OpenCloudOS-Kernel/arch/x86/include/asm/dma-mapping.h

307 lines
8.4 KiB
C

#ifndef _ASM_X86_DMA_MAPPING_H
#define _ASM_X86_DMA_MAPPING_H
/*
* IOMMU interface. See Documentation/DMA-mapping.txt and DMA-API.txt for
* documentation.
*/
#include <linux/scatterlist.h>
#include <asm/io.h>
#include <asm/swiotlb.h>
#include <asm-generic/dma-coherent.h>
extern dma_addr_t bad_dma_address;
extern int iommu_merge;
extern struct device x86_dma_fallback_dev;
extern int panic_on_overflow;
struct dma_mapping_ops {
int (*mapping_error)(struct device *dev,
dma_addr_t dma_addr);
void* (*alloc_coherent)(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp);
void (*free_coherent)(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle);
dma_addr_t (*map_single)(struct device *hwdev, phys_addr_t ptr,
size_t size, int direction);
void (*unmap_single)(struct device *dev, dma_addr_t addr,
size_t size, int direction);
void (*sync_single_for_cpu)(struct device *hwdev,
dma_addr_t dma_handle, size_t size,
int direction);
void (*sync_single_for_device)(struct device *hwdev,
dma_addr_t dma_handle, size_t size,
int direction);
void (*sync_single_range_for_cpu)(struct device *hwdev,
dma_addr_t dma_handle, unsigned long offset,
size_t size, int direction);
void (*sync_single_range_for_device)(struct device *hwdev,
dma_addr_t dma_handle, unsigned long offset,
size_t size, int direction);
void (*sync_sg_for_cpu)(struct device *hwdev,
struct scatterlist *sg, int nelems,
int direction);
void (*sync_sg_for_device)(struct device *hwdev,
struct scatterlist *sg, int nelems,
int direction);
int (*map_sg)(struct device *hwdev, struct scatterlist *sg,
int nents, int direction);
void (*unmap_sg)(struct device *hwdev,
struct scatterlist *sg, int nents,
int direction);
int (*dma_supported)(struct device *hwdev, u64 mask);
int is_phys;
};
extern struct dma_mapping_ops *dma_ops;
static inline struct dma_mapping_ops *get_dma_ops(struct device *dev)
{
#ifdef CONFIG_X86_32
return dma_ops;
#else
if (unlikely(!dev) || !dev->archdata.dma_ops)
return dma_ops;
else
return dev->archdata.dma_ops;
#endif
}
/* Make sure we keep the same behaviour */
static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
struct dma_mapping_ops *ops = get_dma_ops(dev);
if (ops->mapping_error)
return ops->mapping_error(dev, dma_addr);
return (dma_addr == bad_dma_address);
}
#define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
#define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
#define dma_is_consistent(d, h) (1)
extern int dma_supported(struct device *hwdev, u64 mask);
extern int dma_set_mask(struct device *dev, u64 mask);
extern void *dma_generic_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_addr, gfp_t flag);
static inline dma_addr_t
dma_map_single(struct device *hwdev, void *ptr, size_t size,
int direction)
{
struct dma_mapping_ops *ops = get_dma_ops(hwdev);
BUG_ON(!valid_dma_direction(direction));
return ops->map_single(hwdev, virt_to_phys(ptr), size, direction);
}
static inline void
dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
int direction)
{
struct dma_mapping_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(direction));
if (ops->unmap_single)
ops->unmap_single(dev, addr, size, direction);
}
static inline int
dma_map_sg(struct device *hwdev, struct scatterlist *sg,
int nents, int direction)
{
struct dma_mapping_ops *ops = get_dma_ops(hwdev);
BUG_ON(!valid_dma_direction(direction));
return ops->map_sg(hwdev, sg, nents, direction);
}
static inline void
dma_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nents,
int direction)
{
struct dma_mapping_ops *ops = get_dma_ops(hwdev);
BUG_ON(!valid_dma_direction(direction));
if (ops->unmap_sg)
ops->unmap_sg(hwdev, sg, nents, direction);
}
static inline void
dma_sync_single_for_cpu(struct device *hwdev, dma_addr_t dma_handle,
size_t size, int direction)
{
struct dma_mapping_ops *ops = get_dma_ops(hwdev);
BUG_ON(!valid_dma_direction(direction));
if (ops->sync_single_for_cpu)
ops->sync_single_for_cpu(hwdev, dma_handle, size, direction);
flush_write_buffers();
}
static inline void
dma_sync_single_for_device(struct device *hwdev, dma_addr_t dma_handle,
size_t size, int direction)
{
struct dma_mapping_ops *ops = get_dma_ops(hwdev);
BUG_ON(!valid_dma_direction(direction));
if (ops->sync_single_for_device)
ops->sync_single_for_device(hwdev, dma_handle, size, direction);
flush_write_buffers();
}
static inline void
dma_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dma_handle,
unsigned long offset, size_t size, int direction)
{
struct dma_mapping_ops *ops = get_dma_ops(hwdev);
BUG_ON(!valid_dma_direction(direction));
if (ops->sync_single_range_for_cpu)
ops->sync_single_range_for_cpu(hwdev, dma_handle, offset,
size, direction);
flush_write_buffers();
}
static inline void
dma_sync_single_range_for_device(struct device *hwdev, dma_addr_t dma_handle,
unsigned long offset, size_t size,
int direction)
{
struct dma_mapping_ops *ops = get_dma_ops(hwdev);
BUG_ON(!valid_dma_direction(direction));
if (ops->sync_single_range_for_device)
ops->sync_single_range_for_device(hwdev, dma_handle,
offset, size, direction);
flush_write_buffers();
}
static inline void
dma_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
int nelems, int direction)
{
struct dma_mapping_ops *ops = get_dma_ops(hwdev);
BUG_ON(!valid_dma_direction(direction));
if (ops->sync_sg_for_cpu)
ops->sync_sg_for_cpu(hwdev, sg, nelems, direction);
flush_write_buffers();
}
static inline void
dma_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
int nelems, int direction)
{
struct dma_mapping_ops *ops = get_dma_ops(hwdev);
BUG_ON(!valid_dma_direction(direction));
if (ops->sync_sg_for_device)
ops->sync_sg_for_device(hwdev, sg, nelems, direction);
flush_write_buffers();
}
static inline dma_addr_t dma_map_page(struct device *dev, struct page *page,
size_t offset, size_t size,
int direction)
{
struct dma_mapping_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(direction));
return ops->map_single(dev, page_to_phys(page) + offset,
size, direction);
}
static inline void dma_unmap_page(struct device *dev, dma_addr_t addr,
size_t size, int direction)
{
dma_unmap_single(dev, addr, size, direction);
}
static inline void
dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction dir)
{
flush_write_buffers();
}
static inline int dma_get_cache_alignment(void)
{
/* no easy way to get cache size on all x86, so return the
* maximum possible, to be safe */
return boot_cpu_data.x86_clflush_size;
}
static inline unsigned long dma_alloc_coherent_mask(struct device *dev,
gfp_t gfp)
{
unsigned long dma_mask = 0;
dma_mask = dev->coherent_dma_mask;
if (!dma_mask)
dma_mask = (gfp & GFP_DMA) ? DMA_24BIT_MASK : DMA_32BIT_MASK;
return dma_mask;
}
static inline gfp_t dma_alloc_coherent_gfp_flags(struct device *dev, gfp_t gfp)
{
unsigned long dma_mask = dma_alloc_coherent_mask(dev, gfp);
if (dma_mask <= DMA_24BIT_MASK)
gfp |= GFP_DMA;
#ifdef CONFIG_X86_64
if (dma_mask <= DMA_32BIT_MASK && !(gfp & GFP_DMA))
gfp |= GFP_DMA32;
#endif
return gfp;
}
static inline void *
dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t gfp)
{
struct dma_mapping_ops *ops = get_dma_ops(dev);
void *memory;
gfp &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
if (dma_alloc_from_coherent(dev, size, dma_handle, &memory))
return memory;
if (!dev) {
dev = &x86_dma_fallback_dev;
gfp |= GFP_DMA;
}
if (!is_device_dma_capable(dev))
return NULL;
if (!ops->alloc_coherent)
return NULL;
return ops->alloc_coherent(dev, size, dma_handle,
dma_alloc_coherent_gfp_flags(dev, gfp));
}
static inline void dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t bus)
{
struct dma_mapping_ops *ops = get_dma_ops(dev);
WARN_ON(irqs_disabled()); /* for portability */
if (dma_release_from_coherent(dev, get_order(size), vaddr))
return;
if (ops->free_coherent)
ops->free_coherent(dev, size, vaddr, bus);
}
#endif