OpenCloudOS-Kernel/sound/soc/codecs/cs42l42.c

2501 lines
75 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* cs42l42.c -- CS42L42 ALSA SoC audio driver
*
* Copyright 2016 Cirrus Logic, Inc.
*
* Author: James Schulman <james.schulman@cirrus.com>
* Author: Brian Austin <brian.austin@cirrus.com>
* Author: Michael White <michael.white@cirrus.com>
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/gpio/consumer.h>
#include <linux/of_device.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <dt-bindings/sound/cs42l42.h>
#include "cs42l42.h"
#include "cirrus_legacy.h"
static const char * const cs42l42_supply_names[] = {
"VA",
"VP",
"VCP",
"VD_FILT",
"VL",
};
static const struct reg_default cs42l42_reg_defaults[] = {
{ CS42L42_FRZ_CTL, 0x00 },
{ CS42L42_SRC_CTL, 0x10 },
{ CS42L42_MCLK_CTL, 0x02 },
{ CS42L42_SFTRAMP_RATE, 0xA4 },
{ CS42L42_SLOW_START_ENABLE, 0x70 },
{ CS42L42_I2C_DEBOUNCE, 0x88 },
{ CS42L42_I2C_STRETCH, 0x03 },
{ CS42L42_I2C_TIMEOUT, 0xB7 },
{ CS42L42_PWR_CTL1, 0xFF },
{ CS42L42_PWR_CTL2, 0x84 },
{ CS42L42_PWR_CTL3, 0x20 },
{ CS42L42_RSENSE_CTL1, 0x40 },
{ CS42L42_RSENSE_CTL2, 0x00 },
{ CS42L42_OSC_SWITCH, 0x00 },
{ CS42L42_RSENSE_CTL3, 0x1B },
{ CS42L42_TSENSE_CTL, 0x1B },
{ CS42L42_TSRS_INT_DISABLE, 0x00 },
{ CS42L42_HSDET_CTL1, 0x77 },
{ CS42L42_HSDET_CTL2, 0x00 },
{ CS42L42_HS_SWITCH_CTL, 0xF3 },
{ CS42L42_HS_CLAMP_DISABLE, 0x00 },
{ CS42L42_MCLK_SRC_SEL, 0x00 },
{ CS42L42_SPDIF_CLK_CFG, 0x00 },
{ CS42L42_FSYNC_PW_LOWER, 0x00 },
{ CS42L42_FSYNC_PW_UPPER, 0x00 },
{ CS42L42_FSYNC_P_LOWER, 0xF9 },
{ CS42L42_FSYNC_P_UPPER, 0x00 },
{ CS42L42_ASP_CLK_CFG, 0x00 },
{ CS42L42_ASP_FRM_CFG, 0x10 },
{ CS42L42_FS_RATE_EN, 0x00 },
{ CS42L42_IN_ASRC_CLK, 0x00 },
{ CS42L42_OUT_ASRC_CLK, 0x00 },
{ CS42L42_PLL_DIV_CFG1, 0x00 },
{ CS42L42_ADC_OVFL_INT_MASK, 0x01 },
{ CS42L42_MIXER_INT_MASK, 0x0F },
{ CS42L42_SRC_INT_MASK, 0x0F },
{ CS42L42_ASP_RX_INT_MASK, 0x1F },
{ CS42L42_ASP_TX_INT_MASK, 0x0F },
{ CS42L42_CODEC_INT_MASK, 0x03 },
{ CS42L42_SRCPL_INT_MASK, 0x7F },
{ CS42L42_VPMON_INT_MASK, 0x01 },
{ CS42L42_PLL_LOCK_INT_MASK, 0x01 },
{ CS42L42_TSRS_PLUG_INT_MASK, 0x0F },
{ CS42L42_PLL_CTL1, 0x00 },
{ CS42L42_PLL_DIV_FRAC0, 0x00 },
{ CS42L42_PLL_DIV_FRAC1, 0x00 },
{ CS42L42_PLL_DIV_FRAC2, 0x00 },
{ CS42L42_PLL_DIV_INT, 0x40 },
{ CS42L42_PLL_CTL3, 0x10 },
{ CS42L42_PLL_CAL_RATIO, 0x80 },
{ CS42L42_PLL_CTL4, 0x03 },
{ CS42L42_LOAD_DET_EN, 0x00 },
{ CS42L42_HSBIAS_SC_AUTOCTL, 0x03 },
{ CS42L42_WAKE_CTL, 0xC0 },
{ CS42L42_ADC_DISABLE_MUTE, 0x00 },
{ CS42L42_TIPSENSE_CTL, 0x02 },
{ CS42L42_MISC_DET_CTL, 0x03 },
{ CS42L42_MIC_DET_CTL1, 0x1F },
{ CS42L42_MIC_DET_CTL2, 0x2F },
{ CS42L42_DET_INT1_MASK, 0xE0 },
{ CS42L42_DET_INT2_MASK, 0xFF },
{ CS42L42_HS_BIAS_CTL, 0xC2 },
{ CS42L42_ADC_CTL, 0x00 },
{ CS42L42_ADC_VOLUME, 0x00 },
{ CS42L42_ADC_WNF_HPF_CTL, 0x71 },
{ CS42L42_DAC_CTL1, 0x00 },
{ CS42L42_DAC_CTL2, 0x02 },
{ CS42L42_HP_CTL, 0x0D },
{ CS42L42_CLASSH_CTL, 0x07 },
{ CS42L42_MIXER_CHA_VOL, 0x3F },
{ CS42L42_MIXER_ADC_VOL, 0x3F },
{ CS42L42_MIXER_CHB_VOL, 0x3F },
{ CS42L42_EQ_COEF_IN0, 0x00 },
{ CS42L42_EQ_COEF_IN1, 0x00 },
{ CS42L42_EQ_COEF_IN2, 0x00 },
{ CS42L42_EQ_COEF_IN3, 0x00 },
{ CS42L42_EQ_COEF_RW, 0x00 },
{ CS42L42_EQ_COEF_OUT0, 0x00 },
{ CS42L42_EQ_COEF_OUT1, 0x00 },
{ CS42L42_EQ_COEF_OUT2, 0x00 },
{ CS42L42_EQ_COEF_OUT3, 0x00 },
{ CS42L42_EQ_INIT_STAT, 0x00 },
{ CS42L42_EQ_START_FILT, 0x00 },
{ CS42L42_EQ_MUTE_CTL, 0x00 },
{ CS42L42_SP_RX_CH_SEL, 0x04 },
{ CS42L42_SP_RX_ISOC_CTL, 0x04 },
{ CS42L42_SP_RX_FS, 0x8C },
{ CS42l42_SPDIF_CH_SEL, 0x0E },
{ CS42L42_SP_TX_ISOC_CTL, 0x04 },
{ CS42L42_SP_TX_FS, 0xCC },
{ CS42L42_SPDIF_SW_CTL1, 0x3F },
{ CS42L42_SRC_SDIN_FS, 0x40 },
{ CS42L42_SRC_SDOUT_FS, 0x40 },
{ CS42L42_SPDIF_CTL1, 0x01 },
{ CS42L42_SPDIF_CTL2, 0x00 },
{ CS42L42_SPDIF_CTL3, 0x00 },
{ CS42L42_SPDIF_CTL4, 0x42 },
{ CS42L42_ASP_TX_SZ_EN, 0x00 },
{ CS42L42_ASP_TX_CH_EN, 0x00 },
{ CS42L42_ASP_TX_CH_AP_RES, 0x0F },
{ CS42L42_ASP_TX_CH1_BIT_MSB, 0x00 },
{ CS42L42_ASP_TX_CH1_BIT_LSB, 0x00 },
{ CS42L42_ASP_TX_HIZ_DLY_CFG, 0x00 },
{ CS42L42_ASP_TX_CH2_BIT_MSB, 0x00 },
{ CS42L42_ASP_TX_CH2_BIT_LSB, 0x00 },
{ CS42L42_ASP_RX_DAI0_EN, 0x00 },
{ CS42L42_ASP_RX_DAI0_CH1_AP_RES, 0x03 },
{ CS42L42_ASP_RX_DAI0_CH1_BIT_MSB, 0x00 },
{ CS42L42_ASP_RX_DAI0_CH1_BIT_LSB, 0x00 },
{ CS42L42_ASP_RX_DAI0_CH2_AP_RES, 0x03 },
{ CS42L42_ASP_RX_DAI0_CH2_BIT_MSB, 0x00 },
{ CS42L42_ASP_RX_DAI0_CH2_BIT_LSB, 0x00 },
{ CS42L42_ASP_RX_DAI0_CH3_AP_RES, 0x03 },
{ CS42L42_ASP_RX_DAI0_CH3_BIT_MSB, 0x00 },
{ CS42L42_ASP_RX_DAI0_CH3_BIT_LSB, 0x00 },
{ CS42L42_ASP_RX_DAI0_CH4_AP_RES, 0x03 },
{ CS42L42_ASP_RX_DAI0_CH4_BIT_MSB, 0x00 },
{ CS42L42_ASP_RX_DAI0_CH4_BIT_LSB, 0x00 },
{ CS42L42_ASP_RX_DAI1_CH1_AP_RES, 0x03 },
{ CS42L42_ASP_RX_DAI1_CH1_BIT_MSB, 0x00 },
{ CS42L42_ASP_RX_DAI1_CH1_BIT_LSB, 0x00 },
{ CS42L42_ASP_RX_DAI1_CH2_AP_RES, 0x03 },
{ CS42L42_ASP_RX_DAI1_CH2_BIT_MSB, 0x00 },
{ CS42L42_ASP_RX_DAI1_CH2_BIT_LSB, 0x00 },
};
bool cs42l42_readable_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case CS42L42_PAGE_REGISTER:
case CS42L42_DEVID_AB:
case CS42L42_DEVID_CD:
case CS42L42_DEVID_E:
case CS42L42_FABID:
case CS42L42_REVID:
case CS42L42_FRZ_CTL:
case CS42L42_SRC_CTL:
case CS42L42_MCLK_STATUS:
case CS42L42_MCLK_CTL:
case CS42L42_SFTRAMP_RATE:
case CS42L42_SLOW_START_ENABLE:
case CS42L42_I2C_DEBOUNCE:
case CS42L42_I2C_STRETCH:
case CS42L42_I2C_TIMEOUT:
case CS42L42_PWR_CTL1:
case CS42L42_PWR_CTL2:
case CS42L42_PWR_CTL3:
case CS42L42_RSENSE_CTL1:
case CS42L42_RSENSE_CTL2:
case CS42L42_OSC_SWITCH:
case CS42L42_OSC_SWITCH_STATUS:
case CS42L42_RSENSE_CTL3:
case CS42L42_TSENSE_CTL:
case CS42L42_TSRS_INT_DISABLE:
case CS42L42_TRSENSE_STATUS:
case CS42L42_HSDET_CTL1:
case CS42L42_HSDET_CTL2:
case CS42L42_HS_SWITCH_CTL:
case CS42L42_HS_DET_STATUS:
case CS42L42_HS_CLAMP_DISABLE:
case CS42L42_MCLK_SRC_SEL:
case CS42L42_SPDIF_CLK_CFG:
case CS42L42_FSYNC_PW_LOWER:
case CS42L42_FSYNC_PW_UPPER:
case CS42L42_FSYNC_P_LOWER:
case CS42L42_FSYNC_P_UPPER:
case CS42L42_ASP_CLK_CFG:
case CS42L42_ASP_FRM_CFG:
case CS42L42_FS_RATE_EN:
case CS42L42_IN_ASRC_CLK:
case CS42L42_OUT_ASRC_CLK:
case CS42L42_PLL_DIV_CFG1:
case CS42L42_ADC_OVFL_STATUS:
case CS42L42_MIXER_STATUS:
case CS42L42_SRC_STATUS:
case CS42L42_ASP_RX_STATUS:
case CS42L42_ASP_TX_STATUS:
case CS42L42_CODEC_STATUS:
case CS42L42_DET_INT_STATUS1:
case CS42L42_DET_INT_STATUS2:
case CS42L42_SRCPL_INT_STATUS:
case CS42L42_VPMON_STATUS:
case CS42L42_PLL_LOCK_STATUS:
case CS42L42_TSRS_PLUG_STATUS:
case CS42L42_ADC_OVFL_INT_MASK:
case CS42L42_MIXER_INT_MASK:
case CS42L42_SRC_INT_MASK:
case CS42L42_ASP_RX_INT_MASK:
case CS42L42_ASP_TX_INT_MASK:
case CS42L42_CODEC_INT_MASK:
case CS42L42_SRCPL_INT_MASK:
case CS42L42_VPMON_INT_MASK:
case CS42L42_PLL_LOCK_INT_MASK:
case CS42L42_TSRS_PLUG_INT_MASK:
case CS42L42_PLL_CTL1:
case CS42L42_PLL_DIV_FRAC0:
case CS42L42_PLL_DIV_FRAC1:
case CS42L42_PLL_DIV_FRAC2:
case CS42L42_PLL_DIV_INT:
case CS42L42_PLL_CTL3:
case CS42L42_PLL_CAL_RATIO:
case CS42L42_PLL_CTL4:
case CS42L42_LOAD_DET_RCSTAT:
case CS42L42_LOAD_DET_DONE:
case CS42L42_LOAD_DET_EN:
case CS42L42_HSBIAS_SC_AUTOCTL:
case CS42L42_WAKE_CTL:
case CS42L42_ADC_DISABLE_MUTE:
case CS42L42_TIPSENSE_CTL:
case CS42L42_MISC_DET_CTL:
case CS42L42_MIC_DET_CTL1:
case CS42L42_MIC_DET_CTL2:
case CS42L42_DET_STATUS1:
case CS42L42_DET_STATUS2:
case CS42L42_DET_INT1_MASK:
case CS42L42_DET_INT2_MASK:
case CS42L42_HS_BIAS_CTL:
case CS42L42_ADC_CTL:
case CS42L42_ADC_VOLUME:
case CS42L42_ADC_WNF_HPF_CTL:
case CS42L42_DAC_CTL1:
case CS42L42_DAC_CTL2:
case CS42L42_HP_CTL:
case CS42L42_CLASSH_CTL:
case CS42L42_MIXER_CHA_VOL:
case CS42L42_MIXER_ADC_VOL:
case CS42L42_MIXER_CHB_VOL:
case CS42L42_EQ_COEF_IN0:
case CS42L42_EQ_COEF_IN1:
case CS42L42_EQ_COEF_IN2:
case CS42L42_EQ_COEF_IN3:
case CS42L42_EQ_COEF_RW:
case CS42L42_EQ_COEF_OUT0:
case CS42L42_EQ_COEF_OUT1:
case CS42L42_EQ_COEF_OUT2:
case CS42L42_EQ_COEF_OUT3:
case CS42L42_EQ_INIT_STAT:
case CS42L42_EQ_START_FILT:
case CS42L42_EQ_MUTE_CTL:
case CS42L42_SP_RX_CH_SEL:
case CS42L42_SP_RX_ISOC_CTL:
case CS42L42_SP_RX_FS:
case CS42l42_SPDIF_CH_SEL:
case CS42L42_SP_TX_ISOC_CTL:
case CS42L42_SP_TX_FS:
case CS42L42_SPDIF_SW_CTL1:
case CS42L42_SRC_SDIN_FS:
case CS42L42_SRC_SDOUT_FS:
case CS42L42_SOFT_RESET_REBOOT:
case CS42L42_SPDIF_CTL1:
case CS42L42_SPDIF_CTL2:
case CS42L42_SPDIF_CTL3:
case CS42L42_SPDIF_CTL4:
case CS42L42_ASP_TX_SZ_EN:
case CS42L42_ASP_TX_CH_EN:
case CS42L42_ASP_TX_CH_AP_RES:
case CS42L42_ASP_TX_CH1_BIT_MSB:
case CS42L42_ASP_TX_CH1_BIT_LSB:
case CS42L42_ASP_TX_HIZ_DLY_CFG:
case CS42L42_ASP_TX_CH2_BIT_MSB:
case CS42L42_ASP_TX_CH2_BIT_LSB:
case CS42L42_ASP_RX_DAI0_EN:
case CS42L42_ASP_RX_DAI0_CH1_AP_RES:
case CS42L42_ASP_RX_DAI0_CH1_BIT_MSB:
case CS42L42_ASP_RX_DAI0_CH1_BIT_LSB:
case CS42L42_ASP_RX_DAI0_CH2_AP_RES:
case CS42L42_ASP_RX_DAI0_CH2_BIT_MSB:
case CS42L42_ASP_RX_DAI0_CH2_BIT_LSB:
case CS42L42_ASP_RX_DAI0_CH3_AP_RES:
case CS42L42_ASP_RX_DAI0_CH3_BIT_MSB:
case CS42L42_ASP_RX_DAI0_CH3_BIT_LSB:
case CS42L42_ASP_RX_DAI0_CH4_AP_RES:
case CS42L42_ASP_RX_DAI0_CH4_BIT_MSB:
case CS42L42_ASP_RX_DAI0_CH4_BIT_LSB:
case CS42L42_ASP_RX_DAI1_CH1_AP_RES:
case CS42L42_ASP_RX_DAI1_CH1_BIT_MSB:
case CS42L42_ASP_RX_DAI1_CH1_BIT_LSB:
case CS42L42_ASP_RX_DAI1_CH2_AP_RES:
case CS42L42_ASP_RX_DAI1_CH2_BIT_MSB:
case CS42L42_ASP_RX_DAI1_CH2_BIT_LSB:
case CS42L42_SUB_REVID:
return true;
default:
return false;
}
}
EXPORT_SYMBOL_NS_GPL(cs42l42_readable_register, SND_SOC_CS42L42_CORE);
bool cs42l42_volatile_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case CS42L42_DEVID_AB:
case CS42L42_DEVID_CD:
case CS42L42_DEVID_E:
case CS42L42_MCLK_STATUS:
case CS42L42_OSC_SWITCH_STATUS:
case CS42L42_TRSENSE_STATUS:
case CS42L42_HS_DET_STATUS:
case CS42L42_ADC_OVFL_STATUS:
case CS42L42_MIXER_STATUS:
case CS42L42_SRC_STATUS:
case CS42L42_ASP_RX_STATUS:
case CS42L42_ASP_TX_STATUS:
case CS42L42_CODEC_STATUS:
case CS42L42_DET_INT_STATUS1:
case CS42L42_DET_INT_STATUS2:
case CS42L42_SRCPL_INT_STATUS:
case CS42L42_VPMON_STATUS:
case CS42L42_PLL_LOCK_STATUS:
case CS42L42_TSRS_PLUG_STATUS:
case CS42L42_LOAD_DET_RCSTAT:
case CS42L42_LOAD_DET_DONE:
case CS42L42_DET_STATUS1:
case CS42L42_DET_STATUS2:
case CS42L42_SOFT_RESET_REBOOT:
return true;
default:
return false;
}
}
EXPORT_SYMBOL_NS_GPL(cs42l42_volatile_register, SND_SOC_CS42L42_CORE);
const struct regmap_range_cfg cs42l42_page_range = {
.name = "Pages",
.range_min = 0,
.range_max = CS42L42_MAX_REGISTER,
.selector_reg = CS42L42_PAGE_REGISTER,
.selector_mask = 0xff,
.selector_shift = 0,
.window_start = 0,
.window_len = 256,
};
EXPORT_SYMBOL_NS_GPL(cs42l42_page_range, SND_SOC_CS42L42_CORE);
const struct regmap_config cs42l42_regmap = {
.reg_bits = 8,
.val_bits = 8,
.readable_reg = cs42l42_readable_register,
.volatile_reg = cs42l42_volatile_register,
.ranges = &cs42l42_page_range,
.num_ranges = 1,
.max_register = CS42L42_MAX_REGISTER,
.reg_defaults = cs42l42_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(cs42l42_reg_defaults),
.cache_type = REGCACHE_MAPLE,
.use_single_read = true,
.use_single_write = true,
};
EXPORT_SYMBOL_NS_GPL(cs42l42_regmap, SND_SOC_CS42L42_CORE);
static DECLARE_TLV_DB_SCALE(adc_tlv, -9700, 100, true);
static DECLARE_TLV_DB_SCALE(mixer_tlv, -6300, 100, true);
static int cs42l42_slow_start_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
u8 val;
/* all bits of SLOW_START_EN must change together */
switch (ucontrol->value.integer.value[0]) {
case 0:
val = 0;
break;
case 1:
val = CS42L42_SLOW_START_EN_MASK;
break;
default:
return -EINVAL;
}
return snd_soc_component_update_bits(component, CS42L42_SLOW_START_ENABLE,
CS42L42_SLOW_START_EN_MASK, val);
}
static const char * const cs42l42_hpf_freq_text[] = {
"1.86Hz", "120Hz", "235Hz", "466Hz"
};
static SOC_ENUM_SINGLE_DECL(cs42l42_hpf_freq_enum, CS42L42_ADC_WNF_HPF_CTL,
CS42L42_ADC_HPF_CF_SHIFT,
cs42l42_hpf_freq_text);
static const char * const cs42l42_wnf3_freq_text[] = {
"160Hz", "180Hz", "200Hz", "220Hz",
"240Hz", "260Hz", "280Hz", "300Hz"
};
static SOC_ENUM_SINGLE_DECL(cs42l42_wnf3_freq_enum, CS42L42_ADC_WNF_HPF_CTL,
CS42L42_ADC_WNF_CF_SHIFT,
cs42l42_wnf3_freq_text);
static const struct snd_kcontrol_new cs42l42_snd_controls[] = {
/* ADC Volume and Filter Controls */
SOC_SINGLE("ADC Notch Switch", CS42L42_ADC_CTL,
CS42L42_ADC_NOTCH_DIS_SHIFT, true, true),
SOC_SINGLE("ADC Weak Force Switch", CS42L42_ADC_CTL,
CS42L42_ADC_FORCE_WEAK_VCM_SHIFT, true, false),
SOC_SINGLE("ADC Invert Switch", CS42L42_ADC_CTL,
CS42L42_ADC_INV_SHIFT, true, false),
SOC_SINGLE("ADC Boost Switch", CS42L42_ADC_CTL,
CS42L42_ADC_DIG_BOOST_SHIFT, true, false),
SOC_SINGLE_S8_TLV("ADC Volume", CS42L42_ADC_VOLUME, -97, 12, adc_tlv),
SOC_SINGLE("ADC WNF Switch", CS42L42_ADC_WNF_HPF_CTL,
CS42L42_ADC_WNF_EN_SHIFT, true, false),
SOC_SINGLE("ADC HPF Switch", CS42L42_ADC_WNF_HPF_CTL,
CS42L42_ADC_HPF_EN_SHIFT, true, false),
SOC_ENUM("HPF Corner Freq", cs42l42_hpf_freq_enum),
SOC_ENUM("WNF 3dB Freq", cs42l42_wnf3_freq_enum),
/* DAC Volume and Filter Controls */
SOC_SINGLE("DACA Invert Switch", CS42L42_DAC_CTL1,
CS42L42_DACA_INV_SHIFT, true, false),
SOC_SINGLE("DACB Invert Switch", CS42L42_DAC_CTL1,
CS42L42_DACB_INV_SHIFT, true, false),
SOC_SINGLE("DAC HPF Switch", CS42L42_DAC_CTL2,
CS42L42_DAC_HPF_EN_SHIFT, true, false),
SOC_DOUBLE_R_TLV("Mixer Volume", CS42L42_MIXER_CHA_VOL,
CS42L42_MIXER_CHB_VOL, CS42L42_MIXER_CH_VOL_SHIFT,
0x3f, 1, mixer_tlv),
SOC_SINGLE_EXT("Slow Start Switch", CS42L42_SLOW_START_ENABLE,
CS42L42_SLOW_START_EN_SHIFT, true, false,
snd_soc_get_volsw, cs42l42_slow_start_put),
};
static int cs42l42_hp_adc_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
cs42l42->hp_adc_up_pending = true;
break;
case SND_SOC_DAPM_POST_PMU:
/* Only need one delay if HP and ADC are both powering-up */
if (cs42l42->hp_adc_up_pending) {
usleep_range(CS42L42_HP_ADC_EN_TIME_US,
CS42L42_HP_ADC_EN_TIME_US + 1000);
cs42l42->hp_adc_up_pending = false;
}
break;
default:
break;
}
return 0;
}
static const struct snd_soc_dapm_widget cs42l42_dapm_widgets[] = {
/* Playback Path */
SND_SOC_DAPM_OUTPUT("HP"),
SND_SOC_DAPM_DAC_E("DAC", NULL, CS42L42_PWR_CTL1, CS42L42_HP_PDN_SHIFT, 1,
cs42l42_hp_adc_ev, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_MIXER("MIXER", CS42L42_PWR_CTL1, CS42L42_MIXER_PDN_SHIFT, 1, NULL, 0),
SND_SOC_DAPM_AIF_IN("SDIN1", NULL, 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("SDIN2", NULL, 1, SND_SOC_NOPM, 0, 0),
/* Playback Requirements */
SND_SOC_DAPM_SUPPLY("ASP DAI0", CS42L42_PWR_CTL1, CS42L42_ASP_DAI_PDN_SHIFT, 1, NULL, 0),
/* Capture Path */
SND_SOC_DAPM_INPUT("HS"),
SND_SOC_DAPM_ADC_E("ADC", NULL, CS42L42_PWR_CTL1, CS42L42_ADC_PDN_SHIFT, 1,
cs42l42_hp_adc_ev, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_AIF_OUT("SDOUT1", NULL, 0, CS42L42_ASP_TX_CH_EN, CS42L42_ASP_TX0_CH1_SHIFT, 0),
SND_SOC_DAPM_AIF_OUT("SDOUT2", NULL, 1, CS42L42_ASP_TX_CH_EN, CS42L42_ASP_TX0_CH2_SHIFT, 0),
/* Capture Requirements */
SND_SOC_DAPM_SUPPLY("ASP DAO0", CS42L42_PWR_CTL1, CS42L42_ASP_DAO_PDN_SHIFT, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("ASP TX EN", CS42L42_ASP_TX_SZ_EN, CS42L42_ASP_TX_EN_SHIFT, 0, NULL, 0),
/* Playback/Capture Requirements */
SND_SOC_DAPM_SUPPLY("SCLK", CS42L42_ASP_CLK_CFG, CS42L42_ASP_SCLK_EN_SHIFT, 0, NULL, 0),
/* Soundwire SRC power control */
SND_SOC_DAPM_PGA("DACSRC", CS42L42_PWR_CTL2, CS42L42_DAC_SRC_PDNB_SHIFT, 0, NULL, 0),
SND_SOC_DAPM_PGA("ADCSRC", CS42L42_PWR_CTL2, CS42L42_ADC_SRC_PDNB_SHIFT, 0, NULL, 0),
};
static const struct snd_soc_dapm_route cs42l42_audio_map[] = {
/* Playback Path */
{"HP", NULL, "DAC"},
{"DAC", NULL, "MIXER"},
{"MIXER", NULL, "SDIN1"},
{"MIXER", NULL, "SDIN2"},
{"SDIN1", NULL, "Playback"},
{"SDIN2", NULL, "Playback"},
/* Playback Requirements */
{"SDIN1", NULL, "ASP DAI0"},
{"SDIN2", NULL, "ASP DAI0"},
{"SDIN1", NULL, "SCLK"},
{"SDIN2", NULL, "SCLK"},
/* Capture Path */
{"ADC", NULL, "HS"},
{ "SDOUT1", NULL, "ADC" },
{ "SDOUT2", NULL, "ADC" },
{ "Capture", NULL, "SDOUT1" },
{ "Capture", NULL, "SDOUT2" },
/* Capture Requirements */
{ "SDOUT1", NULL, "ASP DAO0" },
{ "SDOUT2", NULL, "ASP DAO0" },
{ "SDOUT1", NULL, "SCLK" },
{ "SDOUT2", NULL, "SCLK" },
{ "SDOUT1", NULL, "ASP TX EN" },
{ "SDOUT2", NULL, "ASP TX EN" },
};
static int cs42l42_set_jack(struct snd_soc_component *component, struct snd_soc_jack *jk, void *d)
{
struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component);
/* Prevent race with interrupt handler */
mutex_lock(&cs42l42->irq_lock);
cs42l42->jack = jk;
if (jk) {
switch (cs42l42->hs_type) {
case CS42L42_PLUG_CTIA:
case CS42L42_PLUG_OMTP:
snd_soc_jack_report(jk, SND_JACK_HEADSET, SND_JACK_HEADSET);
break;
case CS42L42_PLUG_HEADPHONE:
snd_soc_jack_report(jk, SND_JACK_HEADPHONE, SND_JACK_HEADPHONE);
break;
default:
break;
}
}
mutex_unlock(&cs42l42->irq_lock);
return 0;
}
const struct snd_soc_component_driver cs42l42_soc_component = {
.set_jack = cs42l42_set_jack,
.dapm_widgets = cs42l42_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(cs42l42_dapm_widgets),
.dapm_routes = cs42l42_audio_map,
.num_dapm_routes = ARRAY_SIZE(cs42l42_audio_map),
.controls = cs42l42_snd_controls,
.num_controls = ARRAY_SIZE(cs42l42_snd_controls),
.endianness = 1,
};
EXPORT_SYMBOL_NS_GPL(cs42l42_soc_component, SND_SOC_CS42L42_CORE);
/* Switch to SCLK. Atomic delay after the write to allow the switch to complete. */
static const struct reg_sequence cs42l42_to_sclk_seq[] = {
{
.reg = CS42L42_OSC_SWITCH,
.def = CS42L42_SCLK_PRESENT_MASK,
.delay_us = CS42L42_CLOCK_SWITCH_DELAY_US,
},
};
/* Switch to OSC. Atomic delay after the write to allow the switch to complete. */
static const struct reg_sequence cs42l42_to_osc_seq[] = {
{
.reg = CS42L42_OSC_SWITCH,
.def = 0,
.delay_us = CS42L42_CLOCK_SWITCH_DELAY_US,
},
};
struct cs42l42_pll_params {
u32 sclk;
u8 mclk_src_sel;
u8 sclk_prediv;
u8 pll_div_int;
u32 pll_div_frac;
u8 pll_mode;
u8 pll_divout;
u32 mclk_int;
u8 pll_cal_ratio;
u8 n;
};
/*
* Common PLL Settings for given SCLK
* Table 4-5 from the Datasheet
*/
static const struct cs42l42_pll_params pll_ratio_table[] = {
{ 1411200, 1, 0x00, 0x80, 0x000000, 0x03, 0x10, 11289600, 128, 2},
{ 1536000, 1, 0x00, 0x7D, 0x000000, 0x03, 0x10, 12000000, 125, 2},
{ 2304000, 1, 0x00, 0x55, 0xC00000, 0x02, 0x10, 12288000, 85, 2},
{ 2400000, 1, 0x00, 0x50, 0x000000, 0x03, 0x10, 12000000, 80, 2},
{ 2822400, 1, 0x00, 0x40, 0x000000, 0x03, 0x10, 11289600, 128, 1},
{ 3000000, 1, 0x00, 0x40, 0x000000, 0x03, 0x10, 12000000, 128, 1},
{ 3072000, 1, 0x00, 0x3E, 0x800000, 0x03, 0x10, 12000000, 125, 1},
{ 4000000, 1, 0x00, 0x30, 0x800000, 0x03, 0x10, 12000000, 96, 1},
{ 4096000, 1, 0x00, 0x2E, 0xE00000, 0x03, 0x10, 12000000, 94, 1},
{ 4800000, 1, 0x01, 0x50, 0x000000, 0x03, 0x10, 12000000, 80, 2},
{ 4800000, 1, 0x01, 0x50, 0x000000, 0x01, 0x10, 12288000, 82, 2},
{ 5644800, 1, 0x01, 0x40, 0x000000, 0x03, 0x10, 11289600, 128, 1},
{ 6000000, 1, 0x01, 0x40, 0x000000, 0x03, 0x10, 12000000, 128, 1},
{ 6144000, 1, 0x01, 0x3E, 0x800000, 0x03, 0x10, 12000000, 125, 1},
{ 6144000, 1, 0x01, 0x40, 0x000000, 0x03, 0x10, 12288000, 128, 1},
{ 9600000, 1, 0x02, 0x50, 0x000000, 0x03, 0x10, 12000000, 80, 2},
{ 9600000, 1, 0x02, 0x50, 0x000000, 0x01, 0x10, 12288000, 82, 2},
{ 11289600, 0, 0, 0, 0, 0, 0, 11289600, 0, 1},
{ 12000000, 0, 0, 0, 0, 0, 0, 12000000, 0, 1},
{ 12288000, 0, 0, 0, 0, 0, 0, 12288000, 0, 1},
{ 19200000, 1, 0x03, 0x50, 0x000000, 0x03, 0x10, 12000000, 80, 2},
{ 19200000, 1, 0x03, 0x50, 0x000000, 0x01, 0x10, 12288000, 82, 2},
{ 22579200, 1, 0x03, 0x40, 0x000000, 0x03, 0x10, 11289600, 128, 1},
{ 24000000, 1, 0x03, 0x40, 0x000000, 0x03, 0x10, 12000000, 128, 1},
{ 24576000, 1, 0x03, 0x40, 0x000000, 0x03, 0x10, 12288000, 128, 1}
};
int cs42l42_pll_config(struct snd_soc_component *component, unsigned int clk,
unsigned int sample_rate)
{
struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component);
int i;
/* Don't reconfigure if there is an audio stream running */
if (cs42l42->stream_use) {
if (pll_ratio_table[cs42l42->pll_config].sclk == clk)
return 0;
else
return -EBUSY;
}
for (i = 0; i < ARRAY_SIZE(pll_ratio_table); i++) {
/* MCLKint must be a multiple of the sample rate */
if (pll_ratio_table[i].mclk_int % sample_rate)
continue;
if (pll_ratio_table[i].sclk == clk) {
cs42l42->pll_config = i;
/* Configure the internal sample rate */
snd_soc_component_update_bits(component, CS42L42_MCLK_CTL,
CS42L42_INTERNAL_FS_MASK,
((pll_ratio_table[i].mclk_int !=
12000000) &&
(pll_ratio_table[i].mclk_int !=
24000000)) <<
CS42L42_INTERNAL_FS_SHIFT);
if (pll_ratio_table[i].mclk_src_sel == 0) {
/* Pass the clock straight through */
snd_soc_component_update_bits(component,
CS42L42_PLL_CTL1,
CS42L42_PLL_START_MASK, 0);
} else {
/* Configure PLL per table 4-5 */
snd_soc_component_update_bits(component,
CS42L42_PLL_DIV_CFG1,
CS42L42_SCLK_PREDIV_MASK,
pll_ratio_table[i].sclk_prediv
<< CS42L42_SCLK_PREDIV_SHIFT);
snd_soc_component_update_bits(component,
CS42L42_PLL_DIV_INT,
CS42L42_PLL_DIV_INT_MASK,
pll_ratio_table[i].pll_div_int
<< CS42L42_PLL_DIV_INT_SHIFT);
snd_soc_component_update_bits(component,
CS42L42_PLL_DIV_FRAC0,
CS42L42_PLL_DIV_FRAC_MASK,
CS42L42_FRAC0_VAL(
pll_ratio_table[i].pll_div_frac)
<< CS42L42_PLL_DIV_FRAC_SHIFT);
snd_soc_component_update_bits(component,
CS42L42_PLL_DIV_FRAC1,
CS42L42_PLL_DIV_FRAC_MASK,
CS42L42_FRAC1_VAL(
pll_ratio_table[i].pll_div_frac)
<< CS42L42_PLL_DIV_FRAC_SHIFT);
snd_soc_component_update_bits(component,
CS42L42_PLL_DIV_FRAC2,
CS42L42_PLL_DIV_FRAC_MASK,
CS42L42_FRAC2_VAL(
pll_ratio_table[i].pll_div_frac)
<< CS42L42_PLL_DIV_FRAC_SHIFT);
snd_soc_component_update_bits(component,
CS42L42_PLL_CTL4,
CS42L42_PLL_MODE_MASK,
pll_ratio_table[i].pll_mode
<< CS42L42_PLL_MODE_SHIFT);
snd_soc_component_update_bits(component,
CS42L42_PLL_CTL3,
CS42L42_PLL_DIVOUT_MASK,
(pll_ratio_table[i].pll_divout * pll_ratio_table[i].n)
<< CS42L42_PLL_DIVOUT_SHIFT);
snd_soc_component_update_bits(component,
CS42L42_PLL_CAL_RATIO,
CS42L42_PLL_CAL_RATIO_MASK,
pll_ratio_table[i].pll_cal_ratio
<< CS42L42_PLL_CAL_RATIO_SHIFT);
}
return 0;
}
}
return -EINVAL;
}
EXPORT_SYMBOL_NS_GPL(cs42l42_pll_config, SND_SOC_CS42L42_CORE);
void cs42l42_src_config(struct snd_soc_component *component, unsigned int sample_rate)
{
struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component);
unsigned int fs;
/* Don't reconfigure if there is an audio stream running */
if (cs42l42->stream_use)
return;
/* SRC MCLK must be as close as possible to 125 * sample rate */
if (sample_rate <= 48000)
fs = CS42L42_CLK_IASRC_SEL_6;
else
fs = CS42L42_CLK_IASRC_SEL_12;
/* Set the sample rates (96k or lower) */
snd_soc_component_update_bits(component,
CS42L42_FS_RATE_EN,
CS42L42_FS_EN_MASK,
(CS42L42_FS_EN_IASRC_96K |
CS42L42_FS_EN_OASRC_96K) <<
CS42L42_FS_EN_SHIFT);
snd_soc_component_update_bits(component,
CS42L42_IN_ASRC_CLK,
CS42L42_CLK_IASRC_SEL_MASK,
fs << CS42L42_CLK_IASRC_SEL_SHIFT);
snd_soc_component_update_bits(component,
CS42L42_OUT_ASRC_CLK,
CS42L42_CLK_OASRC_SEL_MASK,
fs << CS42L42_CLK_OASRC_SEL_SHIFT);
}
EXPORT_SYMBOL_NS_GPL(cs42l42_src_config, SND_SOC_CS42L42_CORE);
static int cs42l42_asp_config(struct snd_soc_component *component,
unsigned int sclk, unsigned int sample_rate)
{
u32 fsync = sclk / sample_rate;
/* Set up the LRCLK */
if (((fsync * sample_rate) != sclk) || ((fsync % 2) != 0)) {
dev_err(component->dev,
"Unsupported sclk %d/sample rate %d\n",
sclk,
sample_rate);
return -EINVAL;
}
/* Set the LRCLK period */
snd_soc_component_update_bits(component,
CS42L42_FSYNC_P_LOWER,
CS42L42_FSYNC_PERIOD_MASK,
CS42L42_FRAC0_VAL(fsync - 1) <<
CS42L42_FSYNC_PERIOD_SHIFT);
snd_soc_component_update_bits(component,
CS42L42_FSYNC_P_UPPER,
CS42L42_FSYNC_PERIOD_MASK,
CS42L42_FRAC1_VAL(fsync - 1) <<
CS42L42_FSYNC_PERIOD_SHIFT);
/* Set the LRCLK to 50% duty cycle */
fsync = fsync / 2;
snd_soc_component_update_bits(component,
CS42L42_FSYNC_PW_LOWER,
CS42L42_FSYNC_PULSE_WIDTH_MASK,
CS42L42_FRAC0_VAL(fsync - 1) <<
CS42L42_FSYNC_PULSE_WIDTH_SHIFT);
snd_soc_component_update_bits(component,
CS42L42_FSYNC_PW_UPPER,
CS42L42_FSYNC_PULSE_WIDTH_MASK,
CS42L42_FRAC1_VAL(fsync - 1) <<
CS42L42_FSYNC_PULSE_WIDTH_SHIFT);
return 0;
}
static int cs42l42_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
{
struct snd_soc_component *component = codec_dai->component;
u32 asp_cfg_val = 0;
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFM:
asp_cfg_val |= CS42L42_ASP_MASTER_MODE <<
CS42L42_ASP_MODE_SHIFT;
break;
case SND_SOC_DAIFMT_CBS_CFS:
asp_cfg_val |= CS42L42_ASP_SLAVE_MODE <<
CS42L42_ASP_MODE_SHIFT;
break;
default:
return -EINVAL;
}
/* interface format */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
/*
* 5050 mode, frame starts on falling edge of LRCLK,
* frame delayed by 1.0 SCLKs
*/
snd_soc_component_update_bits(component,
CS42L42_ASP_FRM_CFG,
CS42L42_ASP_STP_MASK |
CS42L42_ASP_5050_MASK |
CS42L42_ASP_FSD_MASK,
CS42L42_ASP_5050_MASK |
(CS42L42_ASP_FSD_1_0 <<
CS42L42_ASP_FSD_SHIFT));
break;
default:
return -EINVAL;
}
/* Bitclock/frame inversion */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
asp_cfg_val |= CS42L42_ASP_SCPOL_NOR << CS42L42_ASP_SCPOL_SHIFT;
break;
case SND_SOC_DAIFMT_NB_IF:
asp_cfg_val |= CS42L42_ASP_SCPOL_NOR << CS42L42_ASP_SCPOL_SHIFT;
asp_cfg_val |= CS42L42_ASP_LCPOL_INV << CS42L42_ASP_LCPOL_SHIFT;
break;
case SND_SOC_DAIFMT_IB_NF:
break;
case SND_SOC_DAIFMT_IB_IF:
asp_cfg_val |= CS42L42_ASP_LCPOL_INV << CS42L42_ASP_LCPOL_SHIFT;
break;
}
snd_soc_component_update_bits(component, CS42L42_ASP_CLK_CFG, CS42L42_ASP_MODE_MASK |
CS42L42_ASP_SCPOL_MASK |
CS42L42_ASP_LCPOL_MASK,
asp_cfg_val);
return 0;
}
static int cs42l42_dai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component);
/*
* Sample rates < 44.1 kHz would produce an out-of-range SCLK with
* a standard I2S frame. If the machine driver sets SCLK it must be
* legal.
*/
if (cs42l42->sclk)
return 0;
/* Machine driver has not set a SCLK, limit bottom end to 44.1 kHz */
return snd_pcm_hw_constraint_minmax(substream->runtime,
SNDRV_PCM_HW_PARAM_RATE,
44100, 96000);
}
static int cs42l42_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component);
unsigned int channels = params_channels(params);
unsigned int width = (params_width(params) / 8) - 1;
unsigned int sample_rate = params_rate(params);
unsigned int slot_width = 0;
unsigned int val = 0;
unsigned int bclk;
int ret;
if (cs42l42->bclk_ratio) {
/* machine driver has set the BCLK/samp-rate ratio */
bclk = cs42l42->bclk_ratio * params_rate(params);
} else if (cs42l42->sclk) {
/* machine driver has set the SCLK */
bclk = cs42l42->sclk;
} else {
/*
* Assume 24-bit samples are in 32-bit slots, to prevent SCLK being
* more than assumed (which would result in overclocking).
*/
if (params_width(params) == 24)
slot_width = 32;
/* I2S frame always has multiple of 2 channels */
bclk = snd_soc_tdm_params_to_bclk(params, slot_width, 0, 2);
}
switch (substream->stream) {
case SNDRV_PCM_STREAM_CAPTURE:
/* channel 2 on high LRCLK */
val = CS42L42_ASP_TX_CH2_AP_MASK |
(width << CS42L42_ASP_TX_CH2_RES_SHIFT) |
(width << CS42L42_ASP_TX_CH1_RES_SHIFT);
snd_soc_component_update_bits(component, CS42L42_ASP_TX_CH_AP_RES,
CS42L42_ASP_TX_CH1_AP_MASK | CS42L42_ASP_TX_CH2_AP_MASK |
CS42L42_ASP_TX_CH2_RES_MASK | CS42L42_ASP_TX_CH1_RES_MASK, val);
break;
case SNDRV_PCM_STREAM_PLAYBACK:
val |= width << CS42L42_ASP_RX_CH_RES_SHIFT;
/* channel 1 on low LRCLK */
snd_soc_component_update_bits(component, CS42L42_ASP_RX_DAI0_CH1_AP_RES,
CS42L42_ASP_RX_CH_AP_MASK |
CS42L42_ASP_RX_CH_RES_MASK, val);
/* Channel 2 on high LRCLK */
val |= CS42L42_ASP_RX_CH_AP_HI << CS42L42_ASP_RX_CH_AP_SHIFT;
snd_soc_component_update_bits(component, CS42L42_ASP_RX_DAI0_CH2_AP_RES,
CS42L42_ASP_RX_CH_AP_MASK |
CS42L42_ASP_RX_CH_RES_MASK, val);
/* Channel B comes from the last active channel */
snd_soc_component_update_bits(component, CS42L42_SP_RX_CH_SEL,
CS42L42_SP_RX_CHB_SEL_MASK,
(channels - 1) << CS42L42_SP_RX_CHB_SEL_SHIFT);
/* Both LRCLK slots must be enabled */
snd_soc_component_update_bits(component, CS42L42_ASP_RX_DAI0_EN,
CS42L42_ASP_RX0_CH_EN_MASK,
BIT(CS42L42_ASP_RX0_CH1_SHIFT) |
BIT(CS42L42_ASP_RX0_CH2_SHIFT));
break;
default:
break;
}
ret = cs42l42_pll_config(component, bclk, sample_rate);
if (ret)
return ret;
ret = cs42l42_asp_config(component, bclk, sample_rate);
if (ret)
return ret;
cs42l42_src_config(component, sample_rate);
return 0;
}
static int cs42l42_set_sysclk(struct snd_soc_dai *dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_component *component = dai->component;
struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component);
int i;
if (freq == 0) {
cs42l42->sclk = 0;
return 0;
}
for (i = 0; i < ARRAY_SIZE(pll_ratio_table); i++) {
if (pll_ratio_table[i].sclk == freq) {
cs42l42->sclk = freq;
return 0;
}
}
dev_err(component->dev, "SCLK %u not supported\n", freq);
return -EINVAL;
}
static int cs42l42_set_bclk_ratio(struct snd_soc_dai *dai,
unsigned int bclk_ratio)
{
struct snd_soc_component *component = dai->component;
struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component);
cs42l42->bclk_ratio = bclk_ratio;
return 0;
}
int cs42l42_mute_stream(struct snd_soc_dai *dai, int mute, int stream)
{
struct snd_soc_component *component = dai->component;
struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component);
unsigned int regval;
int ret;
if (mute) {
/* Mute the headphone */
if (stream == SNDRV_PCM_STREAM_PLAYBACK)
snd_soc_component_update_bits(component, CS42L42_HP_CTL,
CS42L42_HP_ANA_AMUTE_MASK |
CS42L42_HP_ANA_BMUTE_MASK,
CS42L42_HP_ANA_AMUTE_MASK |
CS42L42_HP_ANA_BMUTE_MASK);
cs42l42->stream_use &= ~(1 << stream);
if (!cs42l42->stream_use) {
/*
* Switch to the internal oscillator.
* SCLK must remain running until after this clock switch.
* Without a source of clock the I2C bus doesn't work.
*/
regmap_multi_reg_write(cs42l42->regmap, cs42l42_to_osc_seq,
ARRAY_SIZE(cs42l42_to_osc_seq));
/* Must disconnect PLL before stopping it */
snd_soc_component_update_bits(component,
CS42L42_MCLK_SRC_SEL,
CS42L42_MCLK_SRC_SEL_MASK,
0);
usleep_range(100, 200);
snd_soc_component_update_bits(component, CS42L42_PLL_CTL1,
CS42L42_PLL_START_MASK, 0);
}
} else {
if (!cs42l42->stream_use) {
/* SCLK must be running before codec unmute.
*
* PLL must not be started with ADC and HP both off
* otherwise the FILT+ supply will not charge properly.
* DAPM widgets power-up before stream unmute so at least
* one of the "DAC" or "ADC" widgets will already have
* powered-up.
*/
if (pll_ratio_table[cs42l42->pll_config].mclk_src_sel) {
snd_soc_component_update_bits(component, CS42L42_PLL_CTL1,
CS42L42_PLL_START_MASK, 1);
if (pll_ratio_table[cs42l42->pll_config].n > 1) {
usleep_range(CS42L42_PLL_DIVOUT_TIME_US,
CS42L42_PLL_DIVOUT_TIME_US * 2);
regval = pll_ratio_table[cs42l42->pll_config].pll_divout;
snd_soc_component_update_bits(component, CS42L42_PLL_CTL3,
CS42L42_PLL_DIVOUT_MASK,
regval <<
CS42L42_PLL_DIVOUT_SHIFT);
}
ret = regmap_read_poll_timeout(cs42l42->regmap,
CS42L42_PLL_LOCK_STATUS,
regval,
(regval & 1),
CS42L42_PLL_LOCK_POLL_US,
CS42L42_PLL_LOCK_TIMEOUT_US);
if (ret < 0)
dev_warn(component->dev, "PLL failed to lock: %d\n", ret);
/* PLL must be running to drive glitchless switch logic */
snd_soc_component_update_bits(component,
CS42L42_MCLK_SRC_SEL,
CS42L42_MCLK_SRC_SEL_MASK,
CS42L42_MCLK_SRC_SEL_MASK);
}
/* Mark SCLK as present, turn off internal oscillator */
regmap_multi_reg_write(cs42l42->regmap, cs42l42_to_sclk_seq,
ARRAY_SIZE(cs42l42_to_sclk_seq));
}
cs42l42->stream_use |= 1 << stream;
if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
/* Un-mute the headphone */
snd_soc_component_update_bits(component, CS42L42_HP_CTL,
CS42L42_HP_ANA_AMUTE_MASK |
CS42L42_HP_ANA_BMUTE_MASK,
0);
}
}
return 0;
}
EXPORT_SYMBOL_NS_GPL(cs42l42_mute_stream, SND_SOC_CS42L42_CORE);
#define CS42L42_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
SNDRV_PCM_FMTBIT_S24_LE |\
SNDRV_PCM_FMTBIT_S32_LE)
static const struct snd_soc_dai_ops cs42l42_ops = {
.startup = cs42l42_dai_startup,
.hw_params = cs42l42_pcm_hw_params,
.set_fmt = cs42l42_set_dai_fmt,
.set_sysclk = cs42l42_set_sysclk,
.set_bclk_ratio = cs42l42_set_bclk_ratio,
.mute_stream = cs42l42_mute_stream,
};
struct snd_soc_dai_driver cs42l42_dai = {
.name = "cs42l42",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_96000,
.formats = CS42L42_FORMATS,
},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_96000,
.formats = CS42L42_FORMATS,
},
.symmetric_rate = 1,
.symmetric_sample_bits = 1,
.ops = &cs42l42_ops,
};
EXPORT_SYMBOL_NS_GPL(cs42l42_dai, SND_SOC_CS42L42_CORE);
static void cs42l42_manual_hs_type_detect(struct cs42l42_private *cs42l42)
{
unsigned int hs_det_status;
unsigned int hs_det_comp1;
unsigned int hs_det_comp2;
unsigned int hs_det_sw;
/* Set hs detect to manual, active mode */
regmap_update_bits(cs42l42->regmap,
CS42L42_HSDET_CTL2,
CS42L42_HSDET_CTRL_MASK |
CS42L42_HSDET_SET_MASK |
CS42L42_HSBIAS_REF_MASK |
CS42L42_HSDET_AUTO_TIME_MASK,
(1 << CS42L42_HSDET_CTRL_SHIFT) |
(0 << CS42L42_HSDET_SET_SHIFT) |
(0 << CS42L42_HSBIAS_REF_SHIFT) |
(0 << CS42L42_HSDET_AUTO_TIME_SHIFT));
/* Configure HS DET comparator reference levels. */
regmap_update_bits(cs42l42->regmap,
CS42L42_HSDET_CTL1,
CS42L42_HSDET_COMP1_LVL_MASK |
CS42L42_HSDET_COMP2_LVL_MASK,
(CS42L42_HSDET_COMP1_LVL_VAL << CS42L42_HSDET_COMP1_LVL_SHIFT) |
(CS42L42_HSDET_COMP2_LVL_VAL << CS42L42_HSDET_COMP2_LVL_SHIFT));
/* Open the SW_HSB_HS3 switch and close SW_HSB_HS4 for a Type 1 headset. */
regmap_write(cs42l42->regmap, CS42L42_HS_SWITCH_CTL, CS42L42_HSDET_SW_COMP1);
msleep(100);
regmap_read(cs42l42->regmap, CS42L42_HS_DET_STATUS, &hs_det_status);
hs_det_comp1 = (hs_det_status & CS42L42_HSDET_COMP1_OUT_MASK) >>
CS42L42_HSDET_COMP1_OUT_SHIFT;
hs_det_comp2 = (hs_det_status & CS42L42_HSDET_COMP2_OUT_MASK) >>
CS42L42_HSDET_COMP2_OUT_SHIFT;
/* Close the SW_HSB_HS3 switch for a Type 2 headset. */
regmap_write(cs42l42->regmap, CS42L42_HS_SWITCH_CTL, CS42L42_HSDET_SW_COMP2);
msleep(100);
regmap_read(cs42l42->regmap, CS42L42_HS_DET_STATUS, &hs_det_status);
hs_det_comp1 |= ((hs_det_status & CS42L42_HSDET_COMP1_OUT_MASK) >>
CS42L42_HSDET_COMP1_OUT_SHIFT) << 1;
hs_det_comp2 |= ((hs_det_status & CS42L42_HSDET_COMP2_OUT_MASK) >>
CS42L42_HSDET_COMP2_OUT_SHIFT) << 1;
/* Use Comparator 1 with 1.25V Threshold. */
switch (hs_det_comp1) {
case CS42L42_HSDET_COMP_TYPE1:
cs42l42->hs_type = CS42L42_PLUG_CTIA;
hs_det_sw = CS42L42_HSDET_SW_TYPE1;
break;
case CS42L42_HSDET_COMP_TYPE2:
cs42l42->hs_type = CS42L42_PLUG_OMTP;
hs_det_sw = CS42L42_HSDET_SW_TYPE2;
break;
default:
/* Fallback to Comparator 2 with 1.75V Threshold. */
switch (hs_det_comp2) {
case CS42L42_HSDET_COMP_TYPE1:
cs42l42->hs_type = CS42L42_PLUG_CTIA;
hs_det_sw = CS42L42_HSDET_SW_TYPE1;
break;
case CS42L42_HSDET_COMP_TYPE2:
cs42l42->hs_type = CS42L42_PLUG_OMTP;
hs_det_sw = CS42L42_HSDET_SW_TYPE2;
break;
/* Detect Type 3 and Type 4 Headsets as Headphones */
default:
cs42l42->hs_type = CS42L42_PLUG_HEADPHONE;
hs_det_sw = CS42L42_HSDET_SW_TYPE3;
break;
}
}
/* Set Switches */
regmap_write(cs42l42->regmap, CS42L42_HS_SWITCH_CTL, hs_det_sw);
/* Set HSDET mode to Manual—Disabled */
regmap_update_bits(cs42l42->regmap,
CS42L42_HSDET_CTL2,
CS42L42_HSDET_CTRL_MASK |
CS42L42_HSDET_SET_MASK |
CS42L42_HSBIAS_REF_MASK |
CS42L42_HSDET_AUTO_TIME_MASK,
(0 << CS42L42_HSDET_CTRL_SHIFT) |
(0 << CS42L42_HSDET_SET_SHIFT) |
(0 << CS42L42_HSBIAS_REF_SHIFT) |
(0 << CS42L42_HSDET_AUTO_TIME_SHIFT));
/* Configure HS DET comparator reference levels. */
regmap_update_bits(cs42l42->regmap,
CS42L42_HSDET_CTL1,
CS42L42_HSDET_COMP1_LVL_MASK |
CS42L42_HSDET_COMP2_LVL_MASK,
(CS42L42_HSDET_COMP1_LVL_DEFAULT << CS42L42_HSDET_COMP1_LVL_SHIFT) |
(CS42L42_HSDET_COMP2_LVL_DEFAULT << CS42L42_HSDET_COMP2_LVL_SHIFT));
}
static void cs42l42_process_hs_type_detect(struct cs42l42_private *cs42l42)
{
unsigned int hs_det_status;
unsigned int int_status;
/* Read and save the hs detection result */
regmap_read(cs42l42->regmap, CS42L42_HS_DET_STATUS, &hs_det_status);
/* Mask the auto detect interrupt */
regmap_update_bits(cs42l42->regmap,
CS42L42_CODEC_INT_MASK,
CS42L42_PDN_DONE_MASK |
CS42L42_HSDET_AUTO_DONE_MASK,
(1 << CS42L42_PDN_DONE_SHIFT) |
(1 << CS42L42_HSDET_AUTO_DONE_SHIFT));
cs42l42->hs_type = (hs_det_status & CS42L42_HSDET_TYPE_MASK) >>
CS42L42_HSDET_TYPE_SHIFT;
/* Set hs detect to automatic, disabled mode */
regmap_update_bits(cs42l42->regmap,
CS42L42_HSDET_CTL2,
CS42L42_HSDET_CTRL_MASK |
CS42L42_HSDET_SET_MASK |
CS42L42_HSBIAS_REF_MASK |
CS42L42_HSDET_AUTO_TIME_MASK,
(2 << CS42L42_HSDET_CTRL_SHIFT) |
(2 << CS42L42_HSDET_SET_SHIFT) |
(0 << CS42L42_HSBIAS_REF_SHIFT) |
(3 << CS42L42_HSDET_AUTO_TIME_SHIFT));
/* Run Manual detection if auto detect has not found a headset.
* We Re-Run with Manual Detection if the original detection was invalid or headphones,
* to ensure that a headset mic is detected in all cases.
*/
if (cs42l42->hs_type == CS42L42_PLUG_INVALID ||
cs42l42->hs_type == CS42L42_PLUG_HEADPHONE) {
dev_dbg(cs42l42->dev, "Running Manual Detection Fallback\n");
cs42l42_manual_hs_type_detect(cs42l42);
}
/* Set up button detection */
if ((cs42l42->hs_type == CS42L42_PLUG_CTIA) ||
(cs42l42->hs_type == CS42L42_PLUG_OMTP)) {
/* Set auto HS bias settings to default */
regmap_update_bits(cs42l42->regmap,
CS42L42_HSBIAS_SC_AUTOCTL,
CS42L42_HSBIAS_SENSE_EN_MASK |
CS42L42_AUTO_HSBIAS_HIZ_MASK |
CS42L42_TIP_SENSE_EN_MASK |
CS42L42_HSBIAS_SENSE_TRIP_MASK,
(0 << CS42L42_HSBIAS_SENSE_EN_SHIFT) |
(0 << CS42L42_AUTO_HSBIAS_HIZ_SHIFT) |
(0 << CS42L42_TIP_SENSE_EN_SHIFT) |
(3 << CS42L42_HSBIAS_SENSE_TRIP_SHIFT));
/* Set up hs detect level sensitivity */
regmap_update_bits(cs42l42->regmap,
CS42L42_MIC_DET_CTL1,
CS42L42_LATCH_TO_VP_MASK |
CS42L42_EVENT_STAT_SEL_MASK |
CS42L42_HS_DET_LEVEL_MASK,
(1 << CS42L42_LATCH_TO_VP_SHIFT) |
(0 << CS42L42_EVENT_STAT_SEL_SHIFT) |
(cs42l42->bias_thresholds[0] <<
CS42L42_HS_DET_LEVEL_SHIFT));
/* Set auto HS bias settings to default */
regmap_update_bits(cs42l42->regmap,
CS42L42_HSBIAS_SC_AUTOCTL,
CS42L42_HSBIAS_SENSE_EN_MASK |
CS42L42_AUTO_HSBIAS_HIZ_MASK |
CS42L42_TIP_SENSE_EN_MASK |
CS42L42_HSBIAS_SENSE_TRIP_MASK,
(cs42l42->hs_bias_sense_en << CS42L42_HSBIAS_SENSE_EN_SHIFT) |
(1 << CS42L42_AUTO_HSBIAS_HIZ_SHIFT) |
(0 << CS42L42_TIP_SENSE_EN_SHIFT) |
(3 << CS42L42_HSBIAS_SENSE_TRIP_SHIFT));
/* Turn on level detect circuitry */
regmap_update_bits(cs42l42->regmap,
CS42L42_MISC_DET_CTL,
CS42L42_HSBIAS_CTL_MASK |
CS42L42_PDN_MIC_LVL_DET_MASK,
(3 << CS42L42_HSBIAS_CTL_SHIFT) |
(0 << CS42L42_PDN_MIC_LVL_DET_SHIFT));
msleep(cs42l42->btn_det_init_dbnce);
/* Clear any button interrupts before unmasking them */
regmap_read(cs42l42->regmap, CS42L42_DET_INT_STATUS2,
&int_status);
/* Unmask button detect interrupts */
regmap_update_bits(cs42l42->regmap,
CS42L42_DET_INT2_MASK,
CS42L42_M_DETECT_TF_MASK |
CS42L42_M_DETECT_FT_MASK |
CS42L42_M_HSBIAS_HIZ_MASK |
CS42L42_M_SHORT_RLS_MASK |
CS42L42_M_SHORT_DET_MASK,
(0 << CS42L42_M_DETECT_TF_SHIFT) |
(0 << CS42L42_M_DETECT_FT_SHIFT) |
(0 << CS42L42_M_HSBIAS_HIZ_SHIFT) |
(1 << CS42L42_M_SHORT_RLS_SHIFT) |
(1 << CS42L42_M_SHORT_DET_SHIFT));
} else {
/* Make sure button detect and HS bias circuits are off */
regmap_update_bits(cs42l42->regmap,
CS42L42_MISC_DET_CTL,
CS42L42_HSBIAS_CTL_MASK |
CS42L42_PDN_MIC_LVL_DET_MASK,
(1 << CS42L42_HSBIAS_CTL_SHIFT) |
(1 << CS42L42_PDN_MIC_LVL_DET_SHIFT));
}
regmap_update_bits(cs42l42->regmap,
CS42L42_DAC_CTL2,
CS42L42_HPOUT_PULLDOWN_MASK |
CS42L42_HPOUT_LOAD_MASK |
CS42L42_HPOUT_CLAMP_MASK |
CS42L42_DAC_HPF_EN_MASK |
CS42L42_DAC_MON_EN_MASK,
(0 << CS42L42_HPOUT_PULLDOWN_SHIFT) |
(0 << CS42L42_HPOUT_LOAD_SHIFT) |
(0 << CS42L42_HPOUT_CLAMP_SHIFT) |
(1 << CS42L42_DAC_HPF_EN_SHIFT) |
(0 << CS42L42_DAC_MON_EN_SHIFT));
/* Unmask tip sense interrupts */
regmap_update_bits(cs42l42->regmap,
CS42L42_TSRS_PLUG_INT_MASK,
CS42L42_TS_PLUG_MASK |
CS42L42_TS_UNPLUG_MASK,
(0 << CS42L42_TS_PLUG_SHIFT) |
(0 << CS42L42_TS_UNPLUG_SHIFT));
}
static void cs42l42_init_hs_type_detect(struct cs42l42_private *cs42l42)
{
/* Mask tip sense interrupts */
regmap_update_bits(cs42l42->regmap,
CS42L42_TSRS_PLUG_INT_MASK,
CS42L42_TS_PLUG_MASK |
CS42L42_TS_UNPLUG_MASK,
(1 << CS42L42_TS_PLUG_SHIFT) |
(1 << CS42L42_TS_UNPLUG_SHIFT));
/* Make sure button detect and HS bias circuits are off */
regmap_update_bits(cs42l42->regmap,
CS42L42_MISC_DET_CTL,
CS42L42_HSBIAS_CTL_MASK |
CS42L42_PDN_MIC_LVL_DET_MASK,
(1 << CS42L42_HSBIAS_CTL_SHIFT) |
(1 << CS42L42_PDN_MIC_LVL_DET_SHIFT));
/* Set auto HS bias settings to default */
regmap_update_bits(cs42l42->regmap,
CS42L42_HSBIAS_SC_AUTOCTL,
CS42L42_HSBIAS_SENSE_EN_MASK |
CS42L42_AUTO_HSBIAS_HIZ_MASK |
CS42L42_TIP_SENSE_EN_MASK |
CS42L42_HSBIAS_SENSE_TRIP_MASK,
(0 << CS42L42_HSBIAS_SENSE_EN_SHIFT) |
(0 << CS42L42_AUTO_HSBIAS_HIZ_SHIFT) |
(0 << CS42L42_TIP_SENSE_EN_SHIFT) |
(3 << CS42L42_HSBIAS_SENSE_TRIP_SHIFT));
/* Set hs detect to manual, disabled mode */
regmap_update_bits(cs42l42->regmap,
CS42L42_HSDET_CTL2,
CS42L42_HSDET_CTRL_MASK |
CS42L42_HSDET_SET_MASK |
CS42L42_HSBIAS_REF_MASK |
CS42L42_HSDET_AUTO_TIME_MASK,
(0 << CS42L42_HSDET_CTRL_SHIFT) |
(2 << CS42L42_HSDET_SET_SHIFT) |
(0 << CS42L42_HSBIAS_REF_SHIFT) |
(3 << CS42L42_HSDET_AUTO_TIME_SHIFT));
regmap_update_bits(cs42l42->regmap,
CS42L42_DAC_CTL2,
CS42L42_HPOUT_PULLDOWN_MASK |
CS42L42_HPOUT_LOAD_MASK |
CS42L42_HPOUT_CLAMP_MASK |
CS42L42_DAC_HPF_EN_MASK |
CS42L42_DAC_MON_EN_MASK,
(8 << CS42L42_HPOUT_PULLDOWN_SHIFT) |
(0 << CS42L42_HPOUT_LOAD_SHIFT) |
(1 << CS42L42_HPOUT_CLAMP_SHIFT) |
(1 << CS42L42_DAC_HPF_EN_SHIFT) |
(1 << CS42L42_DAC_MON_EN_SHIFT));
/* Power up HS bias to 2.7V */
regmap_update_bits(cs42l42->regmap,
CS42L42_MISC_DET_CTL,
CS42L42_HSBIAS_CTL_MASK |
CS42L42_PDN_MIC_LVL_DET_MASK,
(3 << CS42L42_HSBIAS_CTL_SHIFT) |
(1 << CS42L42_PDN_MIC_LVL_DET_SHIFT));
/* Wait for HS bias to ramp up */
msleep(cs42l42->hs_bias_ramp_time);
/* Unmask auto detect interrupt */
regmap_update_bits(cs42l42->regmap,
CS42L42_CODEC_INT_MASK,
CS42L42_PDN_DONE_MASK |
CS42L42_HSDET_AUTO_DONE_MASK,
(1 << CS42L42_PDN_DONE_SHIFT) |
(0 << CS42L42_HSDET_AUTO_DONE_SHIFT));
/* Set hs detect to automatic, enabled mode */
regmap_update_bits(cs42l42->regmap,
CS42L42_HSDET_CTL2,
CS42L42_HSDET_CTRL_MASK |
CS42L42_HSDET_SET_MASK |
CS42L42_HSBIAS_REF_MASK |
CS42L42_HSDET_AUTO_TIME_MASK,
(3 << CS42L42_HSDET_CTRL_SHIFT) |
(2 << CS42L42_HSDET_SET_SHIFT) |
(0 << CS42L42_HSBIAS_REF_SHIFT) |
(3 << CS42L42_HSDET_AUTO_TIME_SHIFT));
}
static void cs42l42_cancel_hs_type_detect(struct cs42l42_private *cs42l42)
{
/* Mask button detect interrupts */
regmap_update_bits(cs42l42->regmap,
CS42L42_DET_INT2_MASK,
CS42L42_M_DETECT_TF_MASK |
CS42L42_M_DETECT_FT_MASK |
CS42L42_M_HSBIAS_HIZ_MASK |
CS42L42_M_SHORT_RLS_MASK |
CS42L42_M_SHORT_DET_MASK,
(1 << CS42L42_M_DETECT_TF_SHIFT) |
(1 << CS42L42_M_DETECT_FT_SHIFT) |
(1 << CS42L42_M_HSBIAS_HIZ_SHIFT) |
(1 << CS42L42_M_SHORT_RLS_SHIFT) |
(1 << CS42L42_M_SHORT_DET_SHIFT));
/* Ground HS bias */
regmap_update_bits(cs42l42->regmap,
CS42L42_MISC_DET_CTL,
CS42L42_HSBIAS_CTL_MASK |
CS42L42_PDN_MIC_LVL_DET_MASK,
(1 << CS42L42_HSBIAS_CTL_SHIFT) |
(1 << CS42L42_PDN_MIC_LVL_DET_SHIFT));
/* Set auto HS bias settings to default */
regmap_update_bits(cs42l42->regmap,
CS42L42_HSBIAS_SC_AUTOCTL,
CS42L42_HSBIAS_SENSE_EN_MASK |
CS42L42_AUTO_HSBIAS_HIZ_MASK |
CS42L42_TIP_SENSE_EN_MASK |
CS42L42_HSBIAS_SENSE_TRIP_MASK,
(0 << CS42L42_HSBIAS_SENSE_EN_SHIFT) |
(0 << CS42L42_AUTO_HSBIAS_HIZ_SHIFT) |
(0 << CS42L42_TIP_SENSE_EN_SHIFT) |
(3 << CS42L42_HSBIAS_SENSE_TRIP_SHIFT));
/* Set hs detect to manual, disabled mode */
regmap_update_bits(cs42l42->regmap,
CS42L42_HSDET_CTL2,
CS42L42_HSDET_CTRL_MASK |
CS42L42_HSDET_SET_MASK |
CS42L42_HSBIAS_REF_MASK |
CS42L42_HSDET_AUTO_TIME_MASK,
(0 << CS42L42_HSDET_CTRL_SHIFT) |
(2 << CS42L42_HSDET_SET_SHIFT) |
(0 << CS42L42_HSBIAS_REF_SHIFT) |
(3 << CS42L42_HSDET_AUTO_TIME_SHIFT));
}
static int cs42l42_handle_button_press(struct cs42l42_private *cs42l42)
{
int bias_level;
unsigned int detect_status;
/* Mask button detect interrupts */
regmap_update_bits(cs42l42->regmap,
CS42L42_DET_INT2_MASK,
CS42L42_M_DETECT_TF_MASK |
CS42L42_M_DETECT_FT_MASK |
CS42L42_M_HSBIAS_HIZ_MASK |
CS42L42_M_SHORT_RLS_MASK |
CS42L42_M_SHORT_DET_MASK,
(1 << CS42L42_M_DETECT_TF_SHIFT) |
(1 << CS42L42_M_DETECT_FT_SHIFT) |
(1 << CS42L42_M_HSBIAS_HIZ_SHIFT) |
(1 << CS42L42_M_SHORT_RLS_SHIFT) |
(1 << CS42L42_M_SHORT_DET_SHIFT));
usleep_range(cs42l42->btn_det_event_dbnce * 1000,
cs42l42->btn_det_event_dbnce * 2000);
/* Test all 4 level detect biases */
bias_level = 1;
do {
/* Adjust button detect level sensitivity */
regmap_update_bits(cs42l42->regmap,
CS42L42_MIC_DET_CTL1,
CS42L42_LATCH_TO_VP_MASK |
CS42L42_EVENT_STAT_SEL_MASK |
CS42L42_HS_DET_LEVEL_MASK,
(1 << CS42L42_LATCH_TO_VP_SHIFT) |
(0 << CS42L42_EVENT_STAT_SEL_SHIFT) |
(cs42l42->bias_thresholds[bias_level] <<
CS42L42_HS_DET_LEVEL_SHIFT));
regmap_read(cs42l42->regmap, CS42L42_DET_STATUS2,
&detect_status);
} while ((detect_status & CS42L42_HS_TRUE_MASK) &&
(++bias_level < CS42L42_NUM_BIASES));
switch (bias_level) {
case 1: /* Function C button press */
bias_level = SND_JACK_BTN_2;
dev_dbg(cs42l42->dev, "Function C button press\n");
break;
case 2: /* Function B button press */
bias_level = SND_JACK_BTN_1;
dev_dbg(cs42l42->dev, "Function B button press\n");
break;
case 3: /* Function D button press */
bias_level = SND_JACK_BTN_3;
dev_dbg(cs42l42->dev, "Function D button press\n");
break;
case 4: /* Function A button press */
bias_level = SND_JACK_BTN_0;
dev_dbg(cs42l42->dev, "Function A button press\n");
break;
default:
bias_level = 0;
break;
}
/* Set button detect level sensitivity back to default */
regmap_update_bits(cs42l42->regmap,
CS42L42_MIC_DET_CTL1,
CS42L42_LATCH_TO_VP_MASK |
CS42L42_EVENT_STAT_SEL_MASK |
CS42L42_HS_DET_LEVEL_MASK,
(1 << CS42L42_LATCH_TO_VP_SHIFT) |
(0 << CS42L42_EVENT_STAT_SEL_SHIFT) |
(cs42l42->bias_thresholds[0] << CS42L42_HS_DET_LEVEL_SHIFT));
/* Clear any button interrupts before unmasking them */
regmap_read(cs42l42->regmap, CS42L42_DET_INT_STATUS2,
&detect_status);
/* Unmask button detect interrupts */
regmap_update_bits(cs42l42->regmap,
CS42L42_DET_INT2_MASK,
CS42L42_M_DETECT_TF_MASK |
CS42L42_M_DETECT_FT_MASK |
CS42L42_M_HSBIAS_HIZ_MASK |
CS42L42_M_SHORT_RLS_MASK |
CS42L42_M_SHORT_DET_MASK,
(0 << CS42L42_M_DETECT_TF_SHIFT) |
(0 << CS42L42_M_DETECT_FT_SHIFT) |
(0 << CS42L42_M_HSBIAS_HIZ_SHIFT) |
(1 << CS42L42_M_SHORT_RLS_SHIFT) |
(1 << CS42L42_M_SHORT_DET_SHIFT));
return bias_level;
}
struct cs42l42_irq_params {
u16 status_addr;
u16 mask_addr;
u8 mask;
};
static const struct cs42l42_irq_params irq_params_table[] = {
{CS42L42_ADC_OVFL_STATUS, CS42L42_ADC_OVFL_INT_MASK,
CS42L42_ADC_OVFL_VAL_MASK},
{CS42L42_MIXER_STATUS, CS42L42_MIXER_INT_MASK,
CS42L42_MIXER_VAL_MASK},
{CS42L42_SRC_STATUS, CS42L42_SRC_INT_MASK,
CS42L42_SRC_VAL_MASK},
{CS42L42_ASP_RX_STATUS, CS42L42_ASP_RX_INT_MASK,
CS42L42_ASP_RX_VAL_MASK},
{CS42L42_ASP_TX_STATUS, CS42L42_ASP_TX_INT_MASK,
CS42L42_ASP_TX_VAL_MASK},
{CS42L42_CODEC_STATUS, CS42L42_CODEC_INT_MASK,
CS42L42_CODEC_VAL_MASK},
{CS42L42_DET_INT_STATUS1, CS42L42_DET_INT1_MASK,
CS42L42_DET_INT_VAL1_MASK},
{CS42L42_DET_INT_STATUS2, CS42L42_DET_INT2_MASK,
CS42L42_DET_INT_VAL2_MASK},
{CS42L42_SRCPL_INT_STATUS, CS42L42_SRCPL_INT_MASK,
CS42L42_SRCPL_VAL_MASK},
{CS42L42_VPMON_STATUS, CS42L42_VPMON_INT_MASK,
CS42L42_VPMON_VAL_MASK},
{CS42L42_PLL_LOCK_STATUS, CS42L42_PLL_LOCK_INT_MASK,
CS42L42_PLL_LOCK_VAL_MASK},
{CS42L42_TSRS_PLUG_STATUS, CS42L42_TSRS_PLUG_INT_MASK,
CS42L42_TSRS_PLUG_VAL_MASK}
};
irqreturn_t cs42l42_irq_thread(int irq, void *data)
{
struct cs42l42_private *cs42l42 = (struct cs42l42_private *)data;
unsigned int stickies[12];
unsigned int masks[12];
unsigned int current_plug_status;
unsigned int current_button_status;
unsigned int i;
pm_runtime_get_sync(cs42l42->dev);
mutex_lock(&cs42l42->irq_lock);
if (cs42l42->suspended || !cs42l42->init_done) {
mutex_unlock(&cs42l42->irq_lock);
pm_runtime_put_autosuspend(cs42l42->dev);
return IRQ_NONE;
}
/* Read sticky registers to clear interurpt */
for (i = 0; i < ARRAY_SIZE(stickies); i++) {
regmap_read(cs42l42->regmap, irq_params_table[i].status_addr,
&(stickies[i]));
regmap_read(cs42l42->regmap, irq_params_table[i].mask_addr,
&(masks[i]));
stickies[i] = stickies[i] & (~masks[i]) &
irq_params_table[i].mask;
}
/* Read tip sense status before handling type detect */
current_plug_status = (stickies[11] &
(CS42L42_TS_PLUG_MASK | CS42L42_TS_UNPLUG_MASK)) >>
CS42L42_TS_PLUG_SHIFT;
/* Read button sense status */
current_button_status = stickies[7] &
(CS42L42_M_DETECT_TF_MASK |
CS42L42_M_DETECT_FT_MASK |
CS42L42_M_HSBIAS_HIZ_MASK);
/*
* Check auto-detect status. Don't assume a previous unplug event has
* cleared the flags. If the jack is unplugged and plugged during
* system suspend there won't have been an unplug event.
*/
if ((~masks[5]) & irq_params_table[5].mask) {
if (stickies[5] & CS42L42_HSDET_AUTO_DONE_MASK) {
cs42l42_process_hs_type_detect(cs42l42);
switch (cs42l42->hs_type) {
case CS42L42_PLUG_CTIA:
case CS42L42_PLUG_OMTP:
snd_soc_jack_report(cs42l42->jack, SND_JACK_HEADSET,
SND_JACK_HEADSET |
SND_JACK_BTN_0 | SND_JACK_BTN_1 |
SND_JACK_BTN_2 | SND_JACK_BTN_3);
break;
case CS42L42_PLUG_HEADPHONE:
snd_soc_jack_report(cs42l42->jack, SND_JACK_HEADPHONE,
SND_JACK_HEADSET |
SND_JACK_BTN_0 | SND_JACK_BTN_1 |
SND_JACK_BTN_2 | SND_JACK_BTN_3);
break;
default:
break;
}
dev_dbg(cs42l42->dev, "Auto detect done (%d)\n", cs42l42->hs_type);
}
}
/* Check tip sense status */
if ((~masks[11]) & irq_params_table[11].mask) {
switch (current_plug_status) {
case CS42L42_TS_PLUG:
if (cs42l42->plug_state != CS42L42_TS_PLUG) {
cs42l42->plug_state = CS42L42_TS_PLUG;
cs42l42_init_hs_type_detect(cs42l42);
}
break;
case CS42L42_TS_UNPLUG:
if (cs42l42->plug_state != CS42L42_TS_UNPLUG) {
cs42l42->plug_state = CS42L42_TS_UNPLUG;
cs42l42_cancel_hs_type_detect(cs42l42);
snd_soc_jack_report(cs42l42->jack, 0,
SND_JACK_HEADSET |
SND_JACK_BTN_0 | SND_JACK_BTN_1 |
SND_JACK_BTN_2 | SND_JACK_BTN_3);
dev_dbg(cs42l42->dev, "Unplug event\n");
}
break;
default:
cs42l42->plug_state = CS42L42_TS_TRANS;
}
}
/* Check button detect status */
if (cs42l42->plug_state == CS42L42_TS_PLUG && ((~masks[7]) & irq_params_table[7].mask)) {
if (!(current_button_status &
CS42L42_M_HSBIAS_HIZ_MASK)) {
if (current_button_status & CS42L42_M_DETECT_TF_MASK) {
dev_dbg(cs42l42->dev, "Button released\n");
snd_soc_jack_report(cs42l42->jack, 0,
SND_JACK_BTN_0 | SND_JACK_BTN_1 |
SND_JACK_BTN_2 | SND_JACK_BTN_3);
} else if (current_button_status & CS42L42_M_DETECT_FT_MASK) {
snd_soc_jack_report(cs42l42->jack,
cs42l42_handle_button_press(cs42l42),
SND_JACK_BTN_0 | SND_JACK_BTN_1 |
SND_JACK_BTN_2 | SND_JACK_BTN_3);
}
}
}
mutex_unlock(&cs42l42->irq_lock);
pm_runtime_mark_last_busy(cs42l42->dev);
pm_runtime_put_autosuspend(cs42l42->dev);
return IRQ_HANDLED;
}
EXPORT_SYMBOL_NS_GPL(cs42l42_irq_thread, SND_SOC_CS42L42_CORE);
static void cs42l42_set_interrupt_masks(struct cs42l42_private *cs42l42)
{
regmap_update_bits(cs42l42->regmap, CS42L42_ADC_OVFL_INT_MASK,
CS42L42_ADC_OVFL_MASK,
(1 << CS42L42_ADC_OVFL_SHIFT));
regmap_update_bits(cs42l42->regmap, CS42L42_MIXER_INT_MASK,
CS42L42_MIX_CHB_OVFL_MASK |
CS42L42_MIX_CHA_OVFL_MASK |
CS42L42_EQ_OVFL_MASK |
CS42L42_EQ_BIQUAD_OVFL_MASK,
(1 << CS42L42_MIX_CHB_OVFL_SHIFT) |
(1 << CS42L42_MIX_CHA_OVFL_SHIFT) |
(1 << CS42L42_EQ_OVFL_SHIFT) |
(1 << CS42L42_EQ_BIQUAD_OVFL_SHIFT));
regmap_update_bits(cs42l42->regmap, CS42L42_SRC_INT_MASK,
CS42L42_SRC_ILK_MASK |
CS42L42_SRC_OLK_MASK |
CS42L42_SRC_IUNLK_MASK |
CS42L42_SRC_OUNLK_MASK,
(1 << CS42L42_SRC_ILK_SHIFT) |
(1 << CS42L42_SRC_OLK_SHIFT) |
(1 << CS42L42_SRC_IUNLK_SHIFT) |
(1 << CS42L42_SRC_OUNLK_SHIFT));
regmap_update_bits(cs42l42->regmap, CS42L42_ASP_RX_INT_MASK,
CS42L42_ASPRX_NOLRCK_MASK |
CS42L42_ASPRX_EARLY_MASK |
CS42L42_ASPRX_LATE_MASK |
CS42L42_ASPRX_ERROR_MASK |
CS42L42_ASPRX_OVLD_MASK,
(1 << CS42L42_ASPRX_NOLRCK_SHIFT) |
(1 << CS42L42_ASPRX_EARLY_SHIFT) |
(1 << CS42L42_ASPRX_LATE_SHIFT) |
(1 << CS42L42_ASPRX_ERROR_SHIFT) |
(1 << CS42L42_ASPRX_OVLD_SHIFT));
regmap_update_bits(cs42l42->regmap, CS42L42_ASP_TX_INT_MASK,
CS42L42_ASPTX_NOLRCK_MASK |
CS42L42_ASPTX_EARLY_MASK |
CS42L42_ASPTX_LATE_MASK |
CS42L42_ASPTX_SMERROR_MASK,
(1 << CS42L42_ASPTX_NOLRCK_SHIFT) |
(1 << CS42L42_ASPTX_EARLY_SHIFT) |
(1 << CS42L42_ASPTX_LATE_SHIFT) |
(1 << CS42L42_ASPTX_SMERROR_SHIFT));
regmap_update_bits(cs42l42->regmap, CS42L42_CODEC_INT_MASK,
CS42L42_PDN_DONE_MASK |
CS42L42_HSDET_AUTO_DONE_MASK,
(1 << CS42L42_PDN_DONE_SHIFT) |
(1 << CS42L42_HSDET_AUTO_DONE_SHIFT));
regmap_update_bits(cs42l42->regmap, CS42L42_SRCPL_INT_MASK,
CS42L42_SRCPL_ADC_LK_MASK |
CS42L42_SRCPL_DAC_LK_MASK |
CS42L42_SRCPL_ADC_UNLK_MASK |
CS42L42_SRCPL_DAC_UNLK_MASK,
(1 << CS42L42_SRCPL_ADC_LK_SHIFT) |
(1 << CS42L42_SRCPL_DAC_LK_SHIFT) |
(1 << CS42L42_SRCPL_ADC_UNLK_SHIFT) |
(1 << CS42L42_SRCPL_DAC_UNLK_SHIFT));
regmap_update_bits(cs42l42->regmap, CS42L42_DET_INT1_MASK,
CS42L42_TIP_SENSE_UNPLUG_MASK |
CS42L42_TIP_SENSE_PLUG_MASK |
CS42L42_HSBIAS_SENSE_MASK,
(1 << CS42L42_TIP_SENSE_UNPLUG_SHIFT) |
(1 << CS42L42_TIP_SENSE_PLUG_SHIFT) |
(1 << CS42L42_HSBIAS_SENSE_SHIFT));
regmap_update_bits(cs42l42->regmap, CS42L42_DET_INT2_MASK,
CS42L42_M_DETECT_TF_MASK |
CS42L42_M_DETECT_FT_MASK |
CS42L42_M_HSBIAS_HIZ_MASK |
CS42L42_M_SHORT_RLS_MASK |
CS42L42_M_SHORT_DET_MASK,
(1 << CS42L42_M_DETECT_TF_SHIFT) |
(1 << CS42L42_M_DETECT_FT_SHIFT) |
(1 << CS42L42_M_HSBIAS_HIZ_SHIFT) |
(1 << CS42L42_M_SHORT_RLS_SHIFT) |
(1 << CS42L42_M_SHORT_DET_SHIFT));
regmap_update_bits(cs42l42->regmap, CS42L42_VPMON_INT_MASK,
CS42L42_VPMON_MASK,
(1 << CS42L42_VPMON_SHIFT));
regmap_update_bits(cs42l42->regmap, CS42L42_PLL_LOCK_INT_MASK,
CS42L42_PLL_LOCK_MASK,
(1 << CS42L42_PLL_LOCK_SHIFT));
regmap_update_bits(cs42l42->regmap, CS42L42_TSRS_PLUG_INT_MASK,
CS42L42_RS_PLUG_MASK |
CS42L42_RS_UNPLUG_MASK |
CS42L42_TS_PLUG_MASK |
CS42L42_TS_UNPLUG_MASK,
(1 << CS42L42_RS_PLUG_SHIFT) |
(1 << CS42L42_RS_UNPLUG_SHIFT) |
(0 << CS42L42_TS_PLUG_SHIFT) |
(0 << CS42L42_TS_UNPLUG_SHIFT));
}
static void cs42l42_setup_hs_type_detect(struct cs42l42_private *cs42l42)
{
unsigned int reg;
cs42l42->hs_type = CS42L42_PLUG_INVALID;
/*
* DETECT_MODE must always be 0 with ADC and HP both off otherwise the
* FILT+ supply will not charge properly.
*/
regmap_update_bits(cs42l42->regmap, CS42L42_MISC_DET_CTL,
CS42L42_DETECT_MODE_MASK, 0);
/* Latch analog controls to VP power domain */
regmap_update_bits(cs42l42->regmap, CS42L42_MIC_DET_CTL1,
CS42L42_LATCH_TO_VP_MASK |
CS42L42_EVENT_STAT_SEL_MASK |
CS42L42_HS_DET_LEVEL_MASK,
(1 << CS42L42_LATCH_TO_VP_SHIFT) |
(0 << CS42L42_EVENT_STAT_SEL_SHIFT) |
(cs42l42->bias_thresholds[0] <<
CS42L42_HS_DET_LEVEL_SHIFT));
/* Remove ground noise-suppression clamps */
regmap_update_bits(cs42l42->regmap,
CS42L42_HS_CLAMP_DISABLE,
CS42L42_HS_CLAMP_DISABLE_MASK,
(1 << CS42L42_HS_CLAMP_DISABLE_SHIFT));
/* Enable the tip sense circuit */
regmap_update_bits(cs42l42->regmap, CS42L42_TSENSE_CTL,
CS42L42_TS_INV_MASK, CS42L42_TS_INV_MASK);
regmap_update_bits(cs42l42->regmap, CS42L42_TIPSENSE_CTL,
CS42L42_TIP_SENSE_CTRL_MASK |
CS42L42_TIP_SENSE_INV_MASK |
CS42L42_TIP_SENSE_DEBOUNCE_MASK,
(3 << CS42L42_TIP_SENSE_CTRL_SHIFT) |
(!cs42l42->ts_inv << CS42L42_TIP_SENSE_INV_SHIFT) |
(2 << CS42L42_TIP_SENSE_DEBOUNCE_SHIFT));
/* Save the initial status of the tip sense */
regmap_read(cs42l42->regmap,
CS42L42_TSRS_PLUG_STATUS,
&reg);
cs42l42->plug_state = (((char) reg) &
(CS42L42_TS_PLUG_MASK | CS42L42_TS_UNPLUG_MASK)) >>
CS42L42_TS_PLUG_SHIFT;
}
static const unsigned int threshold_defaults[] = {
CS42L42_HS_DET_LEVEL_15,
CS42L42_HS_DET_LEVEL_8,
CS42L42_HS_DET_LEVEL_4,
CS42L42_HS_DET_LEVEL_1
};
static int cs42l42_handle_device_data(struct device *dev,
struct cs42l42_private *cs42l42)
{
unsigned int val;
u32 thresholds[CS42L42_NUM_BIASES];
int ret;
int i;
ret = device_property_read_u32(dev, "cirrus,ts-inv", &val);
if (!ret) {
switch (val) {
case CS42L42_TS_INV_EN:
case CS42L42_TS_INV_DIS:
cs42l42->ts_inv = val;
break;
default:
dev_err(dev,
"Wrong cirrus,ts-inv DT value %d\n",
val);
cs42l42->ts_inv = CS42L42_TS_INV_DIS;
}
} else {
cs42l42->ts_inv = CS42L42_TS_INV_DIS;
}
ret = device_property_read_u32(dev, "cirrus,ts-dbnc-rise", &val);
if (!ret) {
switch (val) {
case CS42L42_TS_DBNCE_0:
case CS42L42_TS_DBNCE_125:
case CS42L42_TS_DBNCE_250:
case CS42L42_TS_DBNCE_500:
case CS42L42_TS_DBNCE_750:
case CS42L42_TS_DBNCE_1000:
case CS42L42_TS_DBNCE_1250:
case CS42L42_TS_DBNCE_1500:
cs42l42->ts_dbnc_rise = val;
break;
default:
dev_err(dev,
"Wrong cirrus,ts-dbnc-rise DT value %d\n",
val);
cs42l42->ts_dbnc_rise = CS42L42_TS_DBNCE_1000;
}
} else {
cs42l42->ts_dbnc_rise = CS42L42_TS_DBNCE_1000;
}
regmap_update_bits(cs42l42->regmap, CS42L42_TSENSE_CTL,
CS42L42_TS_RISE_DBNCE_TIME_MASK,
(cs42l42->ts_dbnc_rise <<
CS42L42_TS_RISE_DBNCE_TIME_SHIFT));
ret = device_property_read_u32(dev, "cirrus,ts-dbnc-fall", &val);
if (!ret) {
switch (val) {
case CS42L42_TS_DBNCE_0:
case CS42L42_TS_DBNCE_125:
case CS42L42_TS_DBNCE_250:
case CS42L42_TS_DBNCE_500:
case CS42L42_TS_DBNCE_750:
case CS42L42_TS_DBNCE_1000:
case CS42L42_TS_DBNCE_1250:
case CS42L42_TS_DBNCE_1500:
cs42l42->ts_dbnc_fall = val;
break;
default:
dev_err(dev,
"Wrong cirrus,ts-dbnc-fall DT value %d\n",
val);
cs42l42->ts_dbnc_fall = CS42L42_TS_DBNCE_0;
}
} else {
cs42l42->ts_dbnc_fall = CS42L42_TS_DBNCE_0;
}
regmap_update_bits(cs42l42->regmap, CS42L42_TSENSE_CTL,
CS42L42_TS_FALL_DBNCE_TIME_MASK,
(cs42l42->ts_dbnc_fall <<
CS42L42_TS_FALL_DBNCE_TIME_SHIFT));
ret = device_property_read_u32(dev, "cirrus,btn-det-init-dbnce", &val);
if (!ret) {
if (val <= CS42L42_BTN_DET_INIT_DBNCE_MAX)
cs42l42->btn_det_init_dbnce = val;
else {
dev_err(dev,
"Wrong cirrus,btn-det-init-dbnce DT value %d\n",
val);
cs42l42->btn_det_init_dbnce =
CS42L42_BTN_DET_INIT_DBNCE_DEFAULT;
}
} else {
cs42l42->btn_det_init_dbnce =
CS42L42_BTN_DET_INIT_DBNCE_DEFAULT;
}
ret = device_property_read_u32(dev, "cirrus,btn-det-event-dbnce", &val);
if (!ret) {
if (val <= CS42L42_BTN_DET_EVENT_DBNCE_MAX)
cs42l42->btn_det_event_dbnce = val;
else {
dev_err(dev,
"Wrong cirrus,btn-det-event-dbnce DT value %d\n", val);
cs42l42->btn_det_event_dbnce =
CS42L42_BTN_DET_EVENT_DBNCE_DEFAULT;
}
} else {
cs42l42->btn_det_event_dbnce =
CS42L42_BTN_DET_EVENT_DBNCE_DEFAULT;
}
ret = device_property_read_u32_array(dev, "cirrus,bias-lvls",
thresholds, ARRAY_SIZE(thresholds));
if (!ret) {
for (i = 0; i < CS42L42_NUM_BIASES; i++) {
if (thresholds[i] <= CS42L42_HS_DET_LEVEL_MAX)
cs42l42->bias_thresholds[i] = thresholds[i];
else {
dev_err(dev,
"Wrong cirrus,bias-lvls[%d] DT value %d\n", i,
thresholds[i]);
cs42l42->bias_thresholds[i] = threshold_defaults[i];
}
}
} else {
for (i = 0; i < CS42L42_NUM_BIASES; i++)
cs42l42->bias_thresholds[i] = threshold_defaults[i];
}
ret = device_property_read_u32(dev, "cirrus,hs-bias-ramp-rate", &val);
if (!ret) {
switch (val) {
case CS42L42_HSBIAS_RAMP_FAST_RISE_SLOW_FALL:
cs42l42->hs_bias_ramp_rate = val;
cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME0;
break;
case CS42L42_HSBIAS_RAMP_FAST:
cs42l42->hs_bias_ramp_rate = val;
cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME1;
break;
case CS42L42_HSBIAS_RAMP_SLOW:
cs42l42->hs_bias_ramp_rate = val;
cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME2;
break;
case CS42L42_HSBIAS_RAMP_SLOWEST:
cs42l42->hs_bias_ramp_rate = val;
cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME3;
break;
default:
dev_err(dev,
"Wrong cirrus,hs-bias-ramp-rate DT value %d\n",
val);
cs42l42->hs_bias_ramp_rate = CS42L42_HSBIAS_RAMP_SLOW;
cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME2;
}
} else {
cs42l42->hs_bias_ramp_rate = CS42L42_HSBIAS_RAMP_SLOW;
cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME2;
}
regmap_update_bits(cs42l42->regmap, CS42L42_HS_BIAS_CTL,
CS42L42_HSBIAS_RAMP_MASK,
(cs42l42->hs_bias_ramp_rate <<
CS42L42_HSBIAS_RAMP_SHIFT));
if (device_property_read_bool(dev, "cirrus,hs-bias-sense-disable"))
cs42l42->hs_bias_sense_en = 0;
else
cs42l42->hs_bias_sense_en = 1;
return 0;
}
/* Datasheet suspend sequence */
static const struct reg_sequence __maybe_unused cs42l42_shutdown_seq[] = {
REG_SEQ0(CS42L42_MIC_DET_CTL1, 0x9F),
REG_SEQ0(CS42L42_ADC_OVFL_INT_MASK, 0x01),
REG_SEQ0(CS42L42_MIXER_INT_MASK, 0x0F),
REG_SEQ0(CS42L42_SRC_INT_MASK, 0x0F),
REG_SEQ0(CS42L42_ASP_RX_INT_MASK, 0x1F),
REG_SEQ0(CS42L42_ASP_TX_INT_MASK, 0x0F),
REG_SEQ0(CS42L42_CODEC_INT_MASK, 0x03),
REG_SEQ0(CS42L42_SRCPL_INT_MASK, 0x7F),
REG_SEQ0(CS42L42_VPMON_INT_MASK, 0x01),
REG_SEQ0(CS42L42_PLL_LOCK_INT_MASK, 0x01),
REG_SEQ0(CS42L42_TSRS_PLUG_INT_MASK, 0x0F),
REG_SEQ0(CS42L42_WAKE_CTL, 0xE1),
REG_SEQ0(CS42L42_DET_INT1_MASK, 0xE0),
REG_SEQ0(CS42L42_DET_INT2_MASK, 0xFF),
REG_SEQ0(CS42L42_MIXER_CHA_VOL, 0x3F),
REG_SEQ0(CS42L42_MIXER_ADC_VOL, 0x3F),
REG_SEQ0(CS42L42_MIXER_CHB_VOL, 0x3F),
REG_SEQ0(CS42L42_HP_CTL, 0x0F),
REG_SEQ0(CS42L42_ASP_RX_DAI0_EN, 0x00),
REG_SEQ0(CS42L42_ASP_CLK_CFG, 0x00),
REG_SEQ0(CS42L42_HSDET_CTL2, 0x00),
REG_SEQ0(CS42L42_PWR_CTL1, 0xFE),
REG_SEQ0(CS42L42_PWR_CTL2, 0x8C),
REG_SEQ0(CS42L42_DAC_CTL2, 0x02),
REG_SEQ0(CS42L42_HS_CLAMP_DISABLE, 0x00),
REG_SEQ0(CS42L42_MISC_DET_CTL, 0x03),
REG_SEQ0(CS42L42_TIPSENSE_CTL, 0x02),
REG_SEQ0(CS42L42_HSBIAS_SC_AUTOCTL, 0x03),
REG_SEQ0(CS42L42_PWR_CTL1, 0xFF)
};
int cs42l42_suspend(struct device *dev)
{
struct cs42l42_private *cs42l42 = dev_get_drvdata(dev);
unsigned int reg;
u8 save_regs[ARRAY_SIZE(cs42l42_shutdown_seq)];
int i, ret;
if (!cs42l42->init_done)
return 0;
/*
* Wait for threaded irq handler to be idle and stop it processing
* future interrupts. This ensures a safe disable if the interrupt
* is shared.
*/
mutex_lock(&cs42l42->irq_lock);
cs42l42->suspended = true;
/* Save register values that will be overwritten by shutdown sequence */
for (i = 0; i < ARRAY_SIZE(cs42l42_shutdown_seq); ++i) {
regmap_read(cs42l42->regmap, cs42l42_shutdown_seq[i].reg, &reg);
save_regs[i] = (u8)reg;
}
/* Shutdown codec */
regmap_multi_reg_write(cs42l42->regmap,
cs42l42_shutdown_seq,
ARRAY_SIZE(cs42l42_shutdown_seq));
/* All interrupt sources are now disabled */
mutex_unlock(&cs42l42->irq_lock);
/* Wait for power-down complete */
msleep(CS42L42_PDN_DONE_TIME_MS);
ret = regmap_read_poll_timeout(cs42l42->regmap,
CS42L42_CODEC_STATUS, reg,
(reg & CS42L42_PDN_DONE_MASK),
CS42L42_PDN_DONE_POLL_US,
CS42L42_PDN_DONE_TIMEOUT_US);
if (ret)
dev_warn(dev, "Failed to get PDN_DONE: %d\n", ret);
/* Discharge FILT+ */
regmap_update_bits(cs42l42->regmap, CS42L42_PWR_CTL2,
CS42L42_DISCHARGE_FILT_MASK, CS42L42_DISCHARGE_FILT_MASK);
msleep(CS42L42_FILT_DISCHARGE_TIME_MS);
regcache_cache_only(cs42l42->regmap, true);
gpiod_set_value_cansleep(cs42l42->reset_gpio, 0);
regulator_bulk_disable(ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies);
/* Restore register values to the regmap cache */
for (i = 0; i < ARRAY_SIZE(cs42l42_shutdown_seq); ++i)
regmap_write(cs42l42->regmap, cs42l42_shutdown_seq[i].reg, save_regs[i]);
/* The cached address page register value is now stale */
regcache_drop_region(cs42l42->regmap, CS42L42_PAGE_REGISTER, CS42L42_PAGE_REGISTER);
dev_dbg(dev, "System suspended\n");
return 0;
}
EXPORT_SYMBOL_NS_GPL(cs42l42_suspend, SND_SOC_CS42L42_CORE);
int cs42l42_resume(struct device *dev)
{
struct cs42l42_private *cs42l42 = dev_get_drvdata(dev);
int ret;
if (!cs42l42->init_done)
return 0;
/*
* If jack was unplugged and re-plugged during suspend it could
* have changed type but the tip-sense state hasn't changed.
* Force a plugged state to be re-evaluated.
*/
if (cs42l42->plug_state != CS42L42_TS_UNPLUG)
cs42l42->plug_state = CS42L42_TS_TRANS;
ret = regulator_bulk_enable(ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies);
if (ret != 0) {
dev_err(dev, "Failed to enable supplies: %d\n", ret);
return ret;
}
gpiod_set_value_cansleep(cs42l42->reset_gpio, 1);
usleep_range(CS42L42_BOOT_TIME_US, CS42L42_BOOT_TIME_US * 2);
dev_dbg(dev, "System resume powered up\n");
return 0;
}
EXPORT_SYMBOL_NS_GPL(cs42l42_resume, SND_SOC_CS42L42_CORE);
void cs42l42_resume_restore(struct device *dev)
{
struct cs42l42_private *cs42l42 = dev_get_drvdata(dev);
regcache_cache_only(cs42l42->regmap, false);
regcache_mark_dirty(cs42l42->regmap);
mutex_lock(&cs42l42->irq_lock);
/* Sync LATCH_TO_VP first so the VP domain registers sync correctly */
regcache_sync_region(cs42l42->regmap, CS42L42_MIC_DET_CTL1, CS42L42_MIC_DET_CTL1);
regcache_sync(cs42l42->regmap);
cs42l42->suspended = false;
mutex_unlock(&cs42l42->irq_lock);
dev_dbg(dev, "System resumed\n");
}
EXPORT_SYMBOL_NS_GPL(cs42l42_resume_restore, SND_SOC_CS42L42_CORE);
static int __maybe_unused cs42l42_i2c_resume(struct device *dev)
{
int ret;
ret = cs42l42_resume(dev);
if (ret)
return ret;
cs42l42_resume_restore(dev);
return 0;
}
int cs42l42_common_probe(struct cs42l42_private *cs42l42,
const struct snd_soc_component_driver *component_drv,
struct snd_soc_dai_driver *dai)
{
int ret, i;
dev_set_drvdata(cs42l42->dev, cs42l42);
mutex_init(&cs42l42->irq_lock);
BUILD_BUG_ON(ARRAY_SIZE(cs42l42_supply_names) != ARRAY_SIZE(cs42l42->supplies));
for (i = 0; i < ARRAY_SIZE(cs42l42->supplies); i++)
cs42l42->supplies[i].supply = cs42l42_supply_names[i];
ret = devm_regulator_bulk_get(cs42l42->dev,
ARRAY_SIZE(cs42l42->supplies),
cs42l42->supplies);
if (ret != 0) {
dev_err(cs42l42->dev,
"Failed to request supplies: %d\n", ret);
return ret;
}
ret = regulator_bulk_enable(ARRAY_SIZE(cs42l42->supplies),
cs42l42->supplies);
if (ret != 0) {
dev_err(cs42l42->dev,
"Failed to enable supplies: %d\n", ret);
return ret;
}
/* Reset the Device */
cs42l42->reset_gpio = devm_gpiod_get_optional(cs42l42->dev,
"reset", GPIOD_OUT_LOW);
if (IS_ERR(cs42l42->reset_gpio)) {
ret = PTR_ERR(cs42l42->reset_gpio);
goto err_disable_noreset;
}
if (cs42l42->reset_gpio) {
dev_dbg(cs42l42->dev, "Found reset GPIO\n");
/*
* ACPI can override the default GPIO state we requested
* so ensure that we start with RESET low.
*/
gpiod_set_value_cansleep(cs42l42->reset_gpio, 0);
/* Ensure minimum reset pulse width */
usleep_range(10, 500);
/*
* On SoundWire keep the chip in reset until we get an UNATTACH
* notification from the SoundWire core. This acts as a
* synchronization point to reject stale ATTACH notifications
* if the chip was already enumerated before we reset it.
*/
if (cs42l42->sdw_peripheral)
cs42l42->sdw_waiting_first_unattach = true;
else
gpiod_set_value_cansleep(cs42l42->reset_gpio, 1);
}
usleep_range(CS42L42_BOOT_TIME_US, CS42L42_BOOT_TIME_US * 2);
/* Request IRQ if one was specified */
if (cs42l42->irq) {
ret = request_threaded_irq(cs42l42->irq,
NULL, cs42l42_irq_thread,
IRQF_ONESHOT | IRQF_TRIGGER_LOW,
"cs42l42", cs42l42);
if (ret) {
dev_err_probe(cs42l42->dev, ret,
"Failed to request IRQ\n");
goto err_disable_noirq;
}
}
/* Register codec now so it can EPROBE_DEFER */
ret = devm_snd_soc_register_component(cs42l42->dev, component_drv, dai, 1);
if (ret < 0)
goto err;
return 0;
err:
if (cs42l42->irq)
free_irq(cs42l42->irq, cs42l42);
err_disable_noirq:
gpiod_set_value_cansleep(cs42l42->reset_gpio, 0);
err_disable_noreset:
regulator_bulk_disable(ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies);
return ret;
}
EXPORT_SYMBOL_NS_GPL(cs42l42_common_probe, SND_SOC_CS42L42_CORE);
int cs42l42_init(struct cs42l42_private *cs42l42)
{
unsigned int reg;
int devid, ret;
/* initialize codec */
devid = cirrus_read_device_id(cs42l42->regmap, CS42L42_DEVID_AB);
if (devid < 0) {
ret = devid;
dev_err(cs42l42->dev, "Failed to read device ID: %d\n", ret);
goto err_disable;
}
if (devid != cs42l42->devid) {
ret = -ENODEV;
dev_err(cs42l42->dev,
"CS42L%x Device ID (%X). Expected %X\n",
cs42l42->devid & 0xff, devid, cs42l42->devid);
goto err_disable;
}
ret = regmap_read(cs42l42->regmap, CS42L42_REVID, &reg);
if (ret < 0) {
dev_err(cs42l42->dev, "Get Revision ID failed\n");
goto err_shutdown;
}
dev_info(cs42l42->dev,
"Cirrus Logic CS42L%x, Revision: %02X\n",
cs42l42->devid & 0xff, reg & 0xFF);
/* Power up the codec */
regmap_update_bits(cs42l42->regmap, CS42L42_PWR_CTL1,
CS42L42_ASP_DAO_PDN_MASK |
CS42L42_ASP_DAI_PDN_MASK |
CS42L42_MIXER_PDN_MASK |
CS42L42_EQ_PDN_MASK |
CS42L42_HP_PDN_MASK |
CS42L42_ADC_PDN_MASK |
CS42L42_PDN_ALL_MASK,
(1 << CS42L42_ASP_DAO_PDN_SHIFT) |
(1 << CS42L42_ASP_DAI_PDN_SHIFT) |
(1 << CS42L42_MIXER_PDN_SHIFT) |
(1 << CS42L42_EQ_PDN_SHIFT) |
(1 << CS42L42_HP_PDN_SHIFT) |
(1 << CS42L42_ADC_PDN_SHIFT) |
(0 << CS42L42_PDN_ALL_SHIFT));
ret = cs42l42_handle_device_data(cs42l42->dev, cs42l42);
if (ret != 0)
goto err_shutdown;
/*
* SRC power is linked to ASP power so doesn't work in Soundwire mode.
* Override it and use DAPM to control SRC power for Soundwire.
*/
if (cs42l42->sdw_peripheral) {
regmap_update_bits(cs42l42->regmap, CS42L42_PWR_CTL2,
CS42L42_SRC_PDN_OVERRIDE_MASK |
CS42L42_DAC_SRC_PDNB_MASK |
CS42L42_ADC_SRC_PDNB_MASK,
CS42L42_SRC_PDN_OVERRIDE_MASK);
}
/* Setup headset detection */
cs42l42_setup_hs_type_detect(cs42l42);
/*
* Set init_done before unmasking interrupts so any triggered
* immediately will be handled.
*/
cs42l42->init_done = true;
/* Mask/Unmask Interrupts */
cs42l42_set_interrupt_masks(cs42l42);
return 0;
err_shutdown:
regmap_write(cs42l42->regmap, CS42L42_CODEC_INT_MASK, 0xff);
regmap_write(cs42l42->regmap, CS42L42_TSRS_PLUG_INT_MASK, 0xff);
regmap_write(cs42l42->regmap, CS42L42_PWR_CTL1, 0xff);
err_disable:
if (cs42l42->irq)
free_irq(cs42l42->irq, cs42l42);
gpiod_set_value_cansleep(cs42l42->reset_gpio, 0);
regulator_bulk_disable(ARRAY_SIZE(cs42l42->supplies),
cs42l42->supplies);
return ret;
}
EXPORT_SYMBOL_NS_GPL(cs42l42_init, SND_SOC_CS42L42_CORE);
void cs42l42_common_remove(struct cs42l42_private *cs42l42)
{
if (cs42l42->irq)
free_irq(cs42l42->irq, cs42l42);
/*
* The driver might not have control of reset and power supplies,
* so ensure that the chip internals are powered down.
*/
if (cs42l42->init_done) {
regmap_write(cs42l42->regmap, CS42L42_CODEC_INT_MASK, 0xff);
regmap_write(cs42l42->regmap, CS42L42_TSRS_PLUG_INT_MASK, 0xff);
regmap_write(cs42l42->regmap, CS42L42_PWR_CTL1, 0xff);
}
gpiod_set_value_cansleep(cs42l42->reset_gpio, 0);
regulator_bulk_disable(ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies);
}
EXPORT_SYMBOL_NS_GPL(cs42l42_common_remove, SND_SOC_CS42L42_CORE);
MODULE_DESCRIPTION("ASoC CS42L42 driver");
MODULE_AUTHOR("James Schulman, Cirrus Logic Inc, <james.schulman@cirrus.com>");
MODULE_AUTHOR("Brian Austin, Cirrus Logic Inc, <brian.austin@cirrus.com>");
MODULE_AUTHOR("Michael White, Cirrus Logic Inc, <michael.white@cirrus.com>");
MODULE_AUTHOR("Lucas Tanure <tanureal@opensource.cirrus.com>");
MODULE_AUTHOR("Richard Fitzgerald <rf@opensource.cirrus.com>");
MODULE_AUTHOR("Vitaly Rodionov <vitalyr@opensource.cirrus.com>");
MODULE_LICENSE("GPL");