OpenCloudOS-Kernel/drivers/pci/controller/pci-xgene-msi.c

534 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* APM X-Gene MSI Driver
*
* Copyright (c) 2014, Applied Micro Circuits Corporation
* Author: Tanmay Inamdar <tinamdar@apm.com>
* Duc Dang <dhdang@apm.com>
*/
#include <linux/cpu.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/msi.h>
#include <linux/of_irq.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/of_pci.h>
#define MSI_IR0 0x000000
#define MSI_INT0 0x800000
#define IDX_PER_GROUP 8
#define IRQS_PER_IDX 16
#define NR_HW_IRQS 16
#define NR_MSI_VEC (IDX_PER_GROUP * IRQS_PER_IDX * NR_HW_IRQS)
struct xgene_msi_group {
struct xgene_msi *msi;
int gic_irq;
u32 msi_grp;
};
struct xgene_msi {
struct device_node *node;
struct irq_domain *inner_domain;
struct irq_domain *msi_domain;
u64 msi_addr;
void __iomem *msi_regs;
unsigned long *bitmap;
struct mutex bitmap_lock;
struct xgene_msi_group *msi_groups;
int num_cpus;
};
/* Global data */
static struct xgene_msi xgene_msi_ctrl;
static struct irq_chip xgene_msi_top_irq_chip = {
.name = "X-Gene1 MSI",
.irq_enable = pci_msi_unmask_irq,
.irq_disable = pci_msi_mask_irq,
.irq_mask = pci_msi_mask_irq,
.irq_unmask = pci_msi_unmask_irq,
};
static struct msi_domain_info xgene_msi_domain_info = {
.flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
MSI_FLAG_PCI_MSIX),
.chip = &xgene_msi_top_irq_chip,
};
/*
* X-Gene v1 has 16 groups of MSI termination registers MSInIRx, where
* n is group number (0..F), x is index of registers in each group (0..7)
* The register layout is as follows:
* MSI0IR0 base_addr
* MSI0IR1 base_addr + 0x10000
* ... ...
* MSI0IR6 base_addr + 0x60000
* MSI0IR7 base_addr + 0x70000
* MSI1IR0 base_addr + 0x80000
* MSI1IR1 base_addr + 0x90000
* ... ...
* MSI1IR7 base_addr + 0xF0000
* MSI2IR0 base_addr + 0x100000
* ... ...
* MSIFIR0 base_addr + 0x780000
* MSIFIR1 base_addr + 0x790000
* ... ...
* MSIFIR7 base_addr + 0x7F0000
* MSIINT0 base_addr + 0x800000
* MSIINT1 base_addr + 0x810000
* ... ...
* MSIINTF base_addr + 0x8F0000
*
* Each index register supports 16 MSI vectors (0..15) to generate interrupt.
* There are total 16 GIC IRQs assigned for these 16 groups of MSI termination
* registers.
*
* Each MSI termination group has 1 MSIINTn register (n is 0..15) to indicate
* the MSI pending status caused by 1 of its 8 index registers.
*/
/* MSInIRx read helper */
static u32 xgene_msi_ir_read(struct xgene_msi *msi,
u32 msi_grp, u32 msir_idx)
{
return readl_relaxed(msi->msi_regs + MSI_IR0 +
(msi_grp << 19) + (msir_idx << 16));
}
/* MSIINTn read helper */
static u32 xgene_msi_int_read(struct xgene_msi *msi, u32 msi_grp)
{
return readl_relaxed(msi->msi_regs + MSI_INT0 + (msi_grp << 16));
}
/*
* With 2048 MSI vectors supported, the MSI message can be constructed using
* following scheme:
* - Divide into 8 256-vector groups
* Group 0: 0-255
* Group 1: 256-511
* Group 2: 512-767
* ...
* Group 7: 1792-2047
* - Each 256-vector group is divided into 16 16-vector groups
* As an example: 16 16-vector groups for 256-vector group 0-255 is
* Group 0: 0-15
* Group 1: 16-32
* ...
* Group 15: 240-255
* - The termination address of MSI vector in 256-vector group n and 16-vector
* group x is the address of MSIxIRn
* - The data for MSI vector in 16-vector group x is x
*/
static u32 hwirq_to_reg_set(unsigned long hwirq)
{
return (hwirq / (NR_HW_IRQS * IRQS_PER_IDX));
}
static u32 hwirq_to_group(unsigned long hwirq)
{
return (hwirq % NR_HW_IRQS);
}
static u32 hwirq_to_msi_data(unsigned long hwirq)
{
return ((hwirq / NR_HW_IRQS) % IRQS_PER_IDX);
}
static void xgene_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
{
struct xgene_msi *msi = irq_data_get_irq_chip_data(data);
u32 reg_set = hwirq_to_reg_set(data->hwirq);
u32 group = hwirq_to_group(data->hwirq);
u64 target_addr = msi->msi_addr + (((8 * group) + reg_set) << 16);
msg->address_hi = upper_32_bits(target_addr);
msg->address_lo = lower_32_bits(target_addr);
msg->data = hwirq_to_msi_data(data->hwirq);
}
/*
* X-Gene v1 only has 16 MSI GIC IRQs for 2048 MSI vectors. To maintain
* the expected behaviour of .set_affinity for each MSI interrupt, the 16
* MSI GIC IRQs are statically allocated to 8 X-Gene v1 cores (2 GIC IRQs
* for each core). The MSI vector is moved fom 1 MSI GIC IRQ to another
* MSI GIC IRQ to steer its MSI interrupt to correct X-Gene v1 core. As a
* consequence, the total MSI vectors that X-Gene v1 supports will be
* reduced to 256 (2048/8) vectors.
*/
static int hwirq_to_cpu(unsigned long hwirq)
{
return (hwirq % xgene_msi_ctrl.num_cpus);
}
static unsigned long hwirq_to_canonical_hwirq(unsigned long hwirq)
{
return (hwirq - hwirq_to_cpu(hwirq));
}
static int xgene_msi_set_affinity(struct irq_data *irqdata,
const struct cpumask *mask, bool force)
{
int target_cpu = cpumask_first(mask);
int curr_cpu;
curr_cpu = hwirq_to_cpu(irqdata->hwirq);
if (curr_cpu == target_cpu)
return IRQ_SET_MASK_OK_DONE;
/* Update MSI number to target the new CPU */
irqdata->hwirq = hwirq_to_canonical_hwirq(irqdata->hwirq) + target_cpu;
return IRQ_SET_MASK_OK;
}
static struct irq_chip xgene_msi_bottom_irq_chip = {
.name = "MSI",
.irq_set_affinity = xgene_msi_set_affinity,
.irq_compose_msi_msg = xgene_compose_msi_msg,
};
static int xgene_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *args)
{
struct xgene_msi *msi = domain->host_data;
int msi_irq;
mutex_lock(&msi->bitmap_lock);
msi_irq = bitmap_find_next_zero_area(msi->bitmap, NR_MSI_VEC, 0,
msi->num_cpus, 0);
if (msi_irq < NR_MSI_VEC)
bitmap_set(msi->bitmap, msi_irq, msi->num_cpus);
else
msi_irq = -ENOSPC;
mutex_unlock(&msi->bitmap_lock);
if (msi_irq < 0)
return msi_irq;
irq_domain_set_info(domain, virq, msi_irq,
&xgene_msi_bottom_irq_chip, domain->host_data,
handle_simple_irq, NULL, NULL);
return 0;
}
static void xgene_irq_domain_free(struct irq_domain *domain,
unsigned int virq, unsigned int nr_irqs)
{
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
struct xgene_msi *msi = irq_data_get_irq_chip_data(d);
u32 hwirq;
mutex_lock(&msi->bitmap_lock);
hwirq = hwirq_to_canonical_hwirq(d->hwirq);
bitmap_clear(msi->bitmap, hwirq, msi->num_cpus);
mutex_unlock(&msi->bitmap_lock);
irq_domain_free_irqs_parent(domain, virq, nr_irqs);
}
static const struct irq_domain_ops msi_domain_ops = {
.alloc = xgene_irq_domain_alloc,
.free = xgene_irq_domain_free,
};
static int xgene_allocate_domains(struct xgene_msi *msi)
{
msi->inner_domain = irq_domain_add_linear(NULL, NR_MSI_VEC,
&msi_domain_ops, msi);
if (!msi->inner_domain)
return -ENOMEM;
msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(msi->node),
&xgene_msi_domain_info,
msi->inner_domain);
if (!msi->msi_domain) {
irq_domain_remove(msi->inner_domain);
return -ENOMEM;
}
return 0;
}
static void xgene_free_domains(struct xgene_msi *msi)
{
if (msi->msi_domain)
irq_domain_remove(msi->msi_domain);
if (msi->inner_domain)
irq_domain_remove(msi->inner_domain);
}
static int xgene_msi_init_allocator(struct xgene_msi *xgene_msi)
{
int size = BITS_TO_LONGS(NR_MSI_VEC) * sizeof(long);
xgene_msi->bitmap = kzalloc(size, GFP_KERNEL);
if (!xgene_msi->bitmap)
return -ENOMEM;
mutex_init(&xgene_msi->bitmap_lock);
xgene_msi->msi_groups = kcalloc(NR_HW_IRQS,
sizeof(struct xgene_msi_group),
GFP_KERNEL);
if (!xgene_msi->msi_groups)
return -ENOMEM;
return 0;
}
static void xgene_msi_isr(struct irq_desc *desc)
{
struct irq_chip *chip = irq_desc_get_chip(desc);
struct xgene_msi_group *msi_groups;
struct xgene_msi *xgene_msi;
int msir_index, msir_val, hw_irq, ret;
u32 intr_index, grp_select, msi_grp;
chained_irq_enter(chip, desc);
msi_groups = irq_desc_get_handler_data(desc);
xgene_msi = msi_groups->msi;
msi_grp = msi_groups->msi_grp;
/*
* MSIINTn (n is 0..F) indicates if there is a pending MSI interrupt
* If bit x of this register is set (x is 0..7), one or more interrupts
* corresponding to MSInIRx is set.
*/
grp_select = xgene_msi_int_read(xgene_msi, msi_grp);
while (grp_select) {
msir_index = ffs(grp_select) - 1;
/*
* Calculate MSInIRx address to read to check for interrupts
* (refer to termination address and data assignment
* described in xgene_compose_msi_msg() )
*/
msir_val = xgene_msi_ir_read(xgene_msi, msi_grp, msir_index);
while (msir_val) {
intr_index = ffs(msir_val) - 1;
/*
* Calculate MSI vector number (refer to the termination
* address and data assignment described in
* xgene_compose_msi_msg function)
*/
hw_irq = (((msir_index * IRQS_PER_IDX) + intr_index) *
NR_HW_IRQS) + msi_grp;
/*
* As we have multiple hw_irq that maps to single MSI,
* always look up the virq using the hw_irq as seen from
* CPU0
*/
hw_irq = hwirq_to_canonical_hwirq(hw_irq);
ret = generic_handle_domain_irq(xgene_msi->inner_domain, hw_irq);
WARN_ON_ONCE(ret);
msir_val &= ~(1 << intr_index);
}
grp_select &= ~(1 << msir_index);
if (!grp_select) {
/*
* We handled all interrupts happened in this group,
* resample this group MSI_INTx register in case
* something else has been made pending in the meantime
*/
grp_select = xgene_msi_int_read(xgene_msi, msi_grp);
}
}
chained_irq_exit(chip, desc);
}
static enum cpuhp_state pci_xgene_online;
static int xgene_msi_remove(struct platform_device *pdev)
{
struct xgene_msi *msi = platform_get_drvdata(pdev);
if (pci_xgene_online)
cpuhp_remove_state(pci_xgene_online);
cpuhp_remove_state(CPUHP_PCI_XGENE_DEAD);
kfree(msi->msi_groups);
kfree(msi->bitmap);
msi->bitmap = NULL;
xgene_free_domains(msi);
return 0;
}
static int xgene_msi_hwirq_alloc(unsigned int cpu)
{
struct xgene_msi *msi = &xgene_msi_ctrl;
struct xgene_msi_group *msi_group;
cpumask_var_t mask;
int i;
int err;
for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
msi_group = &msi->msi_groups[i];
if (!msi_group->gic_irq)
continue;
irq_set_chained_handler_and_data(msi_group->gic_irq,
xgene_msi_isr, msi_group);
/*
* Statically allocate MSI GIC IRQs to each CPU core.
* With 8-core X-Gene v1, 2 MSI GIC IRQs are allocated
* to each core.
*/
if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
cpumask_clear(mask);
cpumask_set_cpu(cpu, mask);
err = irq_set_affinity(msi_group->gic_irq, mask);
if (err)
pr_err("failed to set affinity for GIC IRQ");
free_cpumask_var(mask);
} else {
pr_err("failed to alloc CPU mask for affinity\n");
err = -EINVAL;
}
if (err) {
irq_set_chained_handler_and_data(msi_group->gic_irq,
NULL, NULL);
return err;
}
}
return 0;
}
static int xgene_msi_hwirq_free(unsigned int cpu)
{
struct xgene_msi *msi = &xgene_msi_ctrl;
struct xgene_msi_group *msi_group;
int i;
for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
msi_group = &msi->msi_groups[i];
if (!msi_group->gic_irq)
continue;
irq_set_chained_handler_and_data(msi_group->gic_irq, NULL,
NULL);
}
return 0;
}
static const struct of_device_id xgene_msi_match_table[] = {
{.compatible = "apm,xgene1-msi"},
{},
};
static int xgene_msi_probe(struct platform_device *pdev)
{
struct resource *res;
int rc, irq_index;
struct xgene_msi *xgene_msi;
int virt_msir;
u32 msi_val, msi_idx;
xgene_msi = &xgene_msi_ctrl;
platform_set_drvdata(pdev, xgene_msi);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
xgene_msi->msi_regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(xgene_msi->msi_regs)) {
rc = PTR_ERR(xgene_msi->msi_regs);
goto error;
}
xgene_msi->msi_addr = res->start;
xgene_msi->node = pdev->dev.of_node;
xgene_msi->num_cpus = num_possible_cpus();
rc = xgene_msi_init_allocator(xgene_msi);
if (rc) {
dev_err(&pdev->dev, "Error allocating MSI bitmap\n");
goto error;
}
rc = xgene_allocate_domains(xgene_msi);
if (rc) {
dev_err(&pdev->dev, "Failed to allocate MSI domain\n");
goto error;
}
for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
virt_msir = platform_get_irq(pdev, irq_index);
if (virt_msir < 0) {
rc = virt_msir;
goto error;
}
xgene_msi->msi_groups[irq_index].gic_irq = virt_msir;
xgene_msi->msi_groups[irq_index].msi_grp = irq_index;
xgene_msi->msi_groups[irq_index].msi = xgene_msi;
}
/*
* MSInIRx registers are read-to-clear; before registering
* interrupt handlers, read all of them to clear spurious
* interrupts that may occur before the driver is probed.
*/
for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
for (msi_idx = 0; msi_idx < IDX_PER_GROUP; msi_idx++)
xgene_msi_ir_read(xgene_msi, irq_index, msi_idx);
/* Read MSIINTn to confirm */
msi_val = xgene_msi_int_read(xgene_msi, irq_index);
if (msi_val) {
dev_err(&pdev->dev, "Failed to clear spurious IRQ\n");
rc = -EINVAL;
goto error;
}
}
rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "pci/xgene:online",
xgene_msi_hwirq_alloc, NULL);
if (rc < 0)
goto err_cpuhp;
pci_xgene_online = rc;
rc = cpuhp_setup_state(CPUHP_PCI_XGENE_DEAD, "pci/xgene:dead", NULL,
xgene_msi_hwirq_free);
if (rc)
goto err_cpuhp;
dev_info(&pdev->dev, "APM X-Gene PCIe MSI driver loaded\n");
return 0;
err_cpuhp:
dev_err(&pdev->dev, "failed to add CPU MSI notifier\n");
error:
xgene_msi_remove(pdev);
return rc;
}
static struct platform_driver xgene_msi_driver = {
.driver = {
.name = "xgene-msi",
.of_match_table = xgene_msi_match_table,
},
.probe = xgene_msi_probe,
.remove = xgene_msi_remove,
};
static int __init xgene_pcie_msi_init(void)
{
return platform_driver_register(&xgene_msi_driver);
}
subsys_initcall(xgene_pcie_msi_init);