->mutex);
out:
mmu_interval_notifier_remove(&notifier->notifier);
return ret;
}
static void
nouveau_svm_fault(struct work_struct *work)
{
struct nouveau_svm_fault_buffer *buffer = container_of(work, typeof(*buffer), work);
struct nouveau_svm *svm = container_of(buffer, typeof(*svm), buffer[buffer->id]);
struct nvif_object *device = &svm->drm->client.device.object;
struct nouveau_svmm *svmm;
struct {
struct nouveau_pfnmap_args i;
u64 phys[1];
} args;
unsigned long hmm_flags;
u64 inst, start, limit;
int fi, fn;
int replay = 0, atomic = 0, ret;
/* Parse available fault buffer entries into a cache, and update
* the GET pointer so HW can reuse the entries.
*/
SVM_DBG(svm, "fault handler");
if (buffer->get == buffer->put) {
buffer->put = nvif_rd32(device, buffer->putaddr);
buffer->get = nvif_rd32(device, buffer->getaddr);
if (buffer->get == buffer->put)
return;
}
buffer->fault_nr = 0;
SVM_DBG(svm, "get %08x put %08x", buffer->get, buffer->put);
while (buffer->get != buffer->put) {
nouveau_svm_fault_cache(svm, buffer, buffer->get * 0x20);
if (++buffer->get == buffer->entries)
buffer->get = 0;
}
nvif_wr32(device, buffer->getaddr, buffer->get);
SVM_DBG(svm, "%d fault(s) pending", buffer->fault_nr);
/* Sort parsed faults by instance pointer to prevent unnecessary
* instance to SVMM translations, followed by address and access
* type to reduce the amount of work when handling the faults.
*/
sort(buffer->fault, buffer->fault_nr, sizeof(*buffer->fault),
nouveau_svm_fault_cmp, NULL);
/* Lookup SVMM structure for each unique instance pointer. */
mutex_lock(&svm->mutex);
for (fi = 0, svmm = NULL; fi < buffer->fault_nr; fi++) {
if (!svmm || buffer->fault[fi]->inst != inst) {
struct nouveau_ivmm *ivmm =
nouveau_ivmm_find(svm, buffer->fault[fi]->inst);
svmm = ivmm ? ivmm->svmm : NULL;
inst = buffer->fault[fi]->inst;
SVM_DBG(svm, "inst %016llx -> svm-%p", inst, svmm);
}
buffer->fault[fi]->svmm = svmm;
}
mutex_unlock(&svm->mutex);
/* Process list of faults. */
args.i.i.version = 0;
args.i.i.type = NVIF_IOCTL_V0_MTHD;
args.i.m.version = 0;
args.i.m.method = NVIF_VMM_V0_PFNMAP;
args.i.p.version = 0;
for (fi = 0; fn = fi + 1, fi < buffer->fault_nr; fi = fn) {
struct svm_notifier notifier;
struct mm_struct *mm;
/* Cancel any faults from non-SVM channels. */
if (!(svmm = buffer->fault[fi]->svmm)) {
nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
continue;
}
SVMM_DBG(svmm, "addr %016llx", buffer->fault[fi]->addr);
/* We try and group handling of faults within a small
* window into a single update.
*/
start = buffer->fault[fi]->addr;
limit = start + PAGE_SIZE;
if (start < svmm->unmanaged.limit)
limit = min_t(u64, limit, svmm->unmanaged.start);
/*
* Prepare the GPU-side update of all pages within the
* fault window, determining required pages and access
* permissions based on pending faults.
*/
args.i.p.addr = start;
args.i.p.page = PAGE_SHIFT;
args.i.p.size = PAGE_SIZE;
/*
* Determine required permissions based on GPU fault
* access flags.
*/
switch (buffer->fault[fi]->access) {
case 0: /* READ. */
hmm_flags = HMM_PFN_REQ_FAULT;
break;
case 2: /* ATOMIC. */
atomic = true;
break;
case 3: /* PREFETCH. */
hmm_flags = 0;
break;
default:
hmm_flags = HMM_PFN_REQ_FAULT | HMM_PFN_REQ_WRITE;
break;
}
mm = svmm->notifier.mm;
if (!mmget_not_zero(mm)) {
nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
continue;
}
notifier.svmm = svmm;
if (atomic)
ret = nouveau_atomic_range_fault(svmm, svm->drm,
&args.i, sizeof(args),
&notifier);
else
ret = nouveau_range_fault(svmm, svm->drm, &args.i,
sizeof(args), hmm_flags,
&notifier);
mmput(mm);
limit = args.i.p.addr + args.i.p.size;
for (fn = fi; ++fn < buffer->fault_nr; ) {
/* It's okay to skip over duplicate addresses from the
* same SVMM as faults are ordered by access type such
* that only the first one needs to be handled.
*
* ie. WRITE faults appear first, thus any handling of
* pending READ faults will already be satisfied.
* But if a large page is mapped, make sure subsequent
* fault addresses have sufficient access permission.
*/
if (buffer->fault[fn]->svmm != svmm ||
buffer->fault[fn]->addr >= limit ||
(buffer->fault[fi]->access == FAULT_ACCESS_READ &&
!(args.phys[0] & NVIF_VMM_PFNMAP_V0_V)) ||
(buffer->fault[fi]->access != FAULT_ACCESS_READ &&
buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH &&
!(args.phys[0] & NVIF_VMM_PFNMAP_V0_W)) ||
(buffer->fault[fi]->access != FAULT_ACCESS_READ &&
buffer->fault[fi]->access != FAULT_ACCESS_WRITE &&
buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH &&
!(args.phys[0] & NVIF_VMM_PFNMAP_V0_A)))
break;
}
/* If handling failed completely, cancel all faults. */
if (ret) {
while (fi < fn) {
struct nouveau_svm_fault *fault =
buffer->fault[fi++];
nouveau_svm_fault_cancel_fault(svm, fault);
}
} else
replay++;
}
/* Issue fault replay to the GPU. */
if (replay)
nouveau_svm_fault_replay(svm);
}
static int
nouveau_svm_event(struct nvif_event *event, void *argv, u32 argc)
{
struct nouveau_svm_fault_buffer *buffer = container_of(event, typeof(*buffer), notify);
schedule_work(&buffer->work);
return NVIF_EVENT_KEEP;
}
static struct nouveau_pfnmap_args *
nouveau_pfns_to_args(void *pfns)
{
return container_of(pfns, struct nouveau_pfnmap_args, p.phys);
}
u64 *
nouveau_pfns_alloc(unsigned long npages)
{
struct nouveau_pfnmap_args *args;
args = kzalloc(struct_size(args, p.phys, npages), GFP_KERNEL);
if (!args)
return NULL;
args->i.type = NVIF_IOCTL_V0_MTHD;
args->m.method = NVIF_VMM_V0_PFNMAP;
args->p.page = PAGE_SHIFT;
return args->p.phys;
}
void
nouveau_pfns_free(u64 *pfns)
{
struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
kfree(args);
}
void
nouveau_pfns_map(struct nouveau_svmm *svmm, struct mm_struct *mm,
unsigned long addr, u64 *pfns, unsigned long npages)
{
struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
int ret;
args->p.addr = addr;
args->p.size = npages << PAGE_SHIFT;
mutex_lock(&svmm->mutex);
ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args,
struct_size(args, p.phys, npages), NULL);
mutex_unlock(&svmm->mutex);
}
static void
nouveau_svm_fault_buffer_fini(struct nouveau_svm *svm, int id)
{
struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
nvif_event_block(&buffer->notify);
flush_work(&buffer->work);
}
static int
nouveau_svm_fault_buffer_init(struct nouveau_svm *svm, int id)
{
struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
struct nvif_object *device = &svm->drm->client.device.object;
buffer->get = nvif_rd32(device, buffer->getaddr);
buffer->put = nvif_rd32(device, buffer->putaddr);
SVM_DBG(svm, "get %08x put %08x (init)", buffer->get, buffer->put);
return nvif_event_allow(&buffer->notify);
}
static void
nouveau_svm_fault_buffer_dtor(struct nouveau_svm *svm, int id)
{
struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
int i;
if (!nvif_object_constructed(&buffer->object))
return;
nouveau_svm_fault_buffer_fini(svm, id);
if (buffer->fault) {
for (i = 0; buffer->fault[i] && i < buffer->entries; i++)
kfree(buffer->fault[i]);
kvfree(buffer->fault);
}
nvif_event_dtor(&buffer->notify);
nvif_object_dtor(&buffer->object);
}
static int
nouveau_svm_fault_buffer_ctor(struct nouveau_svm *svm, s32 oclass, int id)
{
struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
struct nouveau_drm *drm = svm->drm;
struct nvif_object *device = &drm->client.device.object;
struct nvif_clb069_v0 args = {};
int ret;
buffer->id = id;
ret = nvif_object_ctor(device, "svmFaultBuffer", 0, oclass, &args,
sizeof(args), &buffer->object);
if (ret < 0) {
SVM_ERR(svm, "Fault buffer allocation failed: %d", ret);
return ret;
}
nvif_object_map(&buffer->object, NULL, 0);
buffer->entries = args.entries;
buffer->getaddr = args.get;
buffer->putaddr = args.put;
INIT_WORK(&buffer->work, nouveau_svm_fault);
ret = nvif_event_ctor(&buffer->object, "svmFault", id, nouveau_svm_event, true, NULL, 0,
&buffer->notify);
if (ret)
return ret;
buffer->fault = kvcalloc(buffer->entries, sizeof(*buffer->fault), GFP_KERNEL);
if (!buffer->fault)
return -ENOMEM;
return nouveau_svm_fault_buffer_init(svm, id);
}
void
nouveau_svm_resume(struct nouveau_drm *drm)
{
struct nouveau_svm *svm = drm->svm;
if (svm)
nouveau_svm_fault_buffer_init(svm, 0);
}
void
nouveau_svm_suspend(struct nouveau_drm *drm)
{
struct nouveau_svm *svm = drm->svm;
if (svm)
nouveau_svm_fault_buffer_fini(svm, 0);
}
void
nouveau_svm_fini(struct nouveau_drm *drm)
{
struct nouveau_svm *svm = drm->svm;
if (svm) {
nouveau_svm_fault_buffer_dtor(svm, 0);
kfree(drm->svm);
drm->svm = NULL;
}
}
void
nouveau_svm_init(struct nouveau_drm *drm)
{
static const struct nvif_mclass buffers[] = {
{ VOLTA_FAULT_BUFFER_A, 0 },
{ MAXWELL_FAULT_BUFFER_A, 0 },
{}
};
struct nouveau_svm *svm;
int ret;
/* Disable on Volta and newer until channel recovery is fixed,
* otherwise clients will have a trivial way to trash the GPU
* for everyone.
*/
if (drm->client.device.info.family > NV_DEVICE_INFO_V0_PASCAL)
return;
if (!(drm->svm = svm = kzalloc(sizeof(*drm->svm), GFP_KERNEL)))
return;
drm->svm->drm = drm;
mutex_init(&drm->svm->mutex);
INIT_LIST_HEAD(&drm->svm->inst);
ret = nvif_mclass(&drm->client.device.object, buffers);
if (ret < 0) {
SVM_DBG(svm, "No supported fault buffer class");
nouveau_svm_fini(drm);
return;
}
ret = nouveau_svm_fault_buffer_ctor(svm, buffers[ret].oclass, 0);
if (ret) {
nouveau_svm_fini(drm);
return;
}
SVM_DBG(svm, "Initialised");
}