OpenCloudOS-Kernel/fs/crypto/bio.c

194 lines
5.6 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Utility functions for file contents encryption/decryption on
* block device-based filesystems.
*
* Copyright (C) 2015, Google, Inc.
* Copyright (C) 2015, Motorola Mobility
*/
#include <linux/pagemap.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/namei.h>
#include "fscrypt_private.h"
/**
* fscrypt_decrypt_bio() - decrypt the contents of a bio
* @bio: the bio to decrypt
*
* Decrypt the contents of a "read" bio following successful completion of the
* underlying disk read. The bio must be reading a whole number of blocks of an
* encrypted file directly into the page cache. If the bio is reading the
* ciphertext into bounce pages instead of the page cache (for example, because
* the file is also compressed, so decompression is required after decryption),
* then this function isn't applicable. This function may sleep, so it must be
* called from a workqueue rather than from the bio's bi_end_io callback.
*
* Return: %true on success; %false on failure. On failure, bio->bi_status is
* also set to an error status.
*/
bool fscrypt_decrypt_bio(struct bio *bio)
{
struct folio_iter fi;
bio_for_each_folio_all(fi, bio) {
int err = fscrypt_decrypt_pagecache_blocks(fi.folio, fi.length,
fi.offset);
if (err) {
bio->bi_status = errno_to_blk_status(err);
return false;
}
}
return true;
}
EXPORT_SYMBOL(fscrypt_decrypt_bio);
static int fscrypt_zeroout_range_inline_crypt(const struct inode *inode,
pgoff_t lblk, sector_t pblk,
unsigned int len)
{
const unsigned int blockbits = inode->i_blkbits;
const unsigned int blocks_per_page = 1 << (PAGE_SHIFT - blockbits);
struct bio *bio;
int ret, err = 0;
int num_pages = 0;
/* This always succeeds since __GFP_DIRECT_RECLAIM is set. */
bio = bio_alloc(inode->i_sb->s_bdev, BIO_MAX_VECS, REQ_OP_WRITE,
GFP_NOFS);
while (len) {
unsigned int blocks_this_page = min(len, blocks_per_page);
unsigned int bytes_this_page = blocks_this_page << blockbits;
if (num_pages == 0) {
fscrypt_set_bio_crypt_ctx(bio, inode, lblk, GFP_NOFS);
bio->bi_iter.bi_sector =
pblk << (blockbits - SECTOR_SHIFT);
}
ret = bio_add_page(bio, ZERO_PAGE(0), bytes_this_page, 0);
if (WARN_ON(ret != bytes_this_page)) {
err = -EIO;
goto out;
}
num_pages++;
len -= blocks_this_page;
lblk += blocks_this_page;
pblk += blocks_this_page;
if (num_pages == BIO_MAX_VECS || !len ||
!fscrypt_mergeable_bio(bio, inode, lblk)) {
err = submit_bio_wait(bio);
if (err)
goto out;
bio_reset(bio, inode->i_sb->s_bdev, REQ_OP_WRITE);
num_pages = 0;
}
}
out:
bio_put(bio);
return err;
}
/**
* fscrypt_zeroout_range() - zero out a range of blocks in an encrypted file
* @inode: the file's inode
* @lblk: the first file logical block to zero out
* @pblk: the first filesystem physical block to zero out
* @len: number of blocks to zero out
*
* Zero out filesystem blocks in an encrypted regular file on-disk, i.e. write
* ciphertext blocks which decrypt to the all-zeroes block. The blocks must be
* both logically and physically contiguous. It's also assumed that the
* filesystem only uses a single block device, ->s_bdev.
*
* Note that since each block uses a different IV, this involves writing a
* different ciphertext to each block; we can't simply reuse the same one.
*
* Return: 0 on success; -errno on failure.
*/
int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
sector_t pblk, unsigned int len)
{
const unsigned int blockbits = inode->i_blkbits;
const unsigned int blocksize = 1 << blockbits;
const unsigned int blocks_per_page_bits = PAGE_SHIFT - blockbits;
const unsigned int blocks_per_page = 1 << blocks_per_page_bits;
struct page *pages[16]; /* write up to 16 pages at a time */
unsigned int nr_pages;
unsigned int i;
unsigned int offset;
struct bio *bio;
int ret, err;
if (len == 0)
return 0;
if (fscrypt_inode_uses_inline_crypto(inode))
return fscrypt_zeroout_range_inline_crypt(inode, lblk, pblk,
len);
BUILD_BUG_ON(ARRAY_SIZE(pages) > BIO_MAX_VECS);
nr_pages = min_t(unsigned int, ARRAY_SIZE(pages),
(len + blocks_per_page - 1) >> blocks_per_page_bits);
/*
* We need at least one page for ciphertext. Allocate the first one
* from a mempool, with __GFP_DIRECT_RECLAIM set so that it can't fail.
*
* Any additional page allocations are allowed to fail, as they only
* help performance, and waiting on the mempool for them could deadlock.
*/
for (i = 0; i < nr_pages; i++) {
pages[i] = fscrypt_alloc_bounce_page(i == 0 ? GFP_NOFS :
GFP_NOWAIT | __GFP_NOWARN);
if (!pages[i])
break;
}
nr_pages = i;
if (WARN_ON(nr_pages <= 0))
return -EINVAL;
/* This always succeeds since __GFP_DIRECT_RECLAIM is set. */
bio = bio_alloc(inode->i_sb->s_bdev, nr_pages, REQ_OP_WRITE, GFP_NOFS);
do {
bio->bi_iter.bi_sector = pblk << (blockbits - 9);
i = 0;
offset = 0;
do {
err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk,
ZERO_PAGE(0), pages[i],
blocksize, offset, GFP_NOFS);
if (err)
goto out;
lblk++;
pblk++;
len--;
offset += blocksize;
if (offset == PAGE_SIZE || len == 0) {
ret = bio_add_page(bio, pages[i++], offset, 0);
if (WARN_ON(ret != offset)) {
err = -EIO;
goto out;
}
offset = 0;
}
} while (i != nr_pages && len != 0);
err = submit_bio_wait(bio);
if (err)
goto out;
bio_reset(bio, inode->i_sb->s_bdev, REQ_OP_WRITE);
} while (len != 0);
err = 0;
out:
bio_put(bio);
for (i = 0; i < nr_pages; i++)
fscrypt_free_bounce_page(pages[i]);
return err;
}
EXPORT_SYMBOL(fscrypt_zeroout_range);