OpenCloudOS-Kernel/arch/sparc/kernel/traps_64.c

2760 lines
78 KiB
C

/* arch/sparc64/kernel/traps.c
*
* Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
* Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
*/
/*
* I like traps on v9, :))))
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/linkage.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/smp.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/kdebug.h>
#include <linux/ftrace.h>
#include <linux/reboot.h>
#include <linux/gfp.h>
#include <asm/smp.h>
#include <asm/delay.h>
#include <asm/ptrace.h>
#include <asm/oplib.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/unistd.h>
#include <asm/uaccess.h>
#include <asm/fpumacro.h>
#include <asm/lsu.h>
#include <asm/dcu.h>
#include <asm/estate.h>
#include <asm/chafsr.h>
#include <asm/sfafsr.h>
#include <asm/psrcompat.h>
#include <asm/processor.h>
#include <asm/timer.h>
#include <asm/head.h>
#include <asm/prom.h>
#include <asm/memctrl.h>
#include <asm/cacheflush.h>
#include "entry.h"
#include "kstack.h"
/* When an irrecoverable trap occurs at tl > 0, the trap entry
* code logs the trap state registers at every level in the trap
* stack. It is found at (pt_regs + sizeof(pt_regs)) and the layout
* is as follows:
*/
struct tl1_traplog {
struct {
unsigned long tstate;
unsigned long tpc;
unsigned long tnpc;
unsigned long tt;
} trapstack[4];
unsigned long tl;
};
static void dump_tl1_traplog(struct tl1_traplog *p)
{
int i, limit;
printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
"dumping track stack.\n", p->tl);
limit = (tlb_type == hypervisor) ? 2 : 4;
for (i = 0; i < limit; i++) {
printk(KERN_EMERG
"TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
"TNPC[%016lx] TT[%lx]\n",
i + 1,
p->trapstack[i].tstate, p->trapstack[i].tpc,
p->trapstack[i].tnpc, p->trapstack[i].tt);
printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
}
}
void bad_trap(struct pt_regs *regs, long lvl)
{
char buffer[32];
siginfo_t info;
if (notify_die(DIE_TRAP, "bad trap", regs,
0, lvl, SIGTRAP) == NOTIFY_STOP)
return;
if (lvl < 0x100) {
sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
die_if_kernel(buffer, regs);
}
lvl -= 0x100;
if (regs->tstate & TSTATE_PRIV) {
sprintf(buffer, "Kernel bad sw trap %lx", lvl);
die_if_kernel(buffer, regs);
}
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGILL;
info.si_errno = 0;
info.si_code = ILL_ILLTRP;
info.si_addr = (void __user *)regs->tpc;
info.si_trapno = lvl;
force_sig_info(SIGILL, &info, current);
}
void bad_trap_tl1(struct pt_regs *regs, long lvl)
{
char buffer[32];
if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
0, lvl, SIGTRAP) == NOTIFY_STOP)
return;
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
sprintf (buffer, "Bad trap %lx at tl>0", lvl);
die_if_kernel (buffer, regs);
}
#ifdef CONFIG_DEBUG_BUGVERBOSE
void do_BUG(const char *file, int line)
{
bust_spinlocks(1);
printk("kernel BUG at %s:%d!\n", file, line);
}
EXPORT_SYMBOL(do_BUG);
#endif
static DEFINE_SPINLOCK(dimm_handler_lock);
static dimm_printer_t dimm_handler;
static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
{
unsigned long flags;
int ret = -ENODEV;
spin_lock_irqsave(&dimm_handler_lock, flags);
if (dimm_handler) {
ret = dimm_handler(synd_code, paddr, buf, buflen);
} else if (tlb_type == spitfire) {
if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
ret = -EINVAL;
else
ret = 0;
} else
ret = -ENODEV;
spin_unlock_irqrestore(&dimm_handler_lock, flags);
return ret;
}
int register_dimm_printer(dimm_printer_t func)
{
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&dimm_handler_lock, flags);
if (!dimm_handler)
dimm_handler = func;
else
ret = -EEXIST;
spin_unlock_irqrestore(&dimm_handler_lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(register_dimm_printer);
void unregister_dimm_printer(dimm_printer_t func)
{
unsigned long flags;
spin_lock_irqsave(&dimm_handler_lock, flags);
if (dimm_handler == func)
dimm_handler = NULL;
spin_unlock_irqrestore(&dimm_handler_lock, flags);
}
EXPORT_SYMBOL_GPL(unregister_dimm_printer);
void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
{
siginfo_t info;
if (notify_die(DIE_TRAP, "instruction access exception", regs,
0, 0x8, SIGTRAP) == NOTIFY_STOP)
return;
if (regs->tstate & TSTATE_PRIV) {
printk("spitfire_insn_access_exception: SFSR[%016lx] "
"SFAR[%016lx], going.\n", sfsr, sfar);
die_if_kernel("Iax", regs);
}
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = SEGV_MAPERR;
info.si_addr = (void __user *)regs->tpc;
info.si_trapno = 0;
force_sig_info(SIGSEGV, &info, current);
}
void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
{
if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
0, 0x8, SIGTRAP) == NOTIFY_STOP)
return;
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
spitfire_insn_access_exception(regs, sfsr, sfar);
}
void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
unsigned short type = (type_ctx >> 16);
unsigned short ctx = (type_ctx & 0xffff);
siginfo_t info;
if (notify_die(DIE_TRAP, "instruction access exception", regs,
0, 0x8, SIGTRAP) == NOTIFY_STOP)
return;
if (regs->tstate & TSTATE_PRIV) {
printk("sun4v_insn_access_exception: ADDR[%016lx] "
"CTX[%04x] TYPE[%04x], going.\n",
addr, ctx, type);
die_if_kernel("Iax", regs);
}
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = SEGV_MAPERR;
info.si_addr = (void __user *) addr;
info.si_trapno = 0;
force_sig_info(SIGSEGV, &info, current);
}
void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
0, 0x8, SIGTRAP) == NOTIFY_STOP)
return;
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
sun4v_insn_access_exception(regs, addr, type_ctx);
}
void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
{
siginfo_t info;
if (notify_die(DIE_TRAP, "data access exception", regs,
0, 0x30, SIGTRAP) == NOTIFY_STOP)
return;
if (regs->tstate & TSTATE_PRIV) {
/* Test if this comes from uaccess places. */
const struct exception_table_entry *entry;
entry = search_exception_tables(regs->tpc);
if (entry) {
/* Ouch, somebody is trying VM hole tricks on us... */
#ifdef DEBUG_EXCEPTIONS
printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
regs->tpc, entry->fixup);
#endif
regs->tpc = entry->fixup;
regs->tnpc = regs->tpc + 4;
return;
}
/* Shit... */
printk("spitfire_data_access_exception: SFSR[%016lx] "
"SFAR[%016lx], going.\n", sfsr, sfar);
die_if_kernel("Dax", regs);
}
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = SEGV_MAPERR;
info.si_addr = (void __user *)sfar;
info.si_trapno = 0;
force_sig_info(SIGSEGV, &info, current);
}
void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
{
if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
0, 0x30, SIGTRAP) == NOTIFY_STOP)
return;
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
spitfire_data_access_exception(regs, sfsr, sfar);
}
void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
unsigned short type = (type_ctx >> 16);
unsigned short ctx = (type_ctx & 0xffff);
siginfo_t info;
if (notify_die(DIE_TRAP, "data access exception", regs,
0, 0x8, SIGTRAP) == NOTIFY_STOP)
return;
if (regs->tstate & TSTATE_PRIV) {
/* Test if this comes from uaccess places. */
const struct exception_table_entry *entry;
entry = search_exception_tables(regs->tpc);
if (entry) {
/* Ouch, somebody is trying VM hole tricks on us... */
#ifdef DEBUG_EXCEPTIONS
printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
regs->tpc, entry->fixup);
#endif
regs->tpc = entry->fixup;
regs->tnpc = regs->tpc + 4;
return;
}
printk("sun4v_data_access_exception: ADDR[%016lx] "
"CTX[%04x] TYPE[%04x], going.\n",
addr, ctx, type);
die_if_kernel("Dax", regs);
}
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = SEGV_MAPERR;
info.si_addr = (void __user *) addr;
info.si_trapno = 0;
force_sig_info(SIGSEGV, &info, current);
}
void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
0, 0x8, SIGTRAP) == NOTIFY_STOP)
return;
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
sun4v_data_access_exception(regs, addr, type_ctx);
}
#ifdef CONFIG_PCI
#include "pci_impl.h"
#endif
/* When access exceptions happen, we must do this. */
static void spitfire_clean_and_reenable_l1_caches(void)
{
unsigned long va;
if (tlb_type != spitfire)
BUG();
/* Clean 'em. */
for (va = 0; va < (PAGE_SIZE << 1); va += 32) {
spitfire_put_icache_tag(va, 0x0);
spitfire_put_dcache_tag(va, 0x0);
}
/* Re-enable in LSU. */
__asm__ __volatile__("flush %%g6\n\t"
"membar #Sync\n\t"
"stxa %0, [%%g0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
LSU_CONTROL_IM | LSU_CONTROL_DM),
"i" (ASI_LSU_CONTROL)
: "memory");
}
static void spitfire_enable_estate_errors(void)
{
__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (ESTATE_ERR_ALL),
"i" (ASI_ESTATE_ERROR_EN));
}
static char ecc_syndrome_table[] = {
0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
};
static char *syndrome_unknown = "<Unknown>";
static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
{
unsigned short scode;
char memmod_str[64], *p;
if (udbl & bit) {
scode = ecc_syndrome_table[udbl & 0xff];
if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
p = syndrome_unknown;
else
p = memmod_str;
printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
"Memory Module \"%s\"\n",
smp_processor_id(), scode, p);
}
if (udbh & bit) {
scode = ecc_syndrome_table[udbh & 0xff];
if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
p = syndrome_unknown;
else
p = memmod_str;
printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
"Memory Module \"%s\"\n",
smp_processor_id(), scode, p);
}
}
static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
{
printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
"AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
smp_processor_id(), afsr, afar, udbl, udbh, tl1);
spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
/* We always log it, even if someone is listening for this
* trap.
*/
notify_die(DIE_TRAP, "Correctable ECC Error", regs,
0, TRAP_TYPE_CEE, SIGTRAP);
/* The Correctable ECC Error trap does not disable I/D caches. So
* we only have to restore the ESTATE Error Enable register.
*/
spitfire_enable_estate_errors();
}
static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
{
siginfo_t info;
printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
"AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
/* XXX add more human friendly logging of the error status
* XXX as is implemented for cheetah
*/
spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
/* We always log it, even if someone is listening for this
* trap.
*/
notify_die(DIE_TRAP, "Uncorrectable Error", regs,
0, tt, SIGTRAP);
if (regs->tstate & TSTATE_PRIV) {
if (tl1)
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("UE", regs);
}
/* XXX need more intelligent processing here, such as is implemented
* XXX for cheetah errors, in fact if the E-cache still holds the
* XXX line with bad parity this will loop
*/
spitfire_clean_and_reenable_l1_caches();
spitfire_enable_estate_errors();
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_OBJERR;
info.si_addr = (void *)0;
info.si_trapno = 0;
force_sig_info(SIGBUS, &info, current);
}
void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
{
unsigned long afsr, tt, udbh, udbl;
int tl1;
afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
#ifdef CONFIG_PCI
if (tt == TRAP_TYPE_DAE &&
pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
spitfire_clean_and_reenable_l1_caches();
spitfire_enable_estate_errors();
pci_poke_faulted = 1;
regs->tnpc = regs->tpc + 4;
return;
}
#endif
if (afsr & SFAFSR_UE)
spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
if (tt == TRAP_TYPE_CEE) {
/* Handle the case where we took a CEE trap, but ACK'd
* only the UE state in the UDB error registers.
*/
if (afsr & SFAFSR_UE) {
if (udbh & UDBE_CE) {
__asm__ __volatile__(
"stxa %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (udbh & UDBE_CE),
"r" (0x0), "i" (ASI_UDB_ERROR_W));
}
if (udbl & UDBE_CE) {
__asm__ __volatile__(
"stxa %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (udbl & UDBE_CE),
"r" (0x18), "i" (ASI_UDB_ERROR_W));
}
}
spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
}
}
int cheetah_pcache_forced_on;
void cheetah_enable_pcache(void)
{
unsigned long dcr;
printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
smp_processor_id());
__asm__ __volatile__("ldxa [%%g0] %1, %0"
: "=r" (dcr)
: "i" (ASI_DCU_CONTROL_REG));
dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
}
/* Cheetah error trap handling. */
static unsigned long ecache_flush_physbase;
static unsigned long ecache_flush_linesize;
static unsigned long ecache_flush_size;
/* This table is ordered in priority of errors and matches the
* AFAR overwrite policy as well.
*/
struct afsr_error_table {
unsigned long mask;
const char *name;
};
static const char CHAFSR_PERR_msg[] =
"System interface protocol error";
static const char CHAFSR_IERR_msg[] =
"Internal processor error";
static const char CHAFSR_ISAP_msg[] =
"System request parity error on incoming address";
static const char CHAFSR_UCU_msg[] =
"Uncorrectable E-cache ECC error for ifetch/data";
static const char CHAFSR_UCC_msg[] =
"SW Correctable E-cache ECC error for ifetch/data";
static const char CHAFSR_UE_msg[] =
"Uncorrectable system bus data ECC error for read";
static const char CHAFSR_EDU_msg[] =
"Uncorrectable E-cache ECC error for stmerge/blkld";
static const char CHAFSR_EMU_msg[] =
"Uncorrectable system bus MTAG error";
static const char CHAFSR_WDU_msg[] =
"Uncorrectable E-cache ECC error for writeback";
static const char CHAFSR_CPU_msg[] =
"Uncorrectable ECC error for copyout";
static const char CHAFSR_CE_msg[] =
"HW corrected system bus data ECC error for read";
static const char CHAFSR_EDC_msg[] =
"HW corrected E-cache ECC error for stmerge/blkld";
static const char CHAFSR_EMC_msg[] =
"HW corrected system bus MTAG ECC error";
static const char CHAFSR_WDC_msg[] =
"HW corrected E-cache ECC error for writeback";
static const char CHAFSR_CPC_msg[] =
"HW corrected ECC error for copyout";
static const char CHAFSR_TO_msg[] =
"Unmapped error from system bus";
static const char CHAFSR_BERR_msg[] =
"Bus error response from system bus";
static const char CHAFSR_IVC_msg[] =
"HW corrected system bus data ECC error for ivec read";
static const char CHAFSR_IVU_msg[] =
"Uncorrectable system bus data ECC error for ivec read";
static struct afsr_error_table __cheetah_error_table[] = {
{ CHAFSR_PERR, CHAFSR_PERR_msg },
{ CHAFSR_IERR, CHAFSR_IERR_msg },
{ CHAFSR_ISAP, CHAFSR_ISAP_msg },
{ CHAFSR_UCU, CHAFSR_UCU_msg },
{ CHAFSR_UCC, CHAFSR_UCC_msg },
{ CHAFSR_UE, CHAFSR_UE_msg },
{ CHAFSR_EDU, CHAFSR_EDU_msg },
{ CHAFSR_EMU, CHAFSR_EMU_msg },
{ CHAFSR_WDU, CHAFSR_WDU_msg },
{ CHAFSR_CPU, CHAFSR_CPU_msg },
{ CHAFSR_CE, CHAFSR_CE_msg },
{ CHAFSR_EDC, CHAFSR_EDC_msg },
{ CHAFSR_EMC, CHAFSR_EMC_msg },
{ CHAFSR_WDC, CHAFSR_WDC_msg },
{ CHAFSR_CPC, CHAFSR_CPC_msg },
{ CHAFSR_TO, CHAFSR_TO_msg },
{ CHAFSR_BERR, CHAFSR_BERR_msg },
/* These two do not update the AFAR. */
{ CHAFSR_IVC, CHAFSR_IVC_msg },
{ CHAFSR_IVU, CHAFSR_IVU_msg },
{ 0, NULL },
};
static const char CHPAFSR_DTO_msg[] =
"System bus unmapped error for prefetch/storequeue-read";
static const char CHPAFSR_DBERR_msg[] =
"System bus error for prefetch/storequeue-read";
static const char CHPAFSR_THCE_msg[] =
"Hardware corrected E-cache Tag ECC error";
static const char CHPAFSR_TSCE_msg[] =
"SW handled correctable E-cache Tag ECC error";
static const char CHPAFSR_TUE_msg[] =
"Uncorrectable E-cache Tag ECC error";
static const char CHPAFSR_DUE_msg[] =
"System bus uncorrectable data ECC error due to prefetch/store-fill";
static struct afsr_error_table __cheetah_plus_error_table[] = {
{ CHAFSR_PERR, CHAFSR_PERR_msg },
{ CHAFSR_IERR, CHAFSR_IERR_msg },
{ CHAFSR_ISAP, CHAFSR_ISAP_msg },
{ CHAFSR_UCU, CHAFSR_UCU_msg },
{ CHAFSR_UCC, CHAFSR_UCC_msg },
{ CHAFSR_UE, CHAFSR_UE_msg },
{ CHAFSR_EDU, CHAFSR_EDU_msg },
{ CHAFSR_EMU, CHAFSR_EMU_msg },
{ CHAFSR_WDU, CHAFSR_WDU_msg },
{ CHAFSR_CPU, CHAFSR_CPU_msg },
{ CHAFSR_CE, CHAFSR_CE_msg },
{ CHAFSR_EDC, CHAFSR_EDC_msg },
{ CHAFSR_EMC, CHAFSR_EMC_msg },
{ CHAFSR_WDC, CHAFSR_WDC_msg },
{ CHAFSR_CPC, CHAFSR_CPC_msg },
{ CHAFSR_TO, CHAFSR_TO_msg },
{ CHAFSR_BERR, CHAFSR_BERR_msg },
{ CHPAFSR_DTO, CHPAFSR_DTO_msg },
{ CHPAFSR_DBERR, CHPAFSR_DBERR_msg },
{ CHPAFSR_THCE, CHPAFSR_THCE_msg },
{ CHPAFSR_TSCE, CHPAFSR_TSCE_msg },
{ CHPAFSR_TUE, CHPAFSR_TUE_msg },
{ CHPAFSR_DUE, CHPAFSR_DUE_msg },
/* These two do not update the AFAR. */
{ CHAFSR_IVC, CHAFSR_IVC_msg },
{ CHAFSR_IVU, CHAFSR_IVU_msg },
{ 0, NULL },
};
static const char JPAFSR_JETO_msg[] =
"System interface protocol error, hw timeout caused";
static const char JPAFSR_SCE_msg[] =
"Parity error on system snoop results";
static const char JPAFSR_JEIC_msg[] =
"System interface protocol error, illegal command detected";
static const char JPAFSR_JEIT_msg[] =
"System interface protocol error, illegal ADTYPE detected";
static const char JPAFSR_OM_msg[] =
"Out of range memory error has occurred";
static const char JPAFSR_ETP_msg[] =
"Parity error on L2 cache tag SRAM";
static const char JPAFSR_UMS_msg[] =
"Error due to unsupported store";
static const char JPAFSR_RUE_msg[] =
"Uncorrectable ECC error from remote cache/memory";
static const char JPAFSR_RCE_msg[] =
"Correctable ECC error from remote cache/memory";
static const char JPAFSR_BP_msg[] =
"JBUS parity error on returned read data";
static const char JPAFSR_WBP_msg[] =
"JBUS parity error on data for writeback or block store";
static const char JPAFSR_FRC_msg[] =
"Foreign read to DRAM incurring correctable ECC error";
static const char JPAFSR_FRU_msg[] =
"Foreign read to DRAM incurring uncorrectable ECC error";
static struct afsr_error_table __jalapeno_error_table[] = {
{ JPAFSR_JETO, JPAFSR_JETO_msg },
{ JPAFSR_SCE, JPAFSR_SCE_msg },
{ JPAFSR_JEIC, JPAFSR_JEIC_msg },
{ JPAFSR_JEIT, JPAFSR_JEIT_msg },
{ CHAFSR_PERR, CHAFSR_PERR_msg },
{ CHAFSR_IERR, CHAFSR_IERR_msg },
{ CHAFSR_ISAP, CHAFSR_ISAP_msg },
{ CHAFSR_UCU, CHAFSR_UCU_msg },
{ CHAFSR_UCC, CHAFSR_UCC_msg },
{ CHAFSR_UE, CHAFSR_UE_msg },
{ CHAFSR_EDU, CHAFSR_EDU_msg },
{ JPAFSR_OM, JPAFSR_OM_msg },
{ CHAFSR_WDU, CHAFSR_WDU_msg },
{ CHAFSR_CPU, CHAFSR_CPU_msg },
{ CHAFSR_CE, CHAFSR_CE_msg },
{ CHAFSR_EDC, CHAFSR_EDC_msg },
{ JPAFSR_ETP, JPAFSR_ETP_msg },
{ CHAFSR_WDC, CHAFSR_WDC_msg },
{ CHAFSR_CPC, CHAFSR_CPC_msg },
{ CHAFSR_TO, CHAFSR_TO_msg },
{ CHAFSR_BERR, CHAFSR_BERR_msg },
{ JPAFSR_UMS, JPAFSR_UMS_msg },
{ JPAFSR_RUE, JPAFSR_RUE_msg },
{ JPAFSR_RCE, JPAFSR_RCE_msg },
{ JPAFSR_BP, JPAFSR_BP_msg },
{ JPAFSR_WBP, JPAFSR_WBP_msg },
{ JPAFSR_FRC, JPAFSR_FRC_msg },
{ JPAFSR_FRU, JPAFSR_FRU_msg },
/* These two do not update the AFAR. */
{ CHAFSR_IVU, CHAFSR_IVU_msg },
{ 0, NULL },
};
static struct afsr_error_table *cheetah_error_table;
static unsigned long cheetah_afsr_errors;
struct cheetah_err_info *cheetah_error_log;
static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
{
struct cheetah_err_info *p;
int cpu = smp_processor_id();
if (!cheetah_error_log)
return NULL;
p = cheetah_error_log + (cpu * 2);
if ((afsr & CHAFSR_TL1) != 0UL)
p++;
return p;
}
extern unsigned int tl0_icpe[], tl1_icpe[];
extern unsigned int tl0_dcpe[], tl1_dcpe[];
extern unsigned int tl0_fecc[], tl1_fecc[];
extern unsigned int tl0_cee[], tl1_cee[];
extern unsigned int tl0_iae[], tl1_iae[];
extern unsigned int tl0_dae[], tl1_dae[];
extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
void __init cheetah_ecache_flush_init(void)
{
unsigned long largest_size, smallest_linesize, order, ver;
int i, sz;
/* Scan all cpu device tree nodes, note two values:
* 1) largest E-cache size
* 2) smallest E-cache line size
*/
largest_size = 0UL;
smallest_linesize = ~0UL;
for (i = 0; i < NR_CPUS; i++) {
unsigned long val;
val = cpu_data(i).ecache_size;
if (!val)
continue;
if (val > largest_size)
largest_size = val;
val = cpu_data(i).ecache_line_size;
if (val < smallest_linesize)
smallest_linesize = val;
}
if (largest_size == 0UL || smallest_linesize == ~0UL) {
prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
"parameters.\n");
prom_halt();
}
ecache_flush_size = (2 * largest_size);
ecache_flush_linesize = smallest_linesize;
ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
if (ecache_flush_physbase == ~0UL) {
prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
"contiguous physical memory.\n",
ecache_flush_size);
prom_halt();
}
/* Now allocate error trap reporting scoreboard. */
sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
for (order = 0; order < MAX_ORDER; order++) {
if ((PAGE_SIZE << order) >= sz)
break;
}
cheetah_error_log = (struct cheetah_err_info *)
__get_free_pages(GFP_KERNEL, order);
if (!cheetah_error_log) {
prom_printf("cheetah_ecache_flush_init: Failed to allocate "
"error logging scoreboard (%d bytes).\n", sz);
prom_halt();
}
memset(cheetah_error_log, 0, PAGE_SIZE << order);
/* Mark all AFSRs as invalid so that the trap handler will
* log new new information there.
*/
for (i = 0; i < 2 * NR_CPUS; i++)
cheetah_error_log[i].afsr = CHAFSR_INVALID;
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
if ((ver >> 32) == __JALAPENO_ID ||
(ver >> 32) == __SERRANO_ID) {
cheetah_error_table = &__jalapeno_error_table[0];
cheetah_afsr_errors = JPAFSR_ERRORS;
} else if ((ver >> 32) == 0x003e0015) {
cheetah_error_table = &__cheetah_plus_error_table[0];
cheetah_afsr_errors = CHPAFSR_ERRORS;
} else {
cheetah_error_table = &__cheetah_error_table[0];
cheetah_afsr_errors = CHAFSR_ERRORS;
}
/* Now patch trap tables. */
memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
if (tlb_type == cheetah_plus) {
memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
}
flushi(PAGE_OFFSET);
}
static void cheetah_flush_ecache(void)
{
unsigned long flush_base = ecache_flush_physbase;
unsigned long flush_linesize = ecache_flush_linesize;
unsigned long flush_size = ecache_flush_size;
__asm__ __volatile__("1: subcc %0, %4, %0\n\t"
" bne,pt %%xcc, 1b\n\t"
" ldxa [%2 + %0] %3, %%g0\n\t"
: "=&r" (flush_size)
: "0" (flush_size), "r" (flush_base),
"i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
}
static void cheetah_flush_ecache_line(unsigned long physaddr)
{
unsigned long alias;
physaddr &= ~(8UL - 1UL);
physaddr = (ecache_flush_physbase +
(physaddr & ((ecache_flush_size>>1UL) - 1UL)));
alias = physaddr + (ecache_flush_size >> 1UL);
__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
"ldxa [%1] %2, %%g0\n\t"
"membar #Sync"
: /* no outputs */
: "r" (physaddr), "r" (alias),
"i" (ASI_PHYS_USE_EC));
}
/* Unfortunately, the diagnostic access to the I-cache tags we need to
* use to clear the thing interferes with I-cache coherency transactions.
*
* So we must only flush the I-cache when it is disabled.
*/
static void __cheetah_flush_icache(void)
{
unsigned int icache_size, icache_line_size;
unsigned long addr;
icache_size = local_cpu_data().icache_size;
icache_line_size = local_cpu_data().icache_line_size;
/* Clear the valid bits in all the tags. */
for (addr = 0; addr < icache_size; addr += icache_line_size) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (addr | (2 << 3)),
"i" (ASI_IC_TAG));
}
}
static void cheetah_flush_icache(void)
{
unsigned long dcu_save;
/* Save current DCU, disable I-cache. */
__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
"or %0, %2, %%g1\n\t"
"stxa %%g1, [%%g0] %1\n\t"
"membar #Sync"
: "=r" (dcu_save)
: "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
: "g1");
__cheetah_flush_icache();
/* Restore DCU register */
__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
}
static void cheetah_flush_dcache(void)
{
unsigned int dcache_size, dcache_line_size;
unsigned long addr;
dcache_size = local_cpu_data().dcache_size;
dcache_line_size = local_cpu_data().dcache_line_size;
for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (addr), "i" (ASI_DCACHE_TAG));
}
}
/* In order to make the even parity correct we must do two things.
* First, we clear DC_data_parity and set DC_utag to an appropriate value.
* Next, we clear out all 32-bytes of data for that line. Data of
* all-zero + tag parity value of zero == correct parity.
*/
static void cheetah_plus_zap_dcache_parity(void)
{
unsigned int dcache_size, dcache_line_size;
unsigned long addr;
dcache_size = local_cpu_data().dcache_size;
dcache_line_size = local_cpu_data().dcache_line_size;
for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
unsigned long tag = (addr >> 14);
unsigned long line;
__asm__ __volatile__("membar #Sync\n\t"
"stxa %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (tag), "r" (addr),
"i" (ASI_DCACHE_UTAG));
for (line = addr; line < addr + dcache_line_size; line += 8)
__asm__ __volatile__("membar #Sync\n\t"
"stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (line),
"i" (ASI_DCACHE_DATA));
}
}
/* Conversion tables used to frob Cheetah AFSR syndrome values into
* something palatable to the memory controller driver get_unumber
* routine.
*/
#define MT0 137
#define MT1 138
#define MT2 139
#define NONE 254
#define MTC0 140
#define MTC1 141
#define MTC2 142
#define MTC3 143
#define C0 128
#define C1 129
#define C2 130
#define C3 131
#define C4 132
#define C5 133
#define C6 134
#define C7 135
#define C8 136
#define M2 144
#define M3 145
#define M4 146
#define M 147
static unsigned char cheetah_ecc_syntab[] = {
/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
};
static unsigned char cheetah_mtag_syntab[] = {
NONE, MTC0,
MTC1, NONE,
MTC2, NONE,
NONE, MT0,
MTC3, NONE,
NONE, MT1,
NONE, MT2,
NONE, NONE
};
/* Return the highest priority error conditon mentioned. */
static inline unsigned long cheetah_get_hipri(unsigned long afsr)
{
unsigned long tmp = 0;
int i;
for (i = 0; cheetah_error_table[i].mask; i++) {
if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
return tmp;
}
return tmp;
}
static const char *cheetah_get_string(unsigned long bit)
{
int i;
for (i = 0; cheetah_error_table[i].mask; i++) {
if ((bit & cheetah_error_table[i].mask) != 0UL)
return cheetah_error_table[i].name;
}
return "???";
}
static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
unsigned long afsr, unsigned long afar, int recoverable)
{
unsigned long hipri;
char unum[256];
printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
afsr, afar,
(afsr & CHAFSR_TL1) ? 1 : 0);
printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
printk("%s" "ERROR(%d): ",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
printk("TPC<%pS>\n", (void *) regs->tpc);
printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
(afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
(afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
(afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
(afsr & CHAFSR_PRIV) ? ", Privileged" : "");
hipri = cheetah_get_hipri(afsr);
printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
hipri, cheetah_get_string(hipri));
/* Try to get unumber if relevant. */
#define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \
CHAFSR_CPC | CHAFSR_CPU | \
CHAFSR_UE | CHAFSR_CE | \
CHAFSR_EDC | CHAFSR_EDU | \
CHAFSR_UCC | CHAFSR_UCU | \
CHAFSR_WDU | CHAFSR_WDC)
#define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU)
if (afsr & ESYND_ERRORS) {
int syndrome;
int ret;
syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
syndrome = cheetah_ecc_syntab[syndrome];
ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
if (ret != -1)
printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
(recoverable ? KERN_WARNING : KERN_CRIT),
smp_processor_id(), unum);
} else if (afsr & MSYND_ERRORS) {
int syndrome;
int ret;
syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
syndrome = cheetah_mtag_syntab[syndrome];
ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
if (ret != -1)
printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
(recoverable ? KERN_WARNING : KERN_CRIT),
smp_processor_id(), unum);
}
/* Now dump the cache snapshots. */
printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
(int) info->dcache_index,
info->dcache_tag,
info->dcache_utag,
info->dcache_stag);
printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
info->dcache_data[0],
info->dcache_data[1],
info->dcache_data[2],
info->dcache_data[3]);
printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
"u[%016llx] l[%016llx]\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
(int) info->icache_index,
info->icache_tag,
info->icache_utag,
info->icache_stag,
info->icache_upper,
info->icache_lower);
printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
info->icache_data[0],
info->icache_data[1],
info->icache_data[2],
info->icache_data[3]);
printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
info->icache_data[4],
info->icache_data[5],
info->icache_data[6],
info->icache_data[7]);
printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
(int) info->ecache_index, info->ecache_tag);
printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
info->ecache_data[0],
info->ecache_data[1],
info->ecache_data[2],
info->ecache_data[3]);
afsr = (afsr & ~hipri) & cheetah_afsr_errors;
while (afsr != 0UL) {
unsigned long bit = cheetah_get_hipri(afsr);
printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
(recoverable ? KERN_WARNING : KERN_CRIT),
bit, cheetah_get_string(bit));
afsr &= ~bit;
}
if (!recoverable)
printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
}
static int cheetah_recheck_errors(struct cheetah_err_info *logp)
{
unsigned long afsr, afar;
int ret = 0;
__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
: "=r" (afsr)
: "i" (ASI_AFSR));
if ((afsr & cheetah_afsr_errors) != 0) {
if (logp != NULL) {
__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
: "=r" (afar)
: "i" (ASI_AFAR));
logp->afsr = afsr;
logp->afar = afar;
}
ret = 1;
}
__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
"membar #Sync\n\t"
: : "r" (afsr), "i" (ASI_AFSR));
return ret;
}
void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
{
struct cheetah_err_info local_snapshot, *p;
int recoverable;
/* Flush E-cache */
cheetah_flush_ecache();
p = cheetah_get_error_log(afsr);
if (!p) {
prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
afsr, afar);
prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
prom_halt();
}
/* Grab snapshot of logged error. */
memcpy(&local_snapshot, p, sizeof(local_snapshot));
/* If the current trap snapshot does not match what the
* trap handler passed along into our args, big trouble.
* In such a case, mark the local copy as invalid.
*
* Else, it matches and we mark the afsr in the non-local
* copy as invalid so we may log new error traps there.
*/
if (p->afsr != afsr || p->afar != afar)
local_snapshot.afsr = CHAFSR_INVALID;
else
p->afsr = CHAFSR_INVALID;
cheetah_flush_icache();
cheetah_flush_dcache();
/* Re-enable I-cache/D-cache */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_DCU_CONTROL_REG),
"i" (DCU_DC | DCU_IC)
: "g1");
/* Re-enable error reporting */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_ESTATE_ERROR_EN),
"i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
: "g1");
/* Decide if we can continue after handling this trap and
* logging the error.
*/
recoverable = 1;
if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
recoverable = 0;
/* Re-check AFSR/AFAR. What we are looking for here is whether a new
* error was logged while we had error reporting traps disabled.
*/
if (cheetah_recheck_errors(&local_snapshot)) {
unsigned long new_afsr = local_snapshot.afsr;
/* If we got a new asynchronous error, die... */
if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
CHAFSR_WDU | CHAFSR_CPU |
CHAFSR_IVU | CHAFSR_UE |
CHAFSR_BERR | CHAFSR_TO))
recoverable = 0;
}
/* Log errors. */
cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
if (!recoverable)
panic("Irrecoverable Fast-ECC error trap.\n");
/* Flush E-cache to kick the error trap handlers out. */
cheetah_flush_ecache();
}
/* Try to fix a correctable error by pushing the line out from
* the E-cache. Recheck error reporting registers to see if the
* problem is intermittent.
*/
static int cheetah_fix_ce(unsigned long physaddr)
{
unsigned long orig_estate;
unsigned long alias1, alias2;
int ret;
/* Make sure correctable error traps are disabled. */
__asm__ __volatile__("ldxa [%%g0] %2, %0\n\t"
"andn %0, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %2\n\t"
"membar #Sync"
: "=&r" (orig_estate)
: "i" (ESTATE_ERROR_CEEN),
"i" (ASI_ESTATE_ERROR_EN)
: "g1");
/* We calculate alias addresses that will force the
* cache line in question out of the E-cache. Then
* we bring it back in with an atomic instruction so
* that we get it in some modified/exclusive state,
* then we displace it again to try and get proper ECC
* pushed back into the system.
*/
physaddr &= ~(8UL - 1UL);
alias1 = (ecache_flush_physbase +
(physaddr & ((ecache_flush_size >> 1) - 1)));
alias2 = alias1 + (ecache_flush_size >> 1);
__asm__ __volatile__("ldxa [%0] %3, %%g0\n\t"
"ldxa [%1] %3, %%g0\n\t"
"casxa [%2] %3, %%g0, %%g0\n\t"
"ldxa [%0] %3, %%g0\n\t"
"ldxa [%1] %3, %%g0\n\t"
"membar #Sync"
: /* no outputs */
: "r" (alias1), "r" (alias2),
"r" (physaddr), "i" (ASI_PHYS_USE_EC));
/* Did that trigger another error? */
if (cheetah_recheck_errors(NULL)) {
/* Try one more time. */
__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
"membar #Sync"
: : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
if (cheetah_recheck_errors(NULL))
ret = 2;
else
ret = 1;
} else {
/* No new error, intermittent problem. */
ret = 0;
}
/* Restore error enables. */
__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
"membar #Sync"
: : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
return ret;
}
/* Return non-zero if PADDR is a valid physical memory address. */
static int cheetah_check_main_memory(unsigned long paddr)
{
unsigned long vaddr = PAGE_OFFSET + paddr;
if (vaddr > (unsigned long) high_memory)
return 0;
return kern_addr_valid(vaddr);
}
void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
{
struct cheetah_err_info local_snapshot, *p;
int recoverable, is_memory;
p = cheetah_get_error_log(afsr);
if (!p) {
prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
afsr, afar);
prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
prom_halt();
}
/* Grab snapshot of logged error. */
memcpy(&local_snapshot, p, sizeof(local_snapshot));
/* If the current trap snapshot does not match what the
* trap handler passed along into our args, big trouble.
* In such a case, mark the local copy as invalid.
*
* Else, it matches and we mark the afsr in the non-local
* copy as invalid so we may log new error traps there.
*/
if (p->afsr != afsr || p->afar != afar)
local_snapshot.afsr = CHAFSR_INVALID;
else
p->afsr = CHAFSR_INVALID;
is_memory = cheetah_check_main_memory(afar);
if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
/* XXX Might want to log the results of this operation
* XXX somewhere... -DaveM
*/
cheetah_fix_ce(afar);
}
{
int flush_all, flush_line;
flush_all = flush_line = 0;
if ((afsr & CHAFSR_EDC) != 0UL) {
if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
flush_line = 1;
else
flush_all = 1;
} else if ((afsr & CHAFSR_CPC) != 0UL) {
if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
flush_line = 1;
else
flush_all = 1;
}
/* Trap handler only disabled I-cache, flush it. */
cheetah_flush_icache();
/* Re-enable I-cache */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_DCU_CONTROL_REG),
"i" (DCU_IC)
: "g1");
if (flush_all)
cheetah_flush_ecache();
else if (flush_line)
cheetah_flush_ecache_line(afar);
}
/* Re-enable error reporting */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_ESTATE_ERROR_EN),
"i" (ESTATE_ERROR_CEEN)
: "g1");
/* Decide if we can continue after handling this trap and
* logging the error.
*/
recoverable = 1;
if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
recoverable = 0;
/* Re-check AFSR/AFAR */
(void) cheetah_recheck_errors(&local_snapshot);
/* Log errors. */
cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
if (!recoverable)
panic("Irrecoverable Correctable-ECC error trap.\n");
}
void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
{
struct cheetah_err_info local_snapshot, *p;
int recoverable, is_memory;
#ifdef CONFIG_PCI
/* Check for the special PCI poke sequence. */
if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
cheetah_flush_icache();
cheetah_flush_dcache();
/* Re-enable I-cache/D-cache */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_DCU_CONTROL_REG),
"i" (DCU_DC | DCU_IC)
: "g1");
/* Re-enable error reporting */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_ESTATE_ERROR_EN),
"i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
: "g1");
(void) cheetah_recheck_errors(NULL);
pci_poke_faulted = 1;
regs->tpc += 4;
regs->tnpc = regs->tpc + 4;
return;
}
#endif
p = cheetah_get_error_log(afsr);
if (!p) {
prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
afsr, afar);
prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
prom_halt();
}
/* Grab snapshot of logged error. */
memcpy(&local_snapshot, p, sizeof(local_snapshot));
/* If the current trap snapshot does not match what the
* trap handler passed along into our args, big trouble.
* In such a case, mark the local copy as invalid.
*
* Else, it matches and we mark the afsr in the non-local
* copy as invalid so we may log new error traps there.
*/
if (p->afsr != afsr || p->afar != afar)
local_snapshot.afsr = CHAFSR_INVALID;
else
p->afsr = CHAFSR_INVALID;
is_memory = cheetah_check_main_memory(afar);
{
int flush_all, flush_line;
flush_all = flush_line = 0;
if ((afsr & CHAFSR_EDU) != 0UL) {
if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
flush_line = 1;
else
flush_all = 1;
} else if ((afsr & CHAFSR_BERR) != 0UL) {
if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
flush_line = 1;
else
flush_all = 1;
}
cheetah_flush_icache();
cheetah_flush_dcache();
/* Re-enable I/D caches */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_DCU_CONTROL_REG),
"i" (DCU_IC | DCU_DC)
: "g1");
if (flush_all)
cheetah_flush_ecache();
else if (flush_line)
cheetah_flush_ecache_line(afar);
}
/* Re-enable error reporting */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_ESTATE_ERROR_EN),
"i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
: "g1");
/* Decide if we can continue after handling this trap and
* logging the error.
*/
recoverable = 1;
if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
recoverable = 0;
/* Re-check AFSR/AFAR. What we are looking for here is whether a new
* error was logged while we had error reporting traps disabled.
*/
if (cheetah_recheck_errors(&local_snapshot)) {
unsigned long new_afsr = local_snapshot.afsr;
/* If we got a new asynchronous error, die... */
if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
CHAFSR_WDU | CHAFSR_CPU |
CHAFSR_IVU | CHAFSR_UE |
CHAFSR_BERR | CHAFSR_TO))
recoverable = 0;
}
/* Log errors. */
cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
/* "Recoverable" here means we try to yank the page from ever
* being newly used again. This depends upon a few things:
* 1) Must be main memory, and AFAR must be valid.
* 2) If we trapped from user, OK.
* 3) Else, if we trapped from kernel we must find exception
* table entry (ie. we have to have been accessing user
* space).
*
* If AFAR is not in main memory, or we trapped from kernel
* and cannot find an exception table entry, it is unacceptable
* to try and continue.
*/
if (recoverable && is_memory) {
if ((regs->tstate & TSTATE_PRIV) == 0UL) {
/* OK, usermode access. */
recoverable = 1;
} else {
const struct exception_table_entry *entry;
entry = search_exception_tables(regs->tpc);
if (entry) {
/* OK, kernel access to userspace. */
recoverable = 1;
} else {
/* BAD, privileged state is corrupted. */
recoverable = 0;
}
if (recoverable) {
if (pfn_valid(afar >> PAGE_SHIFT))
get_page(pfn_to_page(afar >> PAGE_SHIFT));
else
recoverable = 0;
/* Only perform fixup if we still have a
* recoverable condition.
*/
if (recoverable) {
regs->tpc = entry->fixup;
regs->tnpc = regs->tpc + 4;
}
}
}
} else {
recoverable = 0;
}
if (!recoverable)
panic("Irrecoverable deferred error trap.\n");
}
/* Handle a D/I cache parity error trap. TYPE is encoded as:
*
* Bit0: 0=dcache,1=icache
* Bit1: 0=recoverable,1=unrecoverable
*
* The hardware has disabled both the I-cache and D-cache in
* the %dcr register.
*/
void cheetah_plus_parity_error(int type, struct pt_regs *regs)
{
if (type & 0x1)
__cheetah_flush_icache();
else
cheetah_plus_zap_dcache_parity();
cheetah_flush_dcache();
/* Re-enable I-cache/D-cache */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_DCU_CONTROL_REG),
"i" (DCU_DC | DCU_IC)
: "g1");
if (type & 0x2) {
printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
smp_processor_id(),
(type & 0x1) ? 'I' : 'D',
regs->tpc);
printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
panic("Irrecoverable Cheetah+ parity error.");
}
printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
smp_processor_id(),
(type & 0x1) ? 'I' : 'D',
regs->tpc);
printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
}
struct sun4v_error_entry {
/* Unique error handle */
/*0x00*/u64 err_handle;
/* %stick value at the time of the error */
/*0x08*/u64 err_stick;
/*0x10*/u8 reserved_1[3];
/* Error type */
/*0x13*/u8 err_type;
#define SUN4V_ERR_TYPE_UNDEFINED 0
#define SUN4V_ERR_TYPE_UNCORRECTED_RES 1
#define SUN4V_ERR_TYPE_PRECISE_NONRES 2
#define SUN4V_ERR_TYPE_DEFERRED_NONRES 3
#define SUN4V_ERR_TYPE_SHUTDOWN_RQST 4
#define SUN4V_ERR_TYPE_DUMP_CORE 5
#define SUN4V_ERR_TYPE_SP_STATE_CHANGE 6
#define SUN4V_ERR_TYPE_NUM 7
/* Error attributes */
/*0x14*/u32 err_attrs;
#define SUN4V_ERR_ATTRS_PROCESSOR 0x00000001
#define SUN4V_ERR_ATTRS_MEMORY 0x00000002
#define SUN4V_ERR_ATTRS_PIO 0x00000004
#define SUN4V_ERR_ATTRS_INT_REGISTERS 0x00000008
#define SUN4V_ERR_ATTRS_FPU_REGISTERS 0x00000010
#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST 0x00000020
#define SUN4V_ERR_ATTRS_ASR 0x00000040
#define SUN4V_ERR_ATTRS_ASI 0x00000080
#define SUN4V_ERR_ATTRS_PRIV_REG 0x00000100
#define SUN4V_ERR_ATTRS_SPSTATE_MSK 0x00000600
#define SUN4V_ERR_ATTRS_SPSTATE_SHFT 9
#define SUN4V_ERR_ATTRS_MODE_MSK 0x03000000
#define SUN4V_ERR_ATTRS_MODE_SHFT 24
#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL 0x80000000
#define SUN4V_ERR_SPSTATE_FAULTED 0
#define SUN4V_ERR_SPSTATE_AVAILABLE 1
#define SUN4V_ERR_SPSTATE_NOT_PRESENT 2
#define SUN4V_ERR_MODE_USER 1
#define SUN4V_ERR_MODE_PRIV 2
/* Real address of the memory region or PIO transaction */
/*0x18*/u64 err_raddr;
/* Size of the operation triggering the error, in bytes */
/*0x20*/u32 err_size;
/* ID of the CPU */
/*0x24*/u16 err_cpu;
/* Grace periof for shutdown, in seconds */
/*0x26*/u16 err_secs;
/* Value of the %asi register */
/*0x28*/u8 err_asi;
/*0x29*/u8 reserved_2;
/* Value of the ASR register number */
/*0x2a*/u16 err_asr;
#define SUN4V_ERR_ASR_VALID 0x8000
/*0x2c*/u32 reserved_3;
/*0x30*/u64 reserved_4;
/*0x38*/u64 reserved_5;
};
static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
static const char *sun4v_err_type_to_str(u8 type)
{
static const char *types[SUN4V_ERR_TYPE_NUM] = {
"undefined",
"uncorrected resumable",
"precise nonresumable",
"deferred nonresumable",
"shutdown request",
"dump core",
"SP state change",
};
if (type < SUN4V_ERR_TYPE_NUM)
return types[type];
return "unknown";
}
static void sun4v_emit_err_attr_strings(u32 attrs)
{
static const char *attr_names[] = {
"processor",
"memory",
"PIO",
"int-registers",
"fpu-registers",
"shutdown-request",
"ASR",
"ASI",
"priv-reg",
};
static const char *sp_states[] = {
"sp-faulted",
"sp-available",
"sp-not-present",
"sp-state-reserved",
};
static const char *modes[] = {
"mode-reserved0",
"user",
"priv",
"mode-reserved1",
};
u32 sp_state, mode;
int i;
for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
if (attrs & (1U << i)) {
const char *s = attr_names[i];
pr_cont("%s ", s);
}
}
sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
SUN4V_ERR_ATTRS_SPSTATE_SHFT);
pr_cont("%s ", sp_states[sp_state]);
mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
SUN4V_ERR_ATTRS_MODE_SHFT);
pr_cont("%s ", modes[mode]);
if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
pr_cont("res-queue-full ");
}
/* When the report contains a real-address of "-1" it means that the
* hardware did not provide the address. So we compute the effective
* address of the load or store instruction at regs->tpc and report
* that. Usually when this happens it's a PIO and in such a case we
* are using physical addresses with bypass ASIs anyways, so what we
* report here is exactly what we want.
*/
static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
{
unsigned int insn;
u64 addr;
if (!(regs->tstate & TSTATE_PRIV))
return;
insn = *(unsigned int *) regs->tpc;
addr = compute_effective_address(regs, insn, 0);
printk("%s: insn effective address [0x%016llx]\n",
pfx, addr);
}
static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
int cpu, const char *pfx, atomic_t *ocnt)
{
u64 *raw_ptr = (u64 *) ent;
u32 attrs;
int cnt;
printk("%s: Reporting on cpu %d\n", pfx, cpu);
printk("%s: TPC [0x%016lx] <%pS>\n",
pfx, regs->tpc, (void *) regs->tpc);
printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
printk("%s: %016llx:%016llx:%016llx:%016llx]\n",
pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
pfx, ent->err_handle, ent->err_stick);
printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
attrs = ent->err_attrs;
printk("%s: attrs [0x%08x] < ", pfx, attrs);
sun4v_emit_err_attr_strings(attrs);
pr_cont(">\n");
/* Various fields in the error report are only valid if
* certain attribute bits are set.
*/
if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
SUN4V_ERR_ATTRS_PIO |
SUN4V_ERR_ATTRS_ASI)) {
printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
if (ent->err_raddr == ~(u64)0)
sun4v_report_real_raddr(pfx, regs);
}
if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
printk("%s: size [0x%x]\n", pfx, ent->err_size);
if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
SUN4V_ERR_ATTRS_INT_REGISTERS |
SUN4V_ERR_ATTRS_FPU_REGISTERS |
SUN4V_ERR_ATTRS_PRIV_REG))
printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
if (attrs & SUN4V_ERR_ATTRS_ASI)
printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
SUN4V_ERR_ATTRS_FPU_REGISTERS |
SUN4V_ERR_ATTRS_PRIV_REG)) &&
(ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
printk("%s: reg [0x%04x]\n",
pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
show_regs(regs);
if ((cnt = atomic_read(ocnt)) != 0) {
atomic_set(ocnt, 0);
wmb();
printk("%s: Queue overflowed %d times.\n",
pfx, cnt);
}
}
/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
* Log the event and clear the first word of the entry.
*/
void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
{
struct sun4v_error_entry *ent, local_copy;
struct trap_per_cpu *tb;
unsigned long paddr;
int cpu;
cpu = get_cpu();
tb = &trap_block[cpu];
paddr = tb->resum_kernel_buf_pa + offset;
ent = __va(paddr);
memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
/* We have a local copy now, so release the entry. */
ent->err_handle = 0;
wmb();
put_cpu();
if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
/* We should really take the seconds field of
* the error report and use it for the shutdown
* invocation, but for now do the same thing we
* do for a DS shutdown request.
*/
pr_info("Shutdown request, %u seconds...\n",
local_copy.err_secs);
orderly_poweroff(true);
return;
}
sun4v_log_error(regs, &local_copy, cpu,
KERN_ERR "RESUMABLE ERROR",
&sun4v_resum_oflow_cnt);
}
/* If we try to printk() we'll probably make matters worse, by trying
* to retake locks this cpu already holds or causing more errors. So
* just bump a counter, and we'll report these counter bumps above.
*/
void sun4v_resum_overflow(struct pt_regs *regs)
{
atomic_inc(&sun4v_resum_oflow_cnt);
}
/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
* Log the event, clear the first word of the entry, and die.
*/
void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
{
struct sun4v_error_entry *ent, local_copy;
struct trap_per_cpu *tb;
unsigned long paddr;
int cpu;
cpu = get_cpu();
tb = &trap_block[cpu];
paddr = tb->nonresum_kernel_buf_pa + offset;
ent = __va(paddr);
memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
/* We have a local copy now, so release the entry. */
ent->err_handle = 0;
wmb();
put_cpu();
#ifdef CONFIG_PCI
/* Check for the special PCI poke sequence. */
if (pci_poke_in_progress && pci_poke_cpu == cpu) {
pci_poke_faulted = 1;
regs->tpc += 4;
regs->tnpc = regs->tpc + 4;
return;
}
#endif
sun4v_log_error(regs, &local_copy, cpu,
KERN_EMERG "NON-RESUMABLE ERROR",
&sun4v_nonresum_oflow_cnt);
panic("Non-resumable error.");
}
/* If we try to printk() we'll probably make matters worse, by trying
* to retake locks this cpu already holds or causing more errors. So
* just bump a counter, and we'll report these counter bumps above.
*/
void sun4v_nonresum_overflow(struct pt_regs *regs)
{
/* XXX Actually even this can make not that much sense. Perhaps
* XXX we should just pull the plug and panic directly from here?
*/
atomic_inc(&sun4v_nonresum_oflow_cnt);
}
unsigned long sun4v_err_itlb_vaddr;
unsigned long sun4v_err_itlb_ctx;
unsigned long sun4v_err_itlb_pte;
unsigned long sun4v_err_itlb_error;
void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
{
if (tl > 1)
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
regs->tpc, tl);
printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
(void *) regs->u_regs[UREG_I7]);
printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
"pte[%lx] error[%lx]\n",
sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
sun4v_err_itlb_pte, sun4v_err_itlb_error);
prom_halt();
}
unsigned long sun4v_err_dtlb_vaddr;
unsigned long sun4v_err_dtlb_ctx;
unsigned long sun4v_err_dtlb_pte;
unsigned long sun4v_err_dtlb_error;
void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
{
if (tl > 1)
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
regs->tpc, tl);
printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
(void *) regs->u_regs[UREG_I7]);
printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
"pte[%lx] error[%lx]\n",
sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
prom_halt();
}
void hypervisor_tlbop_error(unsigned long err, unsigned long op)
{
printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
err, op);
}
void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
{
printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
err, op);
}
void do_fpe_common(struct pt_regs *regs)
{
if (regs->tstate & TSTATE_PRIV) {
regs->tpc = regs->tnpc;
regs->tnpc += 4;
} else {
unsigned long fsr = current_thread_info()->xfsr[0];
siginfo_t info;
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_addr = (void __user *)regs->tpc;
info.si_trapno = 0;
info.si_code = __SI_FAULT;
if ((fsr & 0x1c000) == (1 << 14)) {
if (fsr & 0x10)
info.si_code = FPE_FLTINV;
else if (fsr & 0x08)
info.si_code = FPE_FLTOVF;
else if (fsr & 0x04)
info.si_code = FPE_FLTUND;
else if (fsr & 0x02)
info.si_code = FPE_FLTDIV;
else if (fsr & 0x01)
info.si_code = FPE_FLTRES;
}
force_sig_info(SIGFPE, &info, current);
}
}
void do_fpieee(struct pt_regs *regs)
{
if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
0, 0x24, SIGFPE) == NOTIFY_STOP)
return;
do_fpe_common(regs);
}
extern int do_mathemu(struct pt_regs *, struct fpustate *, bool);
void do_fpother(struct pt_regs *regs)
{
struct fpustate *f = FPUSTATE;
int ret = 0;
if (notify_die(DIE_TRAP, "fpu exception other", regs,
0, 0x25, SIGFPE) == NOTIFY_STOP)
return;
switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
case (2 << 14): /* unfinished_FPop */
case (3 << 14): /* unimplemented_FPop */
ret = do_mathemu(regs, f, false);
break;
}
if (ret)
return;
do_fpe_common(regs);
}
void do_tof(struct pt_regs *regs)
{
siginfo_t info;
if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
0, 0x26, SIGEMT) == NOTIFY_STOP)
return;
if (regs->tstate & TSTATE_PRIV)
die_if_kernel("Penguin overflow trap from kernel mode", regs);
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGEMT;
info.si_errno = 0;
info.si_code = EMT_TAGOVF;
info.si_addr = (void __user *)regs->tpc;
info.si_trapno = 0;
force_sig_info(SIGEMT, &info, current);
}
void do_div0(struct pt_regs *regs)
{
siginfo_t info;
if (notify_die(DIE_TRAP, "integer division by zero", regs,
0, 0x28, SIGFPE) == NOTIFY_STOP)
return;
if (regs->tstate & TSTATE_PRIV)
die_if_kernel("TL0: Kernel divide by zero.", regs);
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = FPE_INTDIV;
info.si_addr = (void __user *)regs->tpc;
info.si_trapno = 0;
force_sig_info(SIGFPE, &info, current);
}
static void instruction_dump(unsigned int *pc)
{
int i;
if ((((unsigned long) pc) & 3))
return;
printk("Instruction DUMP:");
for (i = -3; i < 6; i++)
printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
printk("\n");
}
static void user_instruction_dump(unsigned int __user *pc)
{
int i;
unsigned int buf[9];
if ((((unsigned long) pc) & 3))
return;
if (copy_from_user(buf, pc - 3, sizeof(buf)))
return;
printk("Instruction DUMP:");
for (i = 0; i < 9; i++)
printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
printk("\n");
}
void show_stack(struct task_struct *tsk, unsigned long *_ksp)
{
unsigned long fp, ksp;
struct thread_info *tp;
int count = 0;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
int graph = 0;
#endif
ksp = (unsigned long) _ksp;
if (!tsk)
tsk = current;
tp = task_thread_info(tsk);
if (ksp == 0UL) {
if (tsk == current)
asm("mov %%fp, %0" : "=r" (ksp));
else
ksp = tp->ksp;
}
if (tp == current_thread_info())
flushw_all();
fp = ksp + STACK_BIAS;
printk("Call Trace:\n");
do {
struct sparc_stackf *sf;
struct pt_regs *regs;
unsigned long pc;
if (!kstack_valid(tp, fp))
break;
sf = (struct sparc_stackf *) fp;
regs = (struct pt_regs *) (sf + 1);
if (kstack_is_trap_frame(tp, regs)) {
if (!(regs->tstate & TSTATE_PRIV))
break;
pc = regs->tpc;
fp = regs->u_regs[UREG_I6] + STACK_BIAS;
} else {
pc = sf->callers_pc;
fp = (unsigned long)sf->fp + STACK_BIAS;
}
printk(" [%016lx] %pS\n", pc, (void *) pc);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
if ((pc + 8UL) == (unsigned long) &return_to_handler) {
int index = tsk->curr_ret_stack;
if (tsk->ret_stack && index >= graph) {
pc = tsk->ret_stack[index - graph].ret;
printk(" [%016lx] %pS\n", pc, (void *) pc);
graph++;
}
}
#endif
} while (++count < 16);
}
void dump_stack(void)
{
show_stack(current, NULL);
}
EXPORT_SYMBOL(dump_stack);
static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
{
unsigned long fp = rw->ins[6];
if (!fp)
return NULL;
return (struct reg_window *) (fp + STACK_BIAS);
}
void die_if_kernel(char *str, struct pt_regs *regs)
{
static int die_counter;
int count = 0;
/* Amuse the user. */
printk(
" \\|/ ____ \\|/\n"
" \"@'/ .. \\`@\"\n"
" /_| \\__/ |_\\\n"
" \\__U_/\n");
printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
__asm__ __volatile__("flushw");
show_regs(regs);
add_taint(TAINT_DIE);
if (regs->tstate & TSTATE_PRIV) {
struct thread_info *tp = current_thread_info();
struct reg_window *rw = (struct reg_window *)
(regs->u_regs[UREG_FP] + STACK_BIAS);
/* Stop the back trace when we hit userland or we
* find some badly aligned kernel stack.
*/
while (rw &&
count++ < 30 &&
kstack_valid(tp, (unsigned long) rw)) {
printk("Caller[%016lx]: %pS\n", rw->ins[7],
(void *) rw->ins[7]);
rw = kernel_stack_up(rw);
}
instruction_dump ((unsigned int *) regs->tpc);
} else {
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
user_instruction_dump ((unsigned int __user *) regs->tpc);
}
if (regs->tstate & TSTATE_PRIV)
do_exit(SIGKILL);
do_exit(SIGSEGV);
}
EXPORT_SYMBOL(die_if_kernel);
#define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19))
#define VIS_OPCODE_VAL ((0x2 << 30) | (0x36 << 19))
extern int handle_popc(u32 insn, struct pt_regs *regs);
extern int handle_ldf_stq(u32 insn, struct pt_regs *regs);
void do_illegal_instruction(struct pt_regs *regs)
{
unsigned long pc = regs->tpc;
unsigned long tstate = regs->tstate;
u32 insn;
siginfo_t info;
if (notify_die(DIE_TRAP, "illegal instruction", regs,
0, 0x10, SIGILL) == NOTIFY_STOP)
return;
if (tstate & TSTATE_PRIV)
die_if_kernel("Kernel illegal instruction", regs);
if (test_thread_flag(TIF_32BIT))
pc = (u32)pc;
if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
if (handle_popc(insn, regs))
return;
} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
if (handle_ldf_stq(insn, regs))
return;
} else if (tlb_type == hypervisor) {
if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
if (!vis_emul(regs, insn))
return;
} else {
struct fpustate *f = FPUSTATE;
/* On UltraSPARC T2 and later, FPU insns which
* are not implemented in HW signal an illegal
* instruction trap and do not set the FP Trap
* Trap in the %fsr to unimplemented_FPop.
*/
if (do_mathemu(regs, f, true))
return;
}
}
}
info.si_signo = SIGILL;
info.si_errno = 0;
info.si_code = ILL_ILLOPC;
info.si_addr = (void __user *)pc;
info.si_trapno = 0;
force_sig_info(SIGILL, &info, current);
}
extern void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn);
void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
{
siginfo_t info;
if (notify_die(DIE_TRAP, "memory address unaligned", regs,
0, 0x34, SIGSEGV) == NOTIFY_STOP)
return;
if (regs->tstate & TSTATE_PRIV) {
kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
return;
}
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRALN;
info.si_addr = (void __user *)sfar;
info.si_trapno = 0;
force_sig_info(SIGBUS, &info, current);
}
void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
siginfo_t info;
if (notify_die(DIE_TRAP, "memory address unaligned", regs,
0, 0x34, SIGSEGV) == NOTIFY_STOP)
return;
if (regs->tstate & TSTATE_PRIV) {
kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
return;
}
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRALN;
info.si_addr = (void __user *) addr;
info.si_trapno = 0;
force_sig_info(SIGBUS, &info, current);
}
void do_privop(struct pt_regs *regs)
{
siginfo_t info;
if (notify_die(DIE_TRAP, "privileged operation", regs,
0, 0x11, SIGILL) == NOTIFY_STOP)
return;
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGILL;
info.si_errno = 0;
info.si_code = ILL_PRVOPC;
info.si_addr = (void __user *)regs->tpc;
info.si_trapno = 0;
force_sig_info(SIGILL, &info, current);
}
void do_privact(struct pt_regs *regs)
{
do_privop(regs);
}
/* Trap level 1 stuff or other traps we should never see... */
void do_cee(struct pt_regs *regs)
{
die_if_kernel("TL0: Cache Error Exception", regs);
}
void do_cee_tl1(struct pt_regs *regs)
{
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: Cache Error Exception", regs);
}
void do_dae_tl1(struct pt_regs *regs)
{
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: Data Access Exception", regs);
}
void do_iae_tl1(struct pt_regs *regs)
{
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: Instruction Access Exception", regs);
}
void do_div0_tl1(struct pt_regs *regs)
{
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: DIV0 Exception", regs);
}
void do_fpdis_tl1(struct pt_regs *regs)
{
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: FPU Disabled", regs);
}
void do_fpieee_tl1(struct pt_regs *regs)
{
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: FPU IEEE Exception", regs);
}
void do_fpother_tl1(struct pt_regs *regs)
{
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: FPU Other Exception", regs);
}
void do_ill_tl1(struct pt_regs *regs)
{
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: Illegal Instruction Exception", regs);
}
void do_irq_tl1(struct pt_regs *regs)
{
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: IRQ Exception", regs);
}
void do_lddfmna_tl1(struct pt_regs *regs)
{
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: LDDF Exception", regs);
}
void do_stdfmna_tl1(struct pt_regs *regs)
{
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: STDF Exception", regs);
}
void do_paw(struct pt_regs *regs)
{
die_if_kernel("TL0: Phys Watchpoint Exception", regs);
}
void do_paw_tl1(struct pt_regs *regs)
{
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: Phys Watchpoint Exception", regs);
}
void do_vaw(struct pt_regs *regs)
{
die_if_kernel("TL0: Virt Watchpoint Exception", regs);
}
void do_vaw_tl1(struct pt_regs *regs)
{
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: Virt Watchpoint Exception", regs);
}
void do_tof_tl1(struct pt_regs *regs)
{
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: Tag Overflow Exception", regs);
}
void do_getpsr(struct pt_regs *regs)
{
regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
regs->tpc = regs->tnpc;
regs->tnpc += 4;
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
}
struct trap_per_cpu trap_block[NR_CPUS];
EXPORT_SYMBOL(trap_block);
/* This can get invoked before sched_init() so play it super safe
* and use hard_smp_processor_id().
*/
void notrace init_cur_cpu_trap(struct thread_info *t)
{
int cpu = hard_smp_processor_id();
struct trap_per_cpu *p = &trap_block[cpu];
p->thread = t;
p->pgd_paddr = 0;
}
extern void thread_info_offsets_are_bolixed_dave(void);
extern void trap_per_cpu_offsets_are_bolixed_dave(void);
extern void tsb_config_offsets_are_bolixed_dave(void);
/* Only invoked on boot processor. */
void __init trap_init(void)
{
/* Compile time sanity check. */
BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
TI_FLAGS != offsetof(struct thread_info, flags) ||
TI_CPU != offsetof(struct thread_info, cpu) ||
TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
TI_KSP != offsetof(struct thread_info, ksp) ||
TI_FAULT_ADDR != offsetof(struct thread_info,
fault_address) ||
TI_KREGS != offsetof(struct thread_info, kregs) ||
TI_UTRAPS != offsetof(struct thread_info, utraps) ||
TI_EXEC_DOMAIN != offsetof(struct thread_info,
exec_domain) ||
TI_REG_WINDOW != offsetof(struct thread_info,
reg_window) ||
TI_RWIN_SPTRS != offsetof(struct thread_info,
rwbuf_stkptrs) ||
TI_GSR != offsetof(struct thread_info, gsr) ||
TI_XFSR != offsetof(struct thread_info, xfsr) ||
TI_PRE_COUNT != offsetof(struct thread_info,
preempt_count) ||
TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
TI_SYS_NOERROR != offsetof(struct thread_info,
syscall_noerror) ||
TI_RESTART_BLOCK != offsetof(struct thread_info,
restart_block) ||
TI_KUNA_REGS != offsetof(struct thread_info,
kern_una_regs) ||
TI_KUNA_INSN != offsetof(struct thread_info,
kern_una_insn) ||
TI_FPREGS != offsetof(struct thread_info, fpregs) ||
(TI_FPREGS & (64 - 1)));
BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
thread) ||
(TRAP_PER_CPU_PGD_PADDR !=
offsetof(struct trap_per_cpu, pgd_paddr)) ||
(TRAP_PER_CPU_CPU_MONDO_PA !=
offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
(TRAP_PER_CPU_DEV_MONDO_PA !=
offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
(TRAP_PER_CPU_RESUM_MONDO_PA !=
offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
(TRAP_PER_CPU_RESUM_KBUF_PA !=
offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
(TRAP_PER_CPU_NONRESUM_MONDO_PA !=
offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
(TRAP_PER_CPU_NONRESUM_KBUF_PA !=
offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
(TRAP_PER_CPU_FAULT_INFO !=
offsetof(struct trap_per_cpu, fault_info)) ||
(TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
(TRAP_PER_CPU_CPU_LIST_PA !=
offsetof(struct trap_per_cpu, cpu_list_pa)) ||
(TRAP_PER_CPU_TSB_HUGE !=
offsetof(struct trap_per_cpu, tsb_huge)) ||
(TRAP_PER_CPU_TSB_HUGE_TEMP !=
offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
(TRAP_PER_CPU_IRQ_WORKLIST_PA !=
offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
(TRAP_PER_CPU_CPU_MONDO_QMASK !=
offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
(TRAP_PER_CPU_DEV_MONDO_QMASK !=
offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
(TRAP_PER_CPU_RESUM_QMASK !=
offsetof(struct trap_per_cpu, resum_qmask)) ||
(TRAP_PER_CPU_NONRESUM_QMASK !=
offsetof(struct trap_per_cpu, nonresum_qmask)) ||
(TRAP_PER_CPU_PER_CPU_BASE !=
offsetof(struct trap_per_cpu, __per_cpu_base)));
BUILD_BUG_ON((TSB_CONFIG_TSB !=
offsetof(struct tsb_config, tsb)) ||
(TSB_CONFIG_RSS_LIMIT !=
offsetof(struct tsb_config, tsb_rss_limit)) ||
(TSB_CONFIG_NENTRIES !=
offsetof(struct tsb_config, tsb_nentries)) ||
(TSB_CONFIG_REG_VAL !=
offsetof(struct tsb_config, tsb_reg_val)) ||
(TSB_CONFIG_MAP_VADDR !=
offsetof(struct tsb_config, tsb_map_vaddr)) ||
(TSB_CONFIG_MAP_PTE !=
offsetof(struct tsb_config, tsb_map_pte)));
/* Attach to the address space of init_task. On SMP we
* do this in smp.c:smp_callin for other cpus.
*/
atomic_inc(&init_mm.mm_count);
current->active_mm = &init_mm;
}