1246 lines
31 KiB
C
1246 lines
31 KiB
C
/*
|
|
* processor_idle - idle state submodule to the ACPI processor driver
|
|
*
|
|
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
|
|
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
|
|
* Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
|
|
* Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
|
|
* - Added processor hotplug support
|
|
* Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
|
|
* - Added support for C3 on SMP
|
|
*
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or (at
|
|
* your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
|
*
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/sched.h> /* need_resched() */
|
|
#include <linux/pm_qos_params.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/cpuidle.h>
|
|
#include <linux/irqflags.h>
|
|
|
|
/*
|
|
* Include the apic definitions for x86 to have the APIC timer related defines
|
|
* available also for UP (on SMP it gets magically included via linux/smp.h).
|
|
* asm/acpi.h is not an option, as it would require more include magic. Also
|
|
* creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
|
|
*/
|
|
#ifdef CONFIG_X86
|
|
#include <asm/apic.h>
|
|
#endif
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <acpi/acpi_bus.h>
|
|
#include <acpi/processor.h>
|
|
#include <asm/processor.h>
|
|
|
|
#define ACPI_PROCESSOR_CLASS "processor"
|
|
#define _COMPONENT ACPI_PROCESSOR_COMPONENT
|
|
ACPI_MODULE_NAME("processor_idle");
|
|
#define ACPI_PROCESSOR_FILE_POWER "power"
|
|
#define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
|
|
#define C2_OVERHEAD 1 /* 1us */
|
|
#define C3_OVERHEAD 1 /* 1us */
|
|
#define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
|
|
|
|
static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
|
|
module_param(max_cstate, uint, 0000);
|
|
static unsigned int nocst __read_mostly;
|
|
module_param(nocst, uint, 0000);
|
|
|
|
static unsigned int latency_factor __read_mostly = 2;
|
|
module_param(latency_factor, uint, 0644);
|
|
|
|
static s64 us_to_pm_timer_ticks(s64 t)
|
|
{
|
|
return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
|
|
}
|
|
/*
|
|
* IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
|
|
* For now disable this. Probably a bug somewhere else.
|
|
*
|
|
* To skip this limit, boot/load with a large max_cstate limit.
|
|
*/
|
|
static int set_max_cstate(const struct dmi_system_id *id)
|
|
{
|
|
if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
|
|
return 0;
|
|
|
|
printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
|
|
" Override with \"processor.max_cstate=%d\"\n", id->ident,
|
|
(long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
|
|
|
|
max_cstate = (long)id->driver_data;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Actually this shouldn't be __cpuinitdata, would be better to fix the
|
|
callers to only run once -AK */
|
|
static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
|
|
{ set_max_cstate, "Clevo 5600D", {
|
|
DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
|
|
DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
|
|
(void *)2},
|
|
{},
|
|
};
|
|
|
|
|
|
/*
|
|
* Callers should disable interrupts before the call and enable
|
|
* interrupts after return.
|
|
*/
|
|
static void acpi_safe_halt(void)
|
|
{
|
|
current_thread_info()->status &= ~TS_POLLING;
|
|
/*
|
|
* TS_POLLING-cleared state must be visible before we
|
|
* test NEED_RESCHED:
|
|
*/
|
|
smp_mb();
|
|
if (!need_resched()) {
|
|
safe_halt();
|
|
local_irq_disable();
|
|
}
|
|
current_thread_info()->status |= TS_POLLING;
|
|
}
|
|
|
|
#ifdef ARCH_APICTIMER_STOPS_ON_C3
|
|
|
|
/*
|
|
* Some BIOS implementations switch to C3 in the published C2 state.
|
|
* This seems to be a common problem on AMD boxen, but other vendors
|
|
* are affected too. We pick the most conservative approach: we assume
|
|
* that the local APIC stops in both C2 and C3.
|
|
*/
|
|
static void lapic_timer_check_state(int state, struct acpi_processor *pr,
|
|
struct acpi_processor_cx *cx)
|
|
{
|
|
struct acpi_processor_power *pwr = &pr->power;
|
|
u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
|
|
|
|
if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
|
|
return;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_AMDC1E))
|
|
type = ACPI_STATE_C1;
|
|
|
|
/*
|
|
* Check, if one of the previous states already marked the lapic
|
|
* unstable
|
|
*/
|
|
if (pwr->timer_broadcast_on_state < state)
|
|
return;
|
|
|
|
if (cx->type >= type)
|
|
pr->power.timer_broadcast_on_state = state;
|
|
}
|
|
|
|
static void lapic_timer_propagate_broadcast(void *arg)
|
|
{
|
|
struct acpi_processor *pr = (struct acpi_processor *) arg;
|
|
unsigned long reason;
|
|
|
|
reason = pr->power.timer_broadcast_on_state < INT_MAX ?
|
|
CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
|
|
|
|
clockevents_notify(reason, &pr->id);
|
|
}
|
|
|
|
/* Power(C) State timer broadcast control */
|
|
static void lapic_timer_state_broadcast(struct acpi_processor *pr,
|
|
struct acpi_processor_cx *cx,
|
|
int broadcast)
|
|
{
|
|
int state = cx - pr->power.states;
|
|
|
|
if (state >= pr->power.timer_broadcast_on_state) {
|
|
unsigned long reason;
|
|
|
|
reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
|
|
CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
|
|
clockevents_notify(reason, &pr->id);
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static void lapic_timer_check_state(int state, struct acpi_processor *pr,
|
|
struct acpi_processor_cx *cstate) { }
|
|
static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
|
|
static void lapic_timer_state_broadcast(struct acpi_processor *pr,
|
|
struct acpi_processor_cx *cx,
|
|
int broadcast)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Suspend / resume control
|
|
*/
|
|
static int acpi_idle_suspend;
|
|
static u32 saved_bm_rld;
|
|
|
|
static void acpi_idle_bm_rld_save(void)
|
|
{
|
|
acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
|
|
}
|
|
static void acpi_idle_bm_rld_restore(void)
|
|
{
|
|
u32 resumed_bm_rld;
|
|
|
|
acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
|
|
|
|
if (resumed_bm_rld != saved_bm_rld)
|
|
acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
|
|
}
|
|
|
|
int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
|
|
{
|
|
if (acpi_idle_suspend == 1)
|
|
return 0;
|
|
|
|
acpi_idle_bm_rld_save();
|
|
acpi_idle_suspend = 1;
|
|
return 0;
|
|
}
|
|
|
|
int acpi_processor_resume(struct acpi_device * device)
|
|
{
|
|
if (acpi_idle_suspend == 0)
|
|
return 0;
|
|
|
|
acpi_idle_bm_rld_restore();
|
|
acpi_idle_suspend = 0;
|
|
return 0;
|
|
}
|
|
|
|
#if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
|
|
static void tsc_check_state(int state)
|
|
{
|
|
switch (boot_cpu_data.x86_vendor) {
|
|
case X86_VENDOR_AMD:
|
|
case X86_VENDOR_INTEL:
|
|
/*
|
|
* AMD Fam10h TSC will tick in all
|
|
* C/P/S0/S1 states when this bit is set.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
|
|
return;
|
|
|
|
/*FALL THROUGH*/
|
|
default:
|
|
/* TSC could halt in idle, so notify users */
|
|
if (state > ACPI_STATE_C1)
|
|
mark_tsc_unstable("TSC halts in idle");
|
|
}
|
|
}
|
|
#else
|
|
static void tsc_check_state(int state) { return; }
|
|
#endif
|
|
|
|
static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
|
|
{
|
|
|
|
if (!pr)
|
|
return -EINVAL;
|
|
|
|
if (!pr->pblk)
|
|
return -ENODEV;
|
|
|
|
/* if info is obtained from pblk/fadt, type equals state */
|
|
pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
|
|
pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
|
|
|
|
#ifndef CONFIG_HOTPLUG_CPU
|
|
/*
|
|
* Check for P_LVL2_UP flag before entering C2 and above on
|
|
* an SMP system.
|
|
*/
|
|
if ((num_online_cpus() > 1) &&
|
|
!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
|
|
return -ENODEV;
|
|
#endif
|
|
|
|
/* determine C2 and C3 address from pblk */
|
|
pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
|
|
pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
|
|
|
|
/* determine latencies from FADT */
|
|
pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
|
|
pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
|
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"lvl2[0x%08x] lvl3[0x%08x]\n",
|
|
pr->power.states[ACPI_STATE_C2].address,
|
|
pr->power.states[ACPI_STATE_C3].address));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
|
|
{
|
|
if (!pr->power.states[ACPI_STATE_C1].valid) {
|
|
/* set the first C-State to C1 */
|
|
/* all processors need to support C1 */
|
|
pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
|
|
pr->power.states[ACPI_STATE_C1].valid = 1;
|
|
pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
|
|
}
|
|
/* the C0 state only exists as a filler in our array */
|
|
pr->power.states[ACPI_STATE_C0].valid = 1;
|
|
return 0;
|
|
}
|
|
|
|
static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
|
|
{
|
|
acpi_status status = 0;
|
|
acpi_integer count;
|
|
int current_count;
|
|
int i;
|
|
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
|
|
union acpi_object *cst;
|
|
|
|
|
|
if (nocst)
|
|
return -ENODEV;
|
|
|
|
current_count = 0;
|
|
|
|
status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
|
|
if (ACPI_FAILURE(status)) {
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
|
|
return -ENODEV;
|
|
}
|
|
|
|
cst = buffer.pointer;
|
|
|
|
/* There must be at least 2 elements */
|
|
if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
|
|
printk(KERN_ERR PREFIX "not enough elements in _CST\n");
|
|
status = -EFAULT;
|
|
goto end;
|
|
}
|
|
|
|
count = cst->package.elements[0].integer.value;
|
|
|
|
/* Validate number of power states. */
|
|
if (count < 1 || count != cst->package.count - 1) {
|
|
printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
|
|
status = -EFAULT;
|
|
goto end;
|
|
}
|
|
|
|
/* Tell driver that at least _CST is supported. */
|
|
pr->flags.has_cst = 1;
|
|
|
|
for (i = 1; i <= count; i++) {
|
|
union acpi_object *element;
|
|
union acpi_object *obj;
|
|
struct acpi_power_register *reg;
|
|
struct acpi_processor_cx cx;
|
|
|
|
memset(&cx, 0, sizeof(cx));
|
|
|
|
element = &(cst->package.elements[i]);
|
|
if (element->type != ACPI_TYPE_PACKAGE)
|
|
continue;
|
|
|
|
if (element->package.count != 4)
|
|
continue;
|
|
|
|
obj = &(element->package.elements[0]);
|
|
|
|
if (obj->type != ACPI_TYPE_BUFFER)
|
|
continue;
|
|
|
|
reg = (struct acpi_power_register *)obj->buffer.pointer;
|
|
|
|
if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
|
|
(reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
|
|
continue;
|
|
|
|
/* There should be an easy way to extract an integer... */
|
|
obj = &(element->package.elements[1]);
|
|
if (obj->type != ACPI_TYPE_INTEGER)
|
|
continue;
|
|
|
|
cx.type = obj->integer.value;
|
|
/*
|
|
* Some buggy BIOSes won't list C1 in _CST -
|
|
* Let acpi_processor_get_power_info_default() handle them later
|
|
*/
|
|
if (i == 1 && cx.type != ACPI_STATE_C1)
|
|
current_count++;
|
|
|
|
cx.address = reg->address;
|
|
cx.index = current_count + 1;
|
|
|
|
cx.entry_method = ACPI_CSTATE_SYSTEMIO;
|
|
if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
|
|
if (acpi_processor_ffh_cstate_probe
|
|
(pr->id, &cx, reg) == 0) {
|
|
cx.entry_method = ACPI_CSTATE_FFH;
|
|
} else if (cx.type == ACPI_STATE_C1) {
|
|
/*
|
|
* C1 is a special case where FIXED_HARDWARE
|
|
* can be handled in non-MWAIT way as well.
|
|
* In that case, save this _CST entry info.
|
|
* Otherwise, ignore this info and continue.
|
|
*/
|
|
cx.entry_method = ACPI_CSTATE_HALT;
|
|
snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
|
|
} else {
|
|
continue;
|
|
}
|
|
if (cx.type == ACPI_STATE_C1 &&
|
|
(idle_halt || idle_nomwait)) {
|
|
/*
|
|
* In most cases the C1 space_id obtained from
|
|
* _CST object is FIXED_HARDWARE access mode.
|
|
* But when the option of idle=halt is added,
|
|
* the entry_method type should be changed from
|
|
* CSTATE_FFH to CSTATE_HALT.
|
|
* When the option of idle=nomwait is added,
|
|
* the C1 entry_method type should be
|
|
* CSTATE_HALT.
|
|
*/
|
|
cx.entry_method = ACPI_CSTATE_HALT;
|
|
snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
|
|
}
|
|
} else {
|
|
snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
|
|
cx.address);
|
|
}
|
|
|
|
if (cx.type == ACPI_STATE_C1) {
|
|
cx.valid = 1;
|
|
}
|
|
|
|
obj = &(element->package.elements[2]);
|
|
if (obj->type != ACPI_TYPE_INTEGER)
|
|
continue;
|
|
|
|
cx.latency = obj->integer.value;
|
|
|
|
obj = &(element->package.elements[3]);
|
|
if (obj->type != ACPI_TYPE_INTEGER)
|
|
continue;
|
|
|
|
cx.power = obj->integer.value;
|
|
|
|
current_count++;
|
|
memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
|
|
|
|
/*
|
|
* We support total ACPI_PROCESSOR_MAX_POWER - 1
|
|
* (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
|
|
*/
|
|
if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
|
|
printk(KERN_WARNING
|
|
"Limiting number of power states to max (%d)\n",
|
|
ACPI_PROCESSOR_MAX_POWER);
|
|
printk(KERN_WARNING
|
|
"Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
|
|
current_count));
|
|
|
|
/* Validate number of power states discovered */
|
|
if (current_count < 2)
|
|
status = -EFAULT;
|
|
|
|
end:
|
|
kfree(buffer.pointer);
|
|
|
|
return status;
|
|
}
|
|
|
|
static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
|
|
{
|
|
|
|
if (!cx->address)
|
|
return;
|
|
|
|
/*
|
|
* C2 latency must be less than or equal to 100
|
|
* microseconds.
|
|
*/
|
|
else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"latency too large [%d]\n", cx->latency));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Otherwise we've met all of our C2 requirements.
|
|
* Normalize the C2 latency to expidite policy
|
|
*/
|
|
cx->valid = 1;
|
|
|
|
cx->latency_ticks = cx->latency;
|
|
|
|
return;
|
|
}
|
|
|
|
static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
|
|
struct acpi_processor_cx *cx)
|
|
{
|
|
static int bm_check_flag = -1;
|
|
static int bm_control_flag = -1;
|
|
|
|
|
|
if (!cx->address)
|
|
return;
|
|
|
|
/*
|
|
* C3 latency must be less than or equal to 1000
|
|
* microseconds.
|
|
*/
|
|
else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"latency too large [%d]\n", cx->latency));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
|
|
* DMA transfers are used by any ISA device to avoid livelock.
|
|
* Note that we could disable Type-F DMA (as recommended by
|
|
* the erratum), but this is known to disrupt certain ISA
|
|
* devices thus we take the conservative approach.
|
|
*/
|
|
else if (errata.piix4.fdma) {
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"C3 not supported on PIIX4 with Type-F DMA\n"));
|
|
return;
|
|
}
|
|
|
|
/* All the logic here assumes flags.bm_check is same across all CPUs */
|
|
if (bm_check_flag == -1) {
|
|
/* Determine whether bm_check is needed based on CPU */
|
|
acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
|
|
bm_check_flag = pr->flags.bm_check;
|
|
bm_control_flag = pr->flags.bm_control;
|
|
} else {
|
|
pr->flags.bm_check = bm_check_flag;
|
|
pr->flags.bm_control = bm_control_flag;
|
|
}
|
|
|
|
if (pr->flags.bm_check) {
|
|
if (!pr->flags.bm_control) {
|
|
if (pr->flags.has_cst != 1) {
|
|
/* bus mastering control is necessary */
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"C3 support requires BM control\n"));
|
|
return;
|
|
} else {
|
|
/* Here we enter C3 without bus mastering */
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"C3 support without BM control\n"));
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* WBINVD should be set in fadt, for C3 state to be
|
|
* supported on when bm_check is not required.
|
|
*/
|
|
if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"Cache invalidation should work properly"
|
|
" for C3 to be enabled on SMP systems\n"));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Otherwise we've met all of our C3 requirements.
|
|
* Normalize the C3 latency to expidite policy. Enable
|
|
* checking of bus mastering status (bm_check) so we can
|
|
* use this in our C3 policy
|
|
*/
|
|
cx->valid = 1;
|
|
|
|
cx->latency_ticks = cx->latency;
|
|
/*
|
|
* On older chipsets, BM_RLD needs to be set
|
|
* in order for Bus Master activity to wake the
|
|
* system from C3. Newer chipsets handle DMA
|
|
* during C3 automatically and BM_RLD is a NOP.
|
|
* In either case, the proper way to
|
|
* handle BM_RLD is to set it and leave it set.
|
|
*/
|
|
acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
|
|
|
|
return;
|
|
}
|
|
|
|
static int acpi_processor_power_verify(struct acpi_processor *pr)
|
|
{
|
|
unsigned int i;
|
|
unsigned int working = 0;
|
|
|
|
pr->power.timer_broadcast_on_state = INT_MAX;
|
|
|
|
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
|
|
struct acpi_processor_cx *cx = &pr->power.states[i];
|
|
|
|
switch (cx->type) {
|
|
case ACPI_STATE_C1:
|
|
cx->valid = 1;
|
|
break;
|
|
|
|
case ACPI_STATE_C2:
|
|
acpi_processor_power_verify_c2(cx);
|
|
break;
|
|
|
|
case ACPI_STATE_C3:
|
|
acpi_processor_power_verify_c3(pr, cx);
|
|
break;
|
|
}
|
|
if (!cx->valid)
|
|
continue;
|
|
|
|
lapic_timer_check_state(i, pr, cx);
|
|
tsc_check_state(cx->type);
|
|
working++;
|
|
}
|
|
|
|
smp_call_function_single(pr->id, lapic_timer_propagate_broadcast,
|
|
pr, 1);
|
|
|
|
return (working);
|
|
}
|
|
|
|
static int acpi_processor_get_power_info(struct acpi_processor *pr)
|
|
{
|
|
unsigned int i;
|
|
int result;
|
|
|
|
|
|
/* NOTE: the idle thread may not be running while calling
|
|
* this function */
|
|
|
|
/* Zero initialize all the C-states info. */
|
|
memset(pr->power.states, 0, sizeof(pr->power.states));
|
|
|
|
result = acpi_processor_get_power_info_cst(pr);
|
|
if (result == -ENODEV)
|
|
result = acpi_processor_get_power_info_fadt(pr);
|
|
|
|
if (result)
|
|
return result;
|
|
|
|
acpi_processor_get_power_info_default(pr);
|
|
|
|
pr->power.count = acpi_processor_power_verify(pr);
|
|
|
|
/*
|
|
* if one state of type C2 or C3 is available, mark this
|
|
* CPU as being "idle manageable"
|
|
*/
|
|
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
|
|
if (pr->power.states[i].valid) {
|
|
pr->power.count = i;
|
|
if (pr->power.states[i].type >= ACPI_STATE_C2)
|
|
pr->flags.power = 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
|
|
{
|
|
struct acpi_processor *pr = seq->private;
|
|
unsigned int i;
|
|
|
|
|
|
if (!pr)
|
|
goto end;
|
|
|
|
seq_printf(seq, "active state: C%zd\n"
|
|
"max_cstate: C%d\n"
|
|
"maximum allowed latency: %d usec\n",
|
|
pr->power.state ? pr->power.state - pr->power.states : 0,
|
|
max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
|
|
|
|
seq_puts(seq, "states:\n");
|
|
|
|
for (i = 1; i <= pr->power.count; i++) {
|
|
seq_printf(seq, " %cC%d: ",
|
|
(&pr->power.states[i] ==
|
|
pr->power.state ? '*' : ' '), i);
|
|
|
|
if (!pr->power.states[i].valid) {
|
|
seq_puts(seq, "<not supported>\n");
|
|
continue;
|
|
}
|
|
|
|
switch (pr->power.states[i].type) {
|
|
case ACPI_STATE_C1:
|
|
seq_printf(seq, "type[C1] ");
|
|
break;
|
|
case ACPI_STATE_C2:
|
|
seq_printf(seq, "type[C2] ");
|
|
break;
|
|
case ACPI_STATE_C3:
|
|
seq_printf(seq, "type[C3] ");
|
|
break;
|
|
default:
|
|
seq_printf(seq, "type[--] ");
|
|
break;
|
|
}
|
|
|
|
if (pr->power.states[i].promotion.state)
|
|
seq_printf(seq, "promotion[C%zd] ",
|
|
(pr->power.states[i].promotion.state -
|
|
pr->power.states));
|
|
else
|
|
seq_puts(seq, "promotion[--] ");
|
|
|
|
if (pr->power.states[i].demotion.state)
|
|
seq_printf(seq, "demotion[C%zd] ",
|
|
(pr->power.states[i].demotion.state -
|
|
pr->power.states));
|
|
else
|
|
seq_puts(seq, "demotion[--] ");
|
|
|
|
seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
|
|
pr->power.states[i].latency,
|
|
pr->power.states[i].usage,
|
|
(unsigned long long)pr->power.states[i].time);
|
|
}
|
|
|
|
end:
|
|
return 0;
|
|
}
|
|
|
|
static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open(file, acpi_processor_power_seq_show,
|
|
PDE(inode)->data);
|
|
}
|
|
|
|
static const struct file_operations acpi_processor_power_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = acpi_processor_power_open_fs,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
|
|
|
|
/**
|
|
* acpi_idle_bm_check - checks if bus master activity was detected
|
|
*/
|
|
static int acpi_idle_bm_check(void)
|
|
{
|
|
u32 bm_status = 0;
|
|
|
|
acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
|
|
if (bm_status)
|
|
acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
|
|
/*
|
|
* PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
|
|
* the true state of bus mastering activity; forcing us to
|
|
* manually check the BMIDEA bit of each IDE channel.
|
|
*/
|
|
else if (errata.piix4.bmisx) {
|
|
if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
|
|
|| (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
|
|
bm_status = 1;
|
|
}
|
|
return bm_status;
|
|
}
|
|
|
|
/**
|
|
* acpi_idle_do_entry - a helper function that does C2 and C3 type entry
|
|
* @cx: cstate data
|
|
*
|
|
* Caller disables interrupt before call and enables interrupt after return.
|
|
*/
|
|
static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
|
|
{
|
|
/* Don't trace irqs off for idle */
|
|
stop_critical_timings();
|
|
if (cx->entry_method == ACPI_CSTATE_FFH) {
|
|
/* Call into architectural FFH based C-state */
|
|
acpi_processor_ffh_cstate_enter(cx);
|
|
} else if (cx->entry_method == ACPI_CSTATE_HALT) {
|
|
acpi_safe_halt();
|
|
} else {
|
|
int unused;
|
|
/* IO port based C-state */
|
|
inb(cx->address);
|
|
/* Dummy wait op - must do something useless after P_LVL2 read
|
|
because chipsets cannot guarantee that STPCLK# signal
|
|
gets asserted in time to freeze execution properly. */
|
|
unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
|
|
}
|
|
start_critical_timings();
|
|
}
|
|
|
|
/**
|
|
* acpi_idle_enter_c1 - enters an ACPI C1 state-type
|
|
* @dev: the target CPU
|
|
* @state: the state data
|
|
*
|
|
* This is equivalent to the HALT instruction.
|
|
*/
|
|
static int acpi_idle_enter_c1(struct cpuidle_device *dev,
|
|
struct cpuidle_state *state)
|
|
{
|
|
ktime_t kt1, kt2;
|
|
s64 idle_time;
|
|
struct acpi_processor *pr;
|
|
struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
|
|
|
|
pr = __get_cpu_var(processors);
|
|
|
|
if (unlikely(!pr))
|
|
return 0;
|
|
|
|
local_irq_disable();
|
|
|
|
/* Do not access any ACPI IO ports in suspend path */
|
|
if (acpi_idle_suspend) {
|
|
local_irq_enable();
|
|
cpu_relax();
|
|
return 0;
|
|
}
|
|
|
|
lapic_timer_state_broadcast(pr, cx, 1);
|
|
kt1 = ktime_get_real();
|
|
acpi_idle_do_entry(cx);
|
|
kt2 = ktime_get_real();
|
|
idle_time = ktime_to_us(ktime_sub(kt2, kt1));
|
|
|
|
local_irq_enable();
|
|
cx->usage++;
|
|
lapic_timer_state_broadcast(pr, cx, 0);
|
|
|
|
return idle_time;
|
|
}
|
|
|
|
/**
|
|
* acpi_idle_enter_simple - enters an ACPI state without BM handling
|
|
* @dev: the target CPU
|
|
* @state: the state data
|
|
*/
|
|
static int acpi_idle_enter_simple(struct cpuidle_device *dev,
|
|
struct cpuidle_state *state)
|
|
{
|
|
struct acpi_processor *pr;
|
|
struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
|
|
ktime_t kt1, kt2;
|
|
s64 idle_time;
|
|
s64 sleep_ticks = 0;
|
|
|
|
pr = __get_cpu_var(processors);
|
|
|
|
if (unlikely(!pr))
|
|
return 0;
|
|
|
|
if (acpi_idle_suspend)
|
|
return(acpi_idle_enter_c1(dev, state));
|
|
|
|
local_irq_disable();
|
|
current_thread_info()->status &= ~TS_POLLING;
|
|
/*
|
|
* TS_POLLING-cleared state must be visible before we test
|
|
* NEED_RESCHED:
|
|
*/
|
|
smp_mb();
|
|
|
|
if (unlikely(need_resched())) {
|
|
current_thread_info()->status |= TS_POLLING;
|
|
local_irq_enable();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Must be done before busmaster disable as we might need to
|
|
* access HPET !
|
|
*/
|
|
lapic_timer_state_broadcast(pr, cx, 1);
|
|
|
|
if (cx->type == ACPI_STATE_C3)
|
|
ACPI_FLUSH_CPU_CACHE();
|
|
|
|
kt1 = ktime_get_real();
|
|
/* Tell the scheduler that we are going deep-idle: */
|
|
sched_clock_idle_sleep_event();
|
|
acpi_idle_do_entry(cx);
|
|
kt2 = ktime_get_real();
|
|
idle_time = ktime_to_us(ktime_sub(kt2, kt1));
|
|
|
|
sleep_ticks = us_to_pm_timer_ticks(idle_time);
|
|
|
|
/* Tell the scheduler how much we idled: */
|
|
sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
|
|
|
|
local_irq_enable();
|
|
current_thread_info()->status |= TS_POLLING;
|
|
|
|
cx->usage++;
|
|
|
|
lapic_timer_state_broadcast(pr, cx, 0);
|
|
cx->time += sleep_ticks;
|
|
return idle_time;
|
|
}
|
|
|
|
static int c3_cpu_count;
|
|
static DEFINE_SPINLOCK(c3_lock);
|
|
|
|
/**
|
|
* acpi_idle_enter_bm - enters C3 with proper BM handling
|
|
* @dev: the target CPU
|
|
* @state: the state data
|
|
*
|
|
* If BM is detected, the deepest non-C3 idle state is entered instead.
|
|
*/
|
|
static int acpi_idle_enter_bm(struct cpuidle_device *dev,
|
|
struct cpuidle_state *state)
|
|
{
|
|
struct acpi_processor *pr;
|
|
struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
|
|
ktime_t kt1, kt2;
|
|
s64 idle_time;
|
|
s64 sleep_ticks = 0;
|
|
|
|
|
|
pr = __get_cpu_var(processors);
|
|
|
|
if (unlikely(!pr))
|
|
return 0;
|
|
|
|
if (acpi_idle_suspend)
|
|
return(acpi_idle_enter_c1(dev, state));
|
|
|
|
if (acpi_idle_bm_check()) {
|
|
if (dev->safe_state) {
|
|
dev->last_state = dev->safe_state;
|
|
return dev->safe_state->enter(dev, dev->safe_state);
|
|
} else {
|
|
local_irq_disable();
|
|
acpi_safe_halt();
|
|
local_irq_enable();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
local_irq_disable();
|
|
current_thread_info()->status &= ~TS_POLLING;
|
|
/*
|
|
* TS_POLLING-cleared state must be visible before we test
|
|
* NEED_RESCHED:
|
|
*/
|
|
smp_mb();
|
|
|
|
if (unlikely(need_resched())) {
|
|
current_thread_info()->status |= TS_POLLING;
|
|
local_irq_enable();
|
|
return 0;
|
|
}
|
|
|
|
acpi_unlazy_tlb(smp_processor_id());
|
|
|
|
/* Tell the scheduler that we are going deep-idle: */
|
|
sched_clock_idle_sleep_event();
|
|
/*
|
|
* Must be done before busmaster disable as we might need to
|
|
* access HPET !
|
|
*/
|
|
lapic_timer_state_broadcast(pr, cx, 1);
|
|
|
|
kt1 = ktime_get_real();
|
|
/*
|
|
* disable bus master
|
|
* bm_check implies we need ARB_DIS
|
|
* !bm_check implies we need cache flush
|
|
* bm_control implies whether we can do ARB_DIS
|
|
*
|
|
* That leaves a case where bm_check is set and bm_control is
|
|
* not set. In that case we cannot do much, we enter C3
|
|
* without doing anything.
|
|
*/
|
|
if (pr->flags.bm_check && pr->flags.bm_control) {
|
|
spin_lock(&c3_lock);
|
|
c3_cpu_count++;
|
|
/* Disable bus master arbitration when all CPUs are in C3 */
|
|
if (c3_cpu_count == num_online_cpus())
|
|
acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
|
|
spin_unlock(&c3_lock);
|
|
} else if (!pr->flags.bm_check) {
|
|
ACPI_FLUSH_CPU_CACHE();
|
|
}
|
|
|
|
acpi_idle_do_entry(cx);
|
|
|
|
/* Re-enable bus master arbitration */
|
|
if (pr->flags.bm_check && pr->flags.bm_control) {
|
|
spin_lock(&c3_lock);
|
|
acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
|
|
c3_cpu_count--;
|
|
spin_unlock(&c3_lock);
|
|
}
|
|
kt2 = ktime_get_real();
|
|
idle_time = ktime_to_us(ktime_sub(kt2, kt1));
|
|
|
|
sleep_ticks = us_to_pm_timer_ticks(idle_time);
|
|
/* Tell the scheduler how much we idled: */
|
|
sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
|
|
|
|
local_irq_enable();
|
|
current_thread_info()->status |= TS_POLLING;
|
|
|
|
cx->usage++;
|
|
|
|
lapic_timer_state_broadcast(pr, cx, 0);
|
|
cx->time += sleep_ticks;
|
|
return idle_time;
|
|
}
|
|
|
|
struct cpuidle_driver acpi_idle_driver = {
|
|
.name = "acpi_idle",
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
/**
|
|
* acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
|
|
* @pr: the ACPI processor
|
|
*/
|
|
static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
|
|
{
|
|
int i, count = CPUIDLE_DRIVER_STATE_START;
|
|
struct acpi_processor_cx *cx;
|
|
struct cpuidle_state *state;
|
|
struct cpuidle_device *dev = &pr->power.dev;
|
|
|
|
if (!pr->flags.power_setup_done)
|
|
return -EINVAL;
|
|
|
|
if (pr->flags.power == 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev->cpu = pr->id;
|
|
for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
|
|
dev->states[i].name[0] = '\0';
|
|
dev->states[i].desc[0] = '\0';
|
|
}
|
|
|
|
if (max_cstate == 0)
|
|
max_cstate = 1;
|
|
|
|
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
|
|
cx = &pr->power.states[i];
|
|
state = &dev->states[count];
|
|
|
|
if (!cx->valid)
|
|
continue;
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
|
|
!pr->flags.has_cst &&
|
|
!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
|
|
continue;
|
|
#endif
|
|
cpuidle_set_statedata(state, cx);
|
|
|
|
snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
|
|
strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
|
|
state->exit_latency = cx->latency;
|
|
state->target_residency = cx->latency * latency_factor;
|
|
state->power_usage = cx->power;
|
|
|
|
state->flags = 0;
|
|
switch (cx->type) {
|
|
case ACPI_STATE_C1:
|
|
state->flags |= CPUIDLE_FLAG_SHALLOW;
|
|
if (cx->entry_method == ACPI_CSTATE_FFH)
|
|
state->flags |= CPUIDLE_FLAG_TIME_VALID;
|
|
|
|
state->enter = acpi_idle_enter_c1;
|
|
dev->safe_state = state;
|
|
break;
|
|
|
|
case ACPI_STATE_C2:
|
|
state->flags |= CPUIDLE_FLAG_BALANCED;
|
|
state->flags |= CPUIDLE_FLAG_TIME_VALID;
|
|
state->enter = acpi_idle_enter_simple;
|
|
dev->safe_state = state;
|
|
break;
|
|
|
|
case ACPI_STATE_C3:
|
|
state->flags |= CPUIDLE_FLAG_DEEP;
|
|
state->flags |= CPUIDLE_FLAG_TIME_VALID;
|
|
state->flags |= CPUIDLE_FLAG_CHECK_BM;
|
|
state->enter = pr->flags.bm_check ?
|
|
acpi_idle_enter_bm :
|
|
acpi_idle_enter_simple;
|
|
break;
|
|
}
|
|
|
|
count++;
|
|
if (count == CPUIDLE_STATE_MAX)
|
|
break;
|
|
}
|
|
|
|
dev->state_count = count;
|
|
|
|
if (!count)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int acpi_processor_cst_has_changed(struct acpi_processor *pr)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (boot_option_idle_override)
|
|
return 0;
|
|
|
|
if (!pr)
|
|
return -EINVAL;
|
|
|
|
if (nocst) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (!pr->flags.power_setup_done)
|
|
return -ENODEV;
|
|
|
|
cpuidle_pause_and_lock();
|
|
cpuidle_disable_device(&pr->power.dev);
|
|
acpi_processor_get_power_info(pr);
|
|
if (pr->flags.power) {
|
|
acpi_processor_setup_cpuidle(pr);
|
|
ret = cpuidle_enable_device(&pr->power.dev);
|
|
}
|
|
cpuidle_resume_and_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
|
|
struct acpi_device *device)
|
|
{
|
|
acpi_status status = 0;
|
|
static int first_run;
|
|
struct proc_dir_entry *entry = NULL;
|
|
unsigned int i;
|
|
|
|
if (boot_option_idle_override)
|
|
return 0;
|
|
|
|
if (!first_run) {
|
|
if (idle_halt) {
|
|
/*
|
|
* When the boot option of "idle=halt" is added, halt
|
|
* is used for CPU IDLE.
|
|
* In such case C2/C3 is meaningless. So the max_cstate
|
|
* is set to one.
|
|
*/
|
|
max_cstate = 1;
|
|
}
|
|
dmi_check_system(processor_power_dmi_table);
|
|
max_cstate = acpi_processor_cstate_check(max_cstate);
|
|
if (max_cstate < ACPI_C_STATES_MAX)
|
|
printk(KERN_NOTICE
|
|
"ACPI: processor limited to max C-state %d\n",
|
|
max_cstate);
|
|
first_run++;
|
|
}
|
|
|
|
if (!pr)
|
|
return -EINVAL;
|
|
|
|
if (acpi_gbl_FADT.cst_control && !nocst) {
|
|
status =
|
|
acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
|
|
if (ACPI_FAILURE(status)) {
|
|
ACPI_EXCEPTION((AE_INFO, status,
|
|
"Notifying BIOS of _CST ability failed"));
|
|
}
|
|
}
|
|
|
|
acpi_processor_get_power_info(pr);
|
|
pr->flags.power_setup_done = 1;
|
|
|
|
/*
|
|
* Install the idle handler if processor power management is supported.
|
|
* Note that we use previously set idle handler will be used on
|
|
* platforms that only support C1.
|
|
*/
|
|
if (pr->flags.power) {
|
|
acpi_processor_setup_cpuidle(pr);
|
|
if (cpuidle_register_device(&pr->power.dev))
|
|
return -EIO;
|
|
|
|
printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
|
|
for (i = 1; i <= pr->power.count; i++)
|
|
if (pr->power.states[i].valid)
|
|
printk(" C%d[C%d]", i,
|
|
pr->power.states[i].type);
|
|
printk(")\n");
|
|
}
|
|
|
|
/* 'power' [R] */
|
|
entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
|
|
S_IRUGO, acpi_device_dir(device),
|
|
&acpi_processor_power_fops,
|
|
acpi_driver_data(device));
|
|
if (!entry)
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
int acpi_processor_power_exit(struct acpi_processor *pr,
|
|
struct acpi_device *device)
|
|
{
|
|
if (boot_option_idle_override)
|
|
return 0;
|
|
|
|
cpuidle_unregister_device(&pr->power.dev);
|
|
pr->flags.power_setup_done = 0;
|
|
|
|
if (acpi_device_dir(device))
|
|
remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
|
|
acpi_device_dir(device));
|
|
|
|
return 0;
|
|
}
|