OpenCloudOS-Kernel/drivers/gpu/drm/gma500/gma_display.c

767 lines
20 KiB
C

/*
* Copyright © 2006-2011 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Patrik Jakobsson <patrik.r.jakobsson@gmail.com>
*/
#include <drm/drmP.h>
#include "gma_display.h"
#include "psb_intel_drv.h"
#include "psb_intel_reg.h"
#include "psb_drv.h"
#include "framebuffer.h"
/**
* Returns whether any output on the specified pipe is of the specified type
*/
bool gma_pipe_has_type(struct drm_crtc *crtc, int type)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *l_entry;
list_for_each_entry(l_entry, &mode_config->connector_list, head) {
if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
struct gma_encoder *gma_encoder =
gma_attached_encoder(l_entry);
if (gma_encoder->type == type)
return true;
}
}
return false;
}
void gma_wait_for_vblank(struct drm_device *dev)
{
/* Wait for 20ms, i.e. one cycle at 50hz. */
mdelay(20);
}
int gma_pipe_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
struct drm_framebuffer *fb = crtc->primary->fb;
struct gtt_range *gtt;
int pipe = gma_crtc->pipe;
const struct psb_offset *map = &dev_priv->regmap[pipe];
unsigned long start, offset;
u32 dspcntr;
int ret = 0;
if (!gma_power_begin(dev, true))
return 0;
/* no fb bound */
if (!fb) {
dev_err(dev->dev, "No FB bound\n");
goto gma_pipe_cleaner;
}
gtt = to_gtt_range(fb->obj[0]);
/* We are displaying this buffer, make sure it is actually loaded
into the GTT */
ret = psb_gtt_pin(gtt);
if (ret < 0)
goto gma_pipe_set_base_exit;
start = gtt->offset;
offset = y * fb->pitches[0] + x * fb->format->cpp[0];
REG_WRITE(map->stride, fb->pitches[0]);
dspcntr = REG_READ(map->cntr);
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
switch (fb->format->cpp[0] * 8) {
case 8:
dspcntr |= DISPPLANE_8BPP;
break;
case 16:
if (fb->format->depth == 15)
dspcntr |= DISPPLANE_15_16BPP;
else
dspcntr |= DISPPLANE_16BPP;
break;
case 24:
case 32:
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
break;
default:
dev_err(dev->dev, "Unknown color depth\n");
ret = -EINVAL;
goto gma_pipe_set_base_exit;
}
REG_WRITE(map->cntr, dspcntr);
dev_dbg(dev->dev,
"Writing base %08lX %08lX %d %d\n", start, offset, x, y);
/* FIXME: Investigate whether this really is the base for psb and why
the linear offset is named base for the other chips. map->surf
should be the base and map->linoff the offset for all chips */
if (IS_PSB(dev)) {
REG_WRITE(map->base, offset + start);
REG_READ(map->base);
} else {
REG_WRITE(map->base, offset);
REG_READ(map->base);
REG_WRITE(map->surf, start);
REG_READ(map->surf);
}
gma_pipe_cleaner:
/* If there was a previous display we can now unpin it */
if (old_fb)
psb_gtt_unpin(to_gtt_range(old_fb->obj[0]));
gma_pipe_set_base_exit:
gma_power_end(dev);
return ret;
}
/* Loads the palette/gamma unit for the CRTC with the prepared values */
void gma_crtc_load_lut(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
int palreg = map->palette;
u16 *r, *g, *b;
int i;
/* The clocks have to be on to load the palette. */
if (!crtc->enabled)
return;
r = crtc->gamma_store;
g = r + crtc->gamma_size;
b = g + crtc->gamma_size;
if (gma_power_begin(dev, false)) {
for (i = 0; i < 256; i++) {
REG_WRITE(palreg + 4 * i,
(((*r++ >> 8) + gma_crtc->lut_adj[i]) << 16) |
(((*g++ >> 8) + gma_crtc->lut_adj[i]) << 8) |
((*b++ >> 8) + gma_crtc->lut_adj[i]));
}
gma_power_end(dev);
} else {
for (i = 0; i < 256; i++) {
/* FIXME: Why pipe[0] and not pipe[..._crtc->pipe]? */
dev_priv->regs.pipe[0].palette[i] =
(((*r++ >> 8) + gma_crtc->lut_adj[i]) << 16) |
(((*g++ >> 8) + gma_crtc->lut_adj[i]) << 8) |
((*b++ >> 8) + gma_crtc->lut_adj[i]);
}
}
}
int gma_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue,
u32 size,
struct drm_modeset_acquire_ctx *ctx)
{
gma_crtc_load_lut(crtc);
return 0;
}
/**
* Sets the power management mode of the pipe and plane.
*
* This code should probably grow support for turning the cursor off and back
* on appropriately at the same time as we're turning the pipe off/on.
*/
void gma_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
int pipe = gma_crtc->pipe;
const struct psb_offset *map = &dev_priv->regmap[pipe];
u32 temp;
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
if (IS_CDV(dev))
dev_priv->ops->disable_sr(dev);
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
if (gma_crtc->active)
break;
gma_crtc->active = true;
/* Enable the DPLL */
temp = REG_READ(map->dpll);
if ((temp & DPLL_VCO_ENABLE) == 0) {
REG_WRITE(map->dpll, temp);
REG_READ(map->dpll);
/* Wait for the clocks to stabilize. */
udelay(150);
REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
REG_READ(map->dpll);
/* Wait for the clocks to stabilize. */
udelay(150);
REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
REG_READ(map->dpll);
/* Wait for the clocks to stabilize. */
udelay(150);
}
/* Enable the plane */
temp = REG_READ(map->cntr);
if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
REG_WRITE(map->cntr,
temp | DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
REG_WRITE(map->base, REG_READ(map->base));
}
udelay(150);
/* Enable the pipe */
temp = REG_READ(map->conf);
if ((temp & PIPEACONF_ENABLE) == 0)
REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
temp = REG_READ(map->status);
temp &= ~(0xFFFF);
temp |= PIPE_FIFO_UNDERRUN;
REG_WRITE(map->status, temp);
REG_READ(map->status);
gma_crtc_load_lut(crtc);
/* Give the overlay scaler a chance to enable
* if it's on this pipe */
/* psb_intel_crtc_dpms_video(crtc, true); TODO */
break;
case DRM_MODE_DPMS_OFF:
if (!gma_crtc->active)
break;
gma_crtc->active = false;
/* Give the overlay scaler a chance to disable
* if it's on this pipe */
/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
/* Disable the VGA plane that we never use */
REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
/* Turn off vblank interrupts */
drm_crtc_vblank_off(crtc);
/* Wait for vblank for the disable to take effect */
gma_wait_for_vblank(dev);
/* Disable plane */
temp = REG_READ(map->cntr);
if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
REG_WRITE(map->cntr,
temp & ~DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
REG_WRITE(map->base, REG_READ(map->base));
REG_READ(map->base);
}
/* Disable pipe */
temp = REG_READ(map->conf);
if ((temp & PIPEACONF_ENABLE) != 0) {
REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
REG_READ(map->conf);
}
/* Wait for vblank for the disable to take effect. */
gma_wait_for_vblank(dev);
udelay(150);
/* Disable DPLL */
temp = REG_READ(map->dpll);
if ((temp & DPLL_VCO_ENABLE) != 0) {
REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
REG_READ(map->dpll);
}
/* Wait for the clocks to turn off. */
udelay(150);
break;
}
if (IS_CDV(dev))
dev_priv->ops->update_wm(dev, crtc);
/* Set FIFO watermarks */
REG_WRITE(DSPARB, 0x3F3E);
}
int gma_crtc_cursor_set(struct drm_crtc *crtc,
struct drm_file *file_priv,
uint32_t handle,
uint32_t width, uint32_t height)
{
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
int pipe = gma_crtc->pipe;
uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
uint32_t temp;
size_t addr = 0;
struct gtt_range *gt;
struct gtt_range *cursor_gt = gma_crtc->cursor_gt;
struct drm_gem_object *obj;
void *tmp_dst, *tmp_src;
int ret = 0, i, cursor_pages;
/* If we didn't get a handle then turn the cursor off */
if (!handle) {
temp = CURSOR_MODE_DISABLE;
if (gma_power_begin(dev, false)) {
REG_WRITE(control, temp);
REG_WRITE(base, 0);
gma_power_end(dev);
}
/* Unpin the old GEM object */
if (gma_crtc->cursor_obj) {
gt = container_of(gma_crtc->cursor_obj,
struct gtt_range, gem);
psb_gtt_unpin(gt);
drm_gem_object_put_unlocked(gma_crtc->cursor_obj);
gma_crtc->cursor_obj = NULL;
}
return 0;
}
/* Currently we only support 64x64 cursors */
if (width != 64 || height != 64) {
dev_dbg(dev->dev, "We currently only support 64x64 cursors\n");
return -EINVAL;
}
obj = drm_gem_object_lookup(file_priv, handle);
if (!obj) {
ret = -ENOENT;
goto unlock;
}
if (obj->size < width * height * 4) {
dev_dbg(dev->dev, "Buffer is too small\n");
ret = -ENOMEM;
goto unref_cursor;
}
gt = container_of(obj, struct gtt_range, gem);
/* Pin the memory into the GTT */
ret = psb_gtt_pin(gt);
if (ret) {
dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
goto unref_cursor;
}
if (dev_priv->ops->cursor_needs_phys) {
if (cursor_gt == NULL) {
dev_err(dev->dev, "No hardware cursor mem available");
ret = -ENOMEM;
goto unref_cursor;
}
/* Prevent overflow */
if (gt->npage > 4)
cursor_pages = 4;
else
cursor_pages = gt->npage;
/* Copy the cursor to cursor mem */
tmp_dst = dev_priv->vram_addr + cursor_gt->offset;
for (i = 0; i < cursor_pages; i++) {
tmp_src = kmap(gt->pages[i]);
memcpy(tmp_dst, tmp_src, PAGE_SIZE);
kunmap(gt->pages[i]);
tmp_dst += PAGE_SIZE;
}
addr = gma_crtc->cursor_addr;
} else {
addr = gt->offset;
gma_crtc->cursor_addr = addr;
}
temp = 0;
/* set the pipe for the cursor */
temp |= (pipe << 28);
temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
if (gma_power_begin(dev, false)) {
REG_WRITE(control, temp);
REG_WRITE(base, addr);
gma_power_end(dev);
}
/* unpin the old bo */
if (gma_crtc->cursor_obj) {
gt = container_of(gma_crtc->cursor_obj, struct gtt_range, gem);
psb_gtt_unpin(gt);
drm_gem_object_put_unlocked(gma_crtc->cursor_obj);
}
gma_crtc->cursor_obj = obj;
unlock:
return ret;
unref_cursor:
drm_gem_object_put_unlocked(obj);
return ret;
}
int gma_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct drm_device *dev = crtc->dev;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
int pipe = gma_crtc->pipe;
uint32_t temp = 0;
uint32_t addr;
if (x < 0) {
temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
x = -x;
}
if (y < 0) {
temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
y = -y;
}
temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
addr = gma_crtc->cursor_addr;
if (gma_power_begin(dev, false)) {
REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
gma_power_end(dev);
}
return 0;
}
void gma_crtc_prepare(struct drm_crtc *crtc)
{
const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
}
void gma_crtc_commit(struct drm_crtc *crtc)
{
const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
}
void gma_crtc_disable(struct drm_crtc *crtc)
{
struct gtt_range *gt;
const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
if (crtc->primary->fb) {
gt = to_gtt_range(crtc->primary->fb->obj[0]);
psb_gtt_unpin(gt);
}
}
void gma_crtc_destroy(struct drm_crtc *crtc)
{
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
kfree(gma_crtc->crtc_state);
drm_crtc_cleanup(crtc);
kfree(gma_crtc);
}
int gma_crtc_set_config(struct drm_mode_set *set,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_device *dev = set->crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
int ret;
if (!dev_priv->rpm_enabled)
return drm_crtc_helper_set_config(set, ctx);
pm_runtime_forbid(&dev->pdev->dev);
ret = drm_crtc_helper_set_config(set, ctx);
pm_runtime_allow(&dev->pdev->dev);
return ret;
}
/**
* Save HW states of given crtc
*/
void gma_crtc_save(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state;
const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
uint32_t palette_reg;
int i;
if (!crtc_state) {
dev_err(dev->dev, "No CRTC state found\n");
return;
}
crtc_state->saveDSPCNTR = REG_READ(map->cntr);
crtc_state->savePIPECONF = REG_READ(map->conf);
crtc_state->savePIPESRC = REG_READ(map->src);
crtc_state->saveFP0 = REG_READ(map->fp0);
crtc_state->saveFP1 = REG_READ(map->fp1);
crtc_state->saveDPLL = REG_READ(map->dpll);
crtc_state->saveHTOTAL = REG_READ(map->htotal);
crtc_state->saveHBLANK = REG_READ(map->hblank);
crtc_state->saveHSYNC = REG_READ(map->hsync);
crtc_state->saveVTOTAL = REG_READ(map->vtotal);
crtc_state->saveVBLANK = REG_READ(map->vblank);
crtc_state->saveVSYNC = REG_READ(map->vsync);
crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
/* NOTE: DSPSIZE DSPPOS only for psb */
crtc_state->saveDSPSIZE = REG_READ(map->size);
crtc_state->saveDSPPOS = REG_READ(map->pos);
crtc_state->saveDSPBASE = REG_READ(map->base);
palette_reg = map->palette;
for (i = 0; i < 256; ++i)
crtc_state->savePalette[i] = REG_READ(palette_reg + (i << 2));
}
/**
* Restore HW states of given crtc
*/
void gma_crtc_restore(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state;
const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
uint32_t palette_reg;
int i;
if (!crtc_state) {
dev_err(dev->dev, "No crtc state\n");
return;
}
if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
REG_WRITE(map->dpll,
crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
REG_READ(map->dpll);
udelay(150);
}
REG_WRITE(map->fp0, crtc_state->saveFP0);
REG_READ(map->fp0);
REG_WRITE(map->fp1, crtc_state->saveFP1);
REG_READ(map->fp1);
REG_WRITE(map->dpll, crtc_state->saveDPLL);
REG_READ(map->dpll);
udelay(150);
REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
REG_WRITE(map->hblank, crtc_state->saveHBLANK);
REG_WRITE(map->hsync, crtc_state->saveHSYNC);
REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
REG_WRITE(map->vblank, crtc_state->saveVBLANK);
REG_WRITE(map->vsync, crtc_state->saveVSYNC);
REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
REG_WRITE(map->size, crtc_state->saveDSPSIZE);
REG_WRITE(map->pos, crtc_state->saveDSPPOS);
REG_WRITE(map->src, crtc_state->savePIPESRC);
REG_WRITE(map->base, crtc_state->saveDSPBASE);
REG_WRITE(map->conf, crtc_state->savePIPECONF);
gma_wait_for_vblank(dev);
REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
REG_WRITE(map->base, crtc_state->saveDSPBASE);
gma_wait_for_vblank(dev);
palette_reg = map->palette;
for (i = 0; i < 256; ++i)
REG_WRITE(palette_reg + (i << 2), crtc_state->savePalette[i]);
}
void gma_encoder_prepare(struct drm_encoder *encoder)
{
const struct drm_encoder_helper_funcs *encoder_funcs =
encoder->helper_private;
/* lvds has its own version of prepare see psb_intel_lvds_prepare */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
}
void gma_encoder_commit(struct drm_encoder *encoder)
{
const struct drm_encoder_helper_funcs *encoder_funcs =
encoder->helper_private;
/* lvds has its own version of commit see psb_intel_lvds_commit */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
}
void gma_encoder_destroy(struct drm_encoder *encoder)
{
struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
drm_encoder_cleanup(encoder);
kfree(intel_encoder);
}
/* Currently there is only a 1:1 mapping of encoders and connectors */
struct drm_encoder *gma_best_encoder(struct drm_connector *connector)
{
struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
return &gma_encoder->base;
}
void gma_connector_attach_encoder(struct gma_connector *connector,
struct gma_encoder *encoder)
{
connector->encoder = encoder;
drm_connector_attach_encoder(&connector->base,
&encoder->base);
}
#define GMA_PLL_INVALID(s) { /* DRM_ERROR(s); */ return false; }
bool gma_pll_is_valid(struct drm_crtc *crtc,
const struct gma_limit_t *limit,
struct gma_clock_t *clock)
{
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
GMA_PLL_INVALID("p1 out of range");
if (clock->p < limit->p.min || limit->p.max < clock->p)
GMA_PLL_INVALID("p out of range");
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
GMA_PLL_INVALID("m2 out of range");
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
GMA_PLL_INVALID("m1 out of range");
/* On CDV m1 is always 0 */
if (clock->m1 <= clock->m2 && clock->m1 != 0)
GMA_PLL_INVALID("m1 <= m2 && m1 != 0");
if (clock->m < limit->m.min || limit->m.max < clock->m)
GMA_PLL_INVALID("m out of range");
if (clock->n < limit->n.min || limit->n.max < clock->n)
GMA_PLL_INVALID("n out of range");
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
GMA_PLL_INVALID("vco out of range");
/* XXX: We may need to be checking "Dot clock"
* depending on the multiplier, connector, etc.,
* rather than just a single range.
*/
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
GMA_PLL_INVALID("dot out of range");
return true;
}
bool gma_find_best_pll(const struct gma_limit_t *limit,
struct drm_crtc *crtc, int target, int refclk,
struct gma_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
const struct gma_clock_funcs *clock_funcs =
to_gma_crtc(crtc)->clock_funcs;
struct gma_clock_t clock;
int err = target;
if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
(REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
/*
* For LVDS, if the panel is on, just rely on its current
* settings for dual-channel. We haven't figured out how to
* reliably set up different single/dual channel state, if we
* even can.
*/
if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
/* m1 is always 0 on CDV so the outmost loop will run just once */
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
for (clock.m2 = limit->m2.min;
(clock.m2 < clock.m1 || clock.m1 == 0) &&
clock.m2 <= limit->m2.max; clock.m2++) {
for (clock.n = limit->n.min;
clock.n <= limit->n.max; clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max;
clock.p1++) {
int this_err;
clock_funcs->clock(refclk, &clock);
if (!clock_funcs->pll_is_valid(crtc,
limit, &clock))
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return err != target;
}