OpenCloudOS-Kernel/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v10.c

976 lines
30 KiB
C

/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#undef pr_fmt
#define pr_fmt(fmt) "kfd2kgd: " fmt
#include <linux/module.h>
#include <linux/fdtable.h>
#include <linux/uaccess.h>
#include <linux/firmware.h>
#include <linux/mmu_context.h>
#include <drm/drmP.h>
#include "amdgpu.h"
#include "amdgpu_amdkfd.h"
#include "amdgpu_ucode.h"
#include "soc15_hw_ip.h"
#include "gc/gc_10_1_0_offset.h"
#include "gc/gc_10_1_0_sh_mask.h"
#include "navi10_enum.h"
#include "athub/athub_2_0_0_offset.h"
#include "athub/athub_2_0_0_sh_mask.h"
#include "oss/osssys_5_0_0_offset.h"
#include "oss/osssys_5_0_0_sh_mask.h"
#include "soc15_common.h"
#include "v10_structs.h"
#include "nv.h"
#include "nvd.h"
enum hqd_dequeue_request_type {
NO_ACTION = 0,
DRAIN_PIPE,
RESET_WAVES,
SAVE_WAVES
};
/*
* Register access functions
*/
static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
uint32_t sh_mem_config,
uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
uint32_t sh_mem_bases);
static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
unsigned int vmid);
static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
uint32_t queue_id, uint32_t __user *wptr,
uint32_t wptr_shift, uint32_t wptr_mask,
struct mm_struct *mm);
static int kgd_hqd_dump(struct kgd_dev *kgd,
uint32_t pipe_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs);
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
uint32_t __user *wptr, struct mm_struct *mm);
static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
uint32_t engine_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs);
static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
uint32_t pipe_id, uint32_t queue_id);
static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
enum kfd_preempt_type reset_type,
unsigned int utimeout, uint32_t pipe_id,
uint32_t queue_id);
static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
unsigned int utimeout);
#if 0
static uint32_t get_watch_base_addr(struct amdgpu_device *adev);
#endif
static int kgd_address_watch_disable(struct kgd_dev *kgd);
static int kgd_address_watch_execute(struct kgd_dev *kgd,
unsigned int watch_point_id,
uint32_t cntl_val,
uint32_t addr_hi,
uint32_t addr_lo);
static int kgd_wave_control_execute(struct kgd_dev *kgd,
uint32_t gfx_index_val,
uint32_t sq_cmd);
static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
unsigned int watch_point_id,
unsigned int reg_offset);
static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
uint8_t vmid);
static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
uint8_t vmid);
static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
uint64_t page_table_base);
static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
/* Because of REG_GET_FIELD() being used, we put this function in the
* asic specific file.
*/
static int amdgpu_amdkfd_get_tile_config(struct kgd_dev *kgd,
struct tile_config *config)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
config->gb_addr_config = adev->gfx.config.gb_addr_config;
#if 0
/* TODO - confirm REG_GET_FIELD x2, should be OK as is... but
* MC_ARB_RAMCFG register doesn't exist on Vega10 - initial amdgpu
* changes commented out related code, doing the same here for now but
* need to sync with Ken et al
*/
config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
MC_ARB_RAMCFG, NOOFBANK);
config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
MC_ARB_RAMCFG, NOOFRANKS);
#endif
config->tile_config_ptr = adev->gfx.config.tile_mode_array;
config->num_tile_configs =
ARRAY_SIZE(adev->gfx.config.tile_mode_array);
config->macro_tile_config_ptr =
adev->gfx.config.macrotile_mode_array;
config->num_macro_tile_configs =
ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
return 0;
}
static const struct kfd2kgd_calls kfd2kgd = {
.program_sh_mem_settings = kgd_program_sh_mem_settings,
.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
.init_interrupts = kgd_init_interrupts,
.hqd_load = kgd_hqd_load,
.hqd_sdma_load = kgd_hqd_sdma_load,
.hqd_dump = kgd_hqd_dump,
.hqd_sdma_dump = kgd_hqd_sdma_dump,
.hqd_is_occupied = kgd_hqd_is_occupied,
.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
.hqd_destroy = kgd_hqd_destroy,
.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
.address_watch_disable = kgd_address_watch_disable,
.address_watch_execute = kgd_address_watch_execute,
.wave_control_execute = kgd_wave_control_execute,
.address_watch_get_offset = kgd_address_watch_get_offset,
.get_atc_vmid_pasid_mapping_pasid =
get_atc_vmid_pasid_mapping_pasid,
.get_atc_vmid_pasid_mapping_valid =
get_atc_vmid_pasid_mapping_valid,
.invalidate_tlbs = invalidate_tlbs,
.invalidate_tlbs_vmid = invalidate_tlbs_vmid,
.set_vm_context_page_table_base = set_vm_context_page_table_base,
.get_tile_config = amdgpu_amdkfd_get_tile_config,
};
struct kfd2kgd_calls *amdgpu_amdkfd_gfx_10_0_get_functions()
{
return (struct kfd2kgd_calls *)&kfd2kgd;
}
static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
{
return (struct amdgpu_device *)kgd;
}
static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
uint32_t queue, uint32_t vmid)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
mutex_lock(&adev->srbm_mutex);
nv_grbm_select(adev, mec, pipe, queue, vmid);
}
static void unlock_srbm(struct kgd_dev *kgd)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
nv_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
}
static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
uint32_t queue_id)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
lock_srbm(kgd, mec, pipe, queue_id, 0);
}
static uint32_t get_queue_mask(struct amdgpu_device *adev,
uint32_t pipe_id, uint32_t queue_id)
{
unsigned int bit = (pipe_id * adev->gfx.mec.num_queue_per_pipe +
queue_id) & 31;
return ((uint32_t)1) << bit;
}
static void release_queue(struct kgd_dev *kgd)
{
unlock_srbm(kgd);
}
static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
uint32_t sh_mem_config,
uint32_t sh_mem_ape1_base,
uint32_t sh_mem_ape1_limit,
uint32_t sh_mem_bases)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
lock_srbm(kgd, 0, 0, 0, vmid);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases);
/* APE1 no longer exists on GFX9 */
unlock_srbm(kgd);
}
static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
unsigned int vmid)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
/*
* We have to assume that there is no outstanding mapping.
* The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
* a mapping is in progress or because a mapping finished
* and the SW cleared it.
* So the protocol is to always wait & clear.
*/
uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
ATC_VMID0_PASID_MAPPING__VALID_MASK;
pr_debug("pasid 0x%x vmid %d, reg value %x\n", pasid, vmid, pasid_mapping);
/*
* need to do this twice, once for gfx and once for mmhub
* for ATC add 16 to VMID for mmhub, for IH different registers.
* ATC_VMID0..15 registers are separate from ATC_VMID16..31.
*/
pr_debug("ATHUB, reg %x\n", SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid);
WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
pasid_mapping);
#if 0
/* TODO: uncomment this code when the hardware support is ready. */
while (!(RREG32(SOC15_REG_OFFSET(
ATHUB, 0,
mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
(1U << vmid)))
cpu_relax();
pr_debug("ATHUB mapping update finished\n");
WREG32(SOC15_REG_OFFSET(ATHUB, 0,
mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
1U << vmid);
#endif
/* Mapping vmid to pasid also for IH block */
pr_debug("update mapping for IH block and mmhub");
WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
pasid_mapping);
return 0;
}
/* TODO - RING0 form of field is obsolete, seems to date back to SI
* but still works
*/
static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
uint32_t mec;
uint32_t pipe;
mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
lock_srbm(kgd, mec, pipe, 0, 0);
WREG32(SOC15_REG_OFFSET(GC, 0, mmCPC_INT_CNTL),
CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
unlock_srbm(kgd);
return 0;
}
static uint32_t get_sdma_base_addr(struct amdgpu_device *adev,
unsigned int engine_id,
unsigned int queue_id)
{
uint32_t base[2] = {
SOC15_REG_OFFSET(SDMA0, 0,
mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL,
/* On gfx10, mmSDMA1_xxx registers are defined NOT based
* on SDMA1 base address (dw 0x1860) but based on SDMA0
* base address (dw 0x1260). Therefore use mmSDMA0_RLC0_RB_CNTL
* instead of mmSDMA1_RLC0_RB_CNTL for the base address calc
* below
*/
SOC15_REG_OFFSET(SDMA1, 0,
mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL
};
uint32_t retval;
retval = base[engine_id] + queue_id * (mmSDMA0_RLC1_RB_CNTL -
mmSDMA0_RLC0_RB_CNTL);
pr_debug("sdma base address: 0x%x\n", retval);
return retval;
}
#if 0
static uint32_t get_watch_base_addr(struct amdgpu_device *adev)
{
uint32_t retval = SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) -
mmTCP_WATCH0_ADDR_H;
pr_debug("kfd: reg watch base address: 0x%x\n", retval);
return retval;
}
#endif
static inline struct v10_compute_mqd *get_mqd(void *mqd)
{
return (struct v10_compute_mqd *)mqd;
}
static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd)
{
return (struct v10_sdma_mqd *)mqd;
}
static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
uint32_t queue_id, uint32_t __user *wptr,
uint32_t wptr_shift, uint32_t wptr_mask,
struct mm_struct *mm)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
struct v10_compute_mqd *m;
uint32_t *mqd_hqd;
uint32_t reg, hqd_base, data;
m = get_mqd(mqd);
pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id);
acquire_queue(kgd, pipe_id, queue_id);
/* HIQ is set during driver init period with vmid set to 0*/
if (m->cp_hqd_vmid == 0) {
uint32_t value, mec, pipe;
mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
mec, pipe, queue_id);
value = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_CP_SCHEDULERS));
value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
((mec << 5) | (pipe << 3) | queue_id | 0x80));
WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_CP_SCHEDULERS), value);
}
/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
mqd_hqd = &m->cp_mqd_base_addr_lo;
hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
for (reg = hqd_base;
reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
WREG32(reg, mqd_hqd[reg - hqd_base]);
/* Activate doorbell logic before triggering WPTR poll. */
data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data);
if (wptr) {
/* Don't read wptr with get_user because the user
* context may not be accessible (if this function
* runs in a work queue). Instead trigger a one-shot
* polling read from memory in the CP. This assumes
* that wptr is GPU-accessible in the queue's VMID via
* ATC or SVM. WPTR==RPTR before starting the poll so
* the CP starts fetching new commands from the right
* place.
*
* Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
* tricky. Assume that the queue didn't overflow. The
* number of valid bits in the 32-bit RPTR depends on
* the queue size. The remaining bits are taken from
* the saved 64-bit WPTR. If the WPTR wrapped, add the
* queue size.
*/
uint32_t queue_size =
2 << REG_GET_FIELD(m->cp_hqd_pq_control,
CP_HQD_PQ_CONTROL, QUEUE_SIZE);
uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
guessed_wptr += queue_size;
guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO),
lower_32_bits(guessed_wptr));
WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI),
upper_32_bits(guessed_wptr));
WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR),
lower_32_bits((uint64_t)wptr));
WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
upper_32_bits((uint64_t)wptr));
pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__, get_queue_mask(adev, pipe_id, queue_id));
WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1),
get_queue_mask(adev, pipe_id, queue_id));
}
/* Start the EOP fetcher */
WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR),
REG_SET_FIELD(m->cp_hqd_eop_rptr,
CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data);
release_queue(kgd);
return 0;
}
static int kgd_hqd_dump(struct kgd_dev *kgd,
uint32_t pipe_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
uint32_t i = 0, reg;
#define HQD_N_REGS 56
#define DUMP_REG(addr) do { \
if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
break; \
(*dump)[i][0] = (addr) << 2; \
(*dump)[i++][1] = RREG32(addr); \
} while (0)
*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
if (*dump == NULL)
return -ENOMEM;
acquire_queue(kgd, pipe_id, queue_id);
for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
DUMP_REG(reg);
release_queue(kgd);
WARN_ON_ONCE(i != HQD_N_REGS);
*n_regs = i;
return 0;
}
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
uint32_t __user *wptr, struct mm_struct *mm)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
struct v10_sdma_mqd *m;
uint32_t sdma_base_addr, sdmax_gfx_context_cntl;
unsigned long end_jiffies;
uint32_t data;
uint64_t data64;
uint64_t __user *wptr64 = (uint64_t __user *)wptr;
m = get_sdma_mqd(mqd);
sdma_base_addr = get_sdma_base_addr(adev, m->sdma_engine_id,
m->sdma_queue_id);
pr_debug("sdma load base addr %x for engine %d, queue %d\n", sdma_base_addr, m->sdma_engine_id, m->sdma_queue_id);
sdmax_gfx_context_cntl = m->sdma_engine_id ?
SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_CONTEXT_CNTL) :
SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_CONTEXT_CNTL);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
end_jiffies = msecs_to_jiffies(2000) + jiffies;
while (true) {
data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
break;
if (time_after(jiffies, end_jiffies))
return -ETIME;
usleep_range(500, 1000);
}
data = RREG32(sdmax_gfx_context_cntl);
data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
RESUME_CTX, 0);
WREG32(sdmax_gfx_context_cntl, data);
WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL_OFFSET,
m->sdmax_rlcx_doorbell_offset);
data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
ENABLE, 1);
WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_HI,
m->sdmax_rlcx_rb_rptr_hi);
WREG32(sdma_base_addr + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
if (read_user_wptr(mm, wptr64, data64)) {
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
lower_32_bits(data64));
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR_HI,
upper_32_bits(data64));
} else {
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
m->sdmax_rlcx_rb_rptr);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR_HI,
m->sdmax_rlcx_rb_rptr_hi);
}
WREG32(sdma_base_addr + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
m->sdmax_rlcx_rb_base_hi);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
m->sdmax_rlcx_rb_rptr_addr_lo);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
m->sdmax_rlcx_rb_rptr_addr_hi);
data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
RB_ENABLE, 1);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
return 0;
}
static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
uint32_t engine_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
uint32_t sdma_base_addr = get_sdma_base_addr(adev, engine_id, queue_id);
uint32_t i = 0, reg;
#undef HQD_N_REGS
#define HQD_N_REGS (19+6+7+10)
pr_debug("sdma dump engine id %d queue_id %d\n", engine_id, queue_id);
pr_debug("sdma base addr %x\n", sdma_base_addr);
*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
if (*dump == NULL)
return -ENOMEM;
for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
DUMP_REG(sdma_base_addr + reg);
for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
DUMP_REG(sdma_base_addr + reg);
for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
DUMP_REG(sdma_base_addr + reg);
for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
DUMP_REG(sdma_base_addr + reg);
WARN_ON_ONCE(i != HQD_N_REGS);
*n_regs = i;
return 0;
}
static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
uint32_t pipe_id, uint32_t queue_id)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
uint32_t act;
bool retval = false;
uint32_t low, high;
acquire_queue(kgd, pipe_id, queue_id);
act = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
if (act) {
low = lower_32_bits(queue_address >> 8);
high = upper_32_bits(queue_address >> 8);
if (low == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE)) &&
high == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE_HI)))
retval = true;
}
release_queue(kgd);
return retval;
}
static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
struct v10_sdma_mqd *m;
uint32_t sdma_base_addr;
uint32_t sdma_rlc_rb_cntl;
m = get_sdma_mqd(mqd);
sdma_base_addr = get_sdma_base_addr(adev, m->sdma_engine_id,
m->sdma_queue_id);
sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
return true;
return false;
}
static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
enum kfd_preempt_type reset_type,
unsigned int utimeout, uint32_t pipe_id,
uint32_t queue_id)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
enum hqd_dequeue_request_type type;
unsigned long end_jiffies;
uint32_t temp;
struct v10_compute_mqd *m = get_mqd(mqd);
#if 0
unsigned long flags;
int retry;
#endif
acquire_queue(kgd, pipe_id, queue_id);
if (m->cp_hqd_vmid == 0)
WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
switch (reset_type) {
case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
type = DRAIN_PIPE;
break;
case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
type = RESET_WAVES;
break;
default:
type = DRAIN_PIPE;
break;
}
#if 0 /* Is this still needed? */
/* Workaround: If IQ timer is active and the wait time is close to or
* equal to 0, dequeueing is not safe. Wait until either the wait time
* is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
* cleared before continuing. Also, ensure wait times are set to at
* least 0x3.
*/
local_irq_save(flags);
preempt_disable();
retry = 5000; /* wait for 500 usecs at maximum */
while (true) {
temp = RREG32(mmCP_HQD_IQ_TIMER);
if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
pr_debug("HW is processing IQ\n");
goto loop;
}
if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
== 3) /* SEM-rearm is safe */
break;
/* Wait time 3 is safe for CP, but our MMIO read/write
* time is close to 1 microsecond, so check for 10 to
* leave more buffer room
*/
if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
>= 10)
break;
pr_debug("IQ timer is active\n");
} else
break;
loop:
if (!retry) {
pr_err("CP HQD IQ timer status time out\n");
break;
}
ndelay(100);
--retry;
}
retry = 1000;
while (true) {
temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
break;
pr_debug("Dequeue request is pending\n");
if (!retry) {
pr_err("CP HQD dequeue request time out\n");
break;
}
ndelay(100);
--retry;
}
local_irq_restore(flags);
preempt_enable();
#endif
WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type);
end_jiffies = (utimeout * HZ / 1000) + jiffies;
while (true) {
temp = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
break;
if (time_after(jiffies, end_jiffies)) {
pr_err("cp queue preemption time out.\n");
release_queue(kgd);
return -ETIME;
}
usleep_range(500, 1000);
}
release_queue(kgd);
return 0;
}
static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
unsigned int utimeout)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
struct v10_sdma_mqd *m;
uint32_t sdma_base_addr;
uint32_t temp;
unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
m = get_sdma_mqd(mqd);
sdma_base_addr = get_sdma_base_addr(adev, m->sdma_engine_id,
m->sdma_queue_id);
temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
while (true) {
temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
break;
if (time_after(jiffies, end_jiffies))
return -ETIME;
usleep_range(500, 1000);
}
WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
m->sdmax_rlcx_rb_rptr_hi =
RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_HI);
return 0;
}
static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
uint8_t vmid)
{
uint32_t reg;
struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
reg = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
+ vmid);
return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
}
static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
uint8_t vmid)
{
uint32_t reg;
struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
reg = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
+ vmid);
return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
}
static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
{
struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
uint32_t req = (1 << vmid) |
(0 << GCVM_INVALIDATE_ENG0_REQ__FLUSH_TYPE__SHIFT) |/* legacy */
GCVM_INVALIDATE_ENG0_REQ__INVALIDATE_L2_PTES_MASK |
GCVM_INVALIDATE_ENG0_REQ__INVALIDATE_L2_PDE0_MASK |
GCVM_INVALIDATE_ENG0_REQ__INVALIDATE_L2_PDE1_MASK |
GCVM_INVALIDATE_ENG0_REQ__INVALIDATE_L2_PDE2_MASK |
GCVM_INVALIDATE_ENG0_REQ__INVALIDATE_L1_PTES_MASK;
mutex_lock(&adev->srbm_mutex);
/* Use light weight invalidation.
*
* TODO 1: agree on the right set of invalidation registers for
* KFD use. Use the last one for now. Invalidate only GCHUB as
* SDMA is now moved to GCHUB
*
* TODO 2: support range-based invalidation, requires kfg2kgd
* interface change
*/
WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_INVALIDATE_ENG0_ADDR_RANGE_LO32),
0xffffffff);
WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_INVALIDATE_ENG0_ADDR_RANGE_HI32),
0x0000001f);
WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_INVALIDATE_ENG0_REQ), req);
while (!(RREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_INVALIDATE_ENG0_ACK)) &
(1 << vmid)))
cpu_relax();
mutex_unlock(&adev->srbm_mutex);
}
static int invalidate_tlbs_with_kiq(struct amdgpu_device *adev, uint16_t pasid)
{
signed long r;
uint32_t seq;
struct amdgpu_ring *ring = &adev->gfx.kiq.ring;
spin_lock(&adev->gfx.kiq.ring_lock);
amdgpu_ring_alloc(ring, 12); /* fence + invalidate_tlbs package*/
amdgpu_ring_write(ring, PACKET3(PACKET3_INVALIDATE_TLBS, 0));
amdgpu_ring_write(ring,
PACKET3_INVALIDATE_TLBS_DST_SEL(1) |
PACKET3_INVALIDATE_TLBS_PASID(pasid));
amdgpu_fence_emit_polling(ring, &seq);
amdgpu_ring_commit(ring);
spin_unlock(&adev->gfx.kiq.ring_lock);
r = amdgpu_fence_wait_polling(ring, seq, adev->usec_timeout);
if (r < 1) {
DRM_ERROR("wait for kiq fence error: %ld.\n", r);
return -ETIME;
}
return 0;
}
static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
{
struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
int vmid;
struct amdgpu_ring *ring = &adev->gfx.kiq.ring;
if (amdgpu_emu_mode == 0 && ring->sched.ready)
return invalidate_tlbs_with_kiq(adev, pasid);
for (vmid = 0; vmid < 16; vmid++) {
if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
continue;
if (get_atc_vmid_pasid_mapping_valid(kgd, vmid)) {
if (get_atc_vmid_pasid_mapping_pasid(kgd, vmid)
== pasid) {
write_vmid_invalidate_request(kgd, vmid);
break;
}
}
}
return 0;
}
static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
{
struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
pr_err("non kfd vmid %d\n", vmid);
return 0;
}
write_vmid_invalidate_request(kgd, vmid);
return 0;
}
static int kgd_address_watch_disable(struct kgd_dev *kgd)
{
return 0;
}
static int kgd_address_watch_execute(struct kgd_dev *kgd,
unsigned int watch_point_id,
uint32_t cntl_val,
uint32_t addr_hi,
uint32_t addr_lo)
{
return 0;
}
static int kgd_wave_control_execute(struct kgd_dev *kgd,
uint32_t gfx_index_val,
uint32_t sq_cmd)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
uint32_t data = 0;
mutex_lock(&adev->grbm_idx_mutex);
WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), gfx_index_val);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_CMD), sq_cmd);
data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
INSTANCE_BROADCAST_WRITES, 1);
data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
SA_BROADCAST_WRITES, 1);
data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
SE_BROADCAST_WRITES, 1);
WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), data);
mutex_unlock(&adev->grbm_idx_mutex);
return 0;
}
static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
unsigned int watch_point_id,
unsigned int reg_offset)
{
return 0;
}
static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
uint64_t page_table_base)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
uint64_t base = page_table_base | AMDGPU_PTE_VALID;
if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
pr_err("trying to set page table base for wrong VMID %u\n",
vmid);
return;
}
/* TODO: take advantage of per-process address space size. For
* now, all processes share the same address space size, like
* on GFX8 and older.
*/
WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32) + (vmid*2), 0);
WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32) + (vmid*2), 0);
WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32) + (vmid*2),
lower_32_bits(adev->vm_manager.max_pfn - 1));
WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32) + (vmid*2),
upper_32_bits(adev->vm_manager.max_pfn - 1));
WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32) + (vmid*2), lower_32_bits(base));
WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32) + (vmid*2), upper_32_bits(base));
}