OpenCloudOS-Kernel/include/net/route.h

325 lines
9.4 KiB
C

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Definitions for the IP router.
*
* Version: @(#)route.h 1.0.4 05/27/93
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Fixes:
* Alan Cox : Reformatted. Added ip_rt_local()
* Alan Cox : Support for TCP parameters.
* Alexey Kuznetsov: Major changes for new routing code.
* Mike McLagan : Routing by source
* Robert Olsson : Added rt_cache statistics
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _ROUTE_H
#define _ROUTE_H
#include <net/dst.h>
#include <net/inetpeer.h>
#include <net/flow.h>
#include <net/inet_sock.h>
#include <linux/in_route.h>
#include <linux/rtnetlink.h>
#include <linux/route.h>
#include <linux/ip.h>
#include <linux/cache.h>
#include <linux/security.h>
#define RTO_ONLINK 0x01
#define RT_CONN_FLAGS(sk) (RT_TOS(inet_sk(sk)->tos) | sock_flag(sk, SOCK_LOCALROUTE))
struct fib_nh;
struct inet_peer;
struct fib_info;
struct rtable {
struct dst_entry dst;
/* Lookup key. */
__be32 rt_key_dst;
__be32 rt_key_src;
int rt_genid;
unsigned rt_flags;
__u16 rt_type;
__u8 rt_key_tos;
__be32 rt_dst; /* Path destination */
__be32 rt_src; /* Path source */
int rt_route_iif;
int rt_iif;
int rt_oif;
__u32 rt_mark;
/* Info on neighbour */
__be32 rt_gateway;
/* Miscellaneous cached information */
__be32 rt_spec_dst; /* RFC1122 specific destination */
u32 rt_peer_genid;
struct inet_peer *peer; /* long-living peer info */
struct fib_info *fi; /* for client ref to shared metrics */
};
static inline bool rt_is_input_route(const struct rtable *rt)
{
return rt->rt_route_iif != 0;
}
static inline bool rt_is_output_route(const struct rtable *rt)
{
return rt->rt_route_iif == 0;
}
struct ip_rt_acct {
__u32 o_bytes;
__u32 o_packets;
__u32 i_bytes;
__u32 i_packets;
};
struct rt_cache_stat {
unsigned int in_hit;
unsigned int in_slow_tot;
unsigned int in_slow_mc;
unsigned int in_no_route;
unsigned int in_brd;
unsigned int in_martian_dst;
unsigned int in_martian_src;
unsigned int out_hit;
unsigned int out_slow_tot;
unsigned int out_slow_mc;
unsigned int gc_total;
unsigned int gc_ignored;
unsigned int gc_goal_miss;
unsigned int gc_dst_overflow;
unsigned int in_hlist_search;
unsigned int out_hlist_search;
};
extern struct ip_rt_acct __percpu *ip_rt_acct;
struct in_device;
extern int ip_rt_init(void);
extern void ip_rt_redirect(__be32 old_gw, __be32 dst, __be32 new_gw,
__be32 src, struct net_device *dev);
extern void rt_cache_flush(struct net *net, int how);
extern void rt_cache_flush_batch(struct net *net);
extern struct rtable *__ip_route_output_key(struct net *, struct flowi4 *flp);
extern struct rtable *ip_route_output_flow(struct net *, struct flowi4 *flp,
struct sock *sk);
extern struct dst_entry *ipv4_blackhole_route(struct net *net, struct dst_entry *dst_orig);
static inline struct rtable *ip_route_output_key(struct net *net, struct flowi4 *flp)
{
return ip_route_output_flow(net, flp, NULL);
}
static inline struct rtable *ip_route_output(struct net *net, __be32 daddr,
__be32 saddr, u8 tos, int oif)
{
struct flowi4 fl4 = {
.flowi4_oif = oif,
.daddr = daddr,
.saddr = saddr,
.flowi4_tos = tos,
};
return ip_route_output_key(net, &fl4);
}
static inline struct rtable *ip_route_output_ports(struct net *net, struct flowi4 *fl4,
struct sock *sk,
__be32 daddr, __be32 saddr,
__be16 dport, __be16 sport,
__u8 proto, __u8 tos, int oif)
{
flowi4_init_output(fl4, oif, sk ? sk->sk_mark : 0, tos,
RT_SCOPE_UNIVERSE, proto,
sk ? inet_sk_flowi_flags(sk) : 0,
daddr, saddr, dport, sport);
if (sk)
security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
return ip_route_output_flow(net, fl4, sk);
}
static inline struct rtable *ip_route_output_gre(struct net *net, struct flowi4 *fl4,
__be32 daddr, __be32 saddr,
__be32 gre_key, __u8 tos, int oif)
{
memset(fl4, 0, sizeof(*fl4));
fl4->flowi4_oif = oif;
fl4->daddr = daddr;
fl4->saddr = saddr;
fl4->flowi4_tos = tos;
fl4->flowi4_proto = IPPROTO_GRE;
fl4->fl4_gre_key = gre_key;
return ip_route_output_key(net, fl4);
}
extern int ip_route_input_common(struct sk_buff *skb, __be32 dst, __be32 src,
u8 tos, struct net_device *devin, bool noref);
static inline int ip_route_input(struct sk_buff *skb, __be32 dst, __be32 src,
u8 tos, struct net_device *devin)
{
return ip_route_input_common(skb, dst, src, tos, devin, false);
}
static inline int ip_route_input_noref(struct sk_buff *skb, __be32 dst, __be32 src,
u8 tos, struct net_device *devin)
{
return ip_route_input_common(skb, dst, src, tos, devin, true);
}
extern unsigned short ip_rt_frag_needed(struct net *net, const struct iphdr *iph,
unsigned short new_mtu, struct net_device *dev);
extern void ip_rt_send_redirect(struct sk_buff *skb);
extern unsigned inet_addr_type(struct net *net, __be32 addr);
extern unsigned inet_dev_addr_type(struct net *net, const struct net_device *dev, __be32 addr);
extern void ip_rt_multicast_event(struct in_device *);
extern int ip_rt_ioctl(struct net *, unsigned int cmd, void __user *arg);
extern void ip_rt_get_source(u8 *src, struct sk_buff *skb, struct rtable *rt);
extern int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb);
struct in_ifaddr;
extern void fib_add_ifaddr(struct in_ifaddr *);
extern void fib_del_ifaddr(struct in_ifaddr *, struct in_ifaddr *);
static inline void ip_rt_put(struct rtable * rt)
{
if (rt)
dst_release(&rt->dst);
}
#define IPTOS_RT_MASK (IPTOS_TOS_MASK & ~3)
extern const __u8 ip_tos2prio[16];
static inline char rt_tos2priority(u8 tos)
{
return ip_tos2prio[IPTOS_TOS(tos)>>1];
}
/* ip_route_connect() and ip_route_newports() work in tandem whilst
* binding a socket for a new outgoing connection.
*
* In order to use IPSEC properly, we must, in the end, have a
* route that was looked up using all available keys including source
* and destination ports.
*
* However, if a source port needs to be allocated (the user specified
* a wildcard source port) we need to obtain addressing information
* in order to perform that allocation.
*
* So ip_route_connect() looks up a route using wildcarded source and
* destination ports in the key, simply so that we can get a pair of
* addresses to use for port allocation.
*
* Later, once the ports are allocated, ip_route_newports() will make
* another route lookup if needed to make sure we catch any IPSEC
* rules keyed on the port information.
*
* The callers allocate the flow key on their stack, and must pass in
* the same flowi4 object to both the ip_route_connect() and the
* ip_route_newports() calls.
*/
static inline void ip_route_connect_init(struct flowi4 *fl4, __be32 dst, __be32 src,
u32 tos, int oif, u8 protocol,
__be16 sport, __be16 dport,
struct sock *sk, bool can_sleep)
{
__u8 flow_flags = 0;
if (inet_sk(sk)->transparent)
flow_flags |= FLOWI_FLAG_ANYSRC;
if (protocol == IPPROTO_TCP)
flow_flags |= FLOWI_FLAG_PRECOW_METRICS;
if (can_sleep)
flow_flags |= FLOWI_FLAG_CAN_SLEEP;
flowi4_init_output(fl4, oif, sk->sk_mark, tos, RT_SCOPE_UNIVERSE,
protocol, flow_flags, dst, src, dport, sport);
}
static inline struct rtable *ip_route_connect(struct flowi4 *fl4,
__be32 dst, __be32 src, u32 tos,
int oif, u8 protocol,
__be16 sport, __be16 dport,
struct sock *sk, bool can_sleep)
{
struct net *net = sock_net(sk);
struct rtable *rt;
ip_route_connect_init(fl4, dst, src, tos, oif, protocol,
sport, dport, sk, can_sleep);
if (!dst || !src) {
rt = __ip_route_output_key(net, fl4);
if (IS_ERR(rt))
return rt;
ip_rt_put(rt);
flowi4_update_output(fl4, oif, tos, fl4->daddr, fl4->saddr);
}
security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
return ip_route_output_flow(net, fl4, sk);
}
static inline struct rtable *ip_route_newports(struct flowi4 *fl4, struct rtable *rt,
__be16 orig_sport, __be16 orig_dport,
__be16 sport, __be16 dport,
struct sock *sk)
{
if (sport != orig_sport || dport != orig_dport) {
fl4->fl4_dport = dport;
fl4->fl4_sport = sport;
ip_rt_put(rt);
flowi4_update_output(fl4, sk->sk_bound_dev_if,
RT_CONN_FLAGS(sk), fl4->daddr,
fl4->saddr);
security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
return ip_route_output_flow(sock_net(sk), fl4, sk);
}
return rt;
}
extern void rt_bind_peer(struct rtable *rt, __be32 daddr, int create);
static inline struct inet_peer *rt_get_peer(struct rtable *rt, __be32 daddr)
{
if (rt->peer)
return rt->peer;
rt_bind_peer(rt, daddr, 0);
return rt->peer;
}
static inline int inet_iif(const struct sk_buff *skb)
{
return skb_rtable(skb)->rt_iif;
}
extern int sysctl_ip_default_ttl;
static inline int ip4_dst_hoplimit(const struct dst_entry *dst)
{
int hoplimit = dst_metric_raw(dst, RTAX_HOPLIMIT);
if (hoplimit == 0)
hoplimit = sysctl_ip_default_ttl;
return hoplimit;
}
#endif /* _ROUTE_H */