1920 lines
50 KiB
C
1920 lines
50 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Based on arch/arm/mm/fault.c
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 1995-2004 Russell King
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
* Copyright (C) 2020 Ampere Computing LLC
|
|
*/
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/bitfield.h>
|
|
#include <linux/extable.h>
|
|
#include <linux/kfence.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/hugetlb.h>
|
|
|
|
#include <asm/acpi.h>
|
|
#include <asm/bug.h>
|
|
#include <asm/cmpxchg.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/efi.h>
|
|
#include <asm/exception.h>
|
|
#include <asm/daifflags.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/esr.h>
|
|
#include <asm/kprobes.h>
|
|
#include <asm/mte.h>
|
|
#include <asm/patching.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sysreg.h>
|
|
#include <asm/system_misc.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/traps.h>
|
|
|
|
struct fault_info {
|
|
int (*fn)(unsigned long far, unsigned long esr,
|
|
struct pt_regs *regs);
|
|
int sig;
|
|
int code;
|
|
const char *name;
|
|
};
|
|
|
|
static const struct fault_info fault_info[];
|
|
static struct fault_info debug_fault_info[];
|
|
|
|
static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
|
|
{
|
|
return fault_info + (esr & ESR_ELx_FSC);
|
|
}
|
|
|
|
static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr)
|
|
{
|
|
return debug_fault_info + DBG_ESR_EVT(esr);
|
|
}
|
|
|
|
static void data_abort_decode(unsigned long esr)
|
|
{
|
|
unsigned long iss2 = ESR_ELx_ISS2(esr);
|
|
|
|
pr_alert("Data abort info:\n");
|
|
|
|
if (esr & ESR_ELx_ISV) {
|
|
pr_alert(" Access size = %u byte(s)\n",
|
|
1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
|
|
pr_alert(" SSE = %lu, SRT = %lu\n",
|
|
(esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
|
|
(esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
|
|
pr_alert(" SF = %lu, AR = %lu\n",
|
|
(esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
|
|
(esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
|
|
} else {
|
|
pr_alert(" ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n",
|
|
esr & ESR_ELx_ISS_MASK, iss2);
|
|
}
|
|
|
|
pr_alert(" CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n",
|
|
(esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
|
|
(esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT,
|
|
(iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT,
|
|
(iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT);
|
|
|
|
pr_alert(" GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n",
|
|
(iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT,
|
|
(iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT,
|
|
(iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT,
|
|
(iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT);
|
|
}
|
|
|
|
static void mem_abort_decode(unsigned long esr)
|
|
{
|
|
pr_alert("Mem abort info:\n");
|
|
|
|
pr_alert(" ESR = 0x%016lx\n", esr);
|
|
pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
|
|
ESR_ELx_EC(esr), esr_get_class_string(esr),
|
|
(esr & ESR_ELx_IL) ? 32 : 16);
|
|
pr_alert(" SET = %lu, FnV = %lu\n",
|
|
(esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
|
|
(esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
|
|
pr_alert(" EA = %lu, S1PTW = %lu\n",
|
|
(esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
|
|
(esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
|
|
pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
|
|
esr_to_fault_info(esr)->name);
|
|
|
|
if (esr_is_data_abort(esr))
|
|
data_abort_decode(esr);
|
|
}
|
|
|
|
static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
|
|
{
|
|
/* Either init_pg_dir or swapper_pg_dir */
|
|
if (mm == &init_mm)
|
|
return __pa_symbol(mm->pgd);
|
|
|
|
return (unsigned long)virt_to_phys(mm->pgd);
|
|
}
|
|
|
|
/*
|
|
* Dump out the page tables associated with 'addr' in the currently active mm.
|
|
*/
|
|
static void show_pte(unsigned long addr)
|
|
{
|
|
struct mm_struct *mm;
|
|
pgd_t *pgdp;
|
|
pgd_t pgd;
|
|
|
|
if (is_ttbr0_addr(addr)) {
|
|
/* TTBR0 */
|
|
mm = current->active_mm;
|
|
if (mm == &init_mm) {
|
|
pr_alert("[%016lx] user address but active_mm is swapper\n",
|
|
addr);
|
|
return;
|
|
}
|
|
} else if (is_ttbr1_addr(addr)) {
|
|
/* TTBR1 */
|
|
mm = &init_mm;
|
|
} else {
|
|
pr_alert("[%016lx] address between user and kernel address ranges\n",
|
|
addr);
|
|
return;
|
|
}
|
|
|
|
pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
|
|
mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
|
|
vabits_actual, mm_to_pgd_phys(mm));
|
|
pgdp = pgd_offset(mm, addr);
|
|
pgd = READ_ONCE(*pgdp);
|
|
pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
|
|
|
|
do {
|
|
p4d_t *p4dp, p4d;
|
|
pud_t *pudp, pud;
|
|
pmd_t *pmdp, pmd;
|
|
pte_t *ptep, pte;
|
|
|
|
if (pgd_none(pgd) || pgd_bad(pgd))
|
|
break;
|
|
|
|
p4dp = p4d_offset(pgdp, addr);
|
|
p4d = READ_ONCE(*p4dp);
|
|
pr_cont(", p4d=%016llx", p4d_val(p4d));
|
|
if (p4d_none(p4d) || p4d_bad(p4d))
|
|
break;
|
|
|
|
pudp = pud_offset(p4dp, addr);
|
|
pud = READ_ONCE(*pudp);
|
|
pr_cont(", pud=%016llx", pud_val(pud));
|
|
if (pud_none(pud) || pud_bad(pud))
|
|
break;
|
|
|
|
pmdp = pmd_offset(pudp, addr);
|
|
pmd = READ_ONCE(*pmdp);
|
|
pr_cont(", pmd=%016llx", pmd_val(pmd));
|
|
if (pmd_none(pmd) || pmd_bad(pmd))
|
|
break;
|
|
|
|
ptep = pte_offset_map(pmdp, addr);
|
|
if (!ptep)
|
|
break;
|
|
|
|
pte = READ_ONCE(*ptep);
|
|
pr_cont(", pte=%016llx", pte_val(pte));
|
|
pte_unmap(ptep);
|
|
} while(0);
|
|
|
|
pr_cont("\n");
|
|
}
|
|
|
|
/*
|
|
* This function sets the access flags (dirty, accessed), as well as write
|
|
* permission, and only to a more permissive setting.
|
|
*
|
|
* It needs to cope with hardware update of the accessed/dirty state by other
|
|
* agents in the system and can safely skip the __sync_icache_dcache() call as,
|
|
* like set_pte_at(), the PTE is never changed from no-exec to exec here.
|
|
*
|
|
* Returns whether or not the PTE actually changed.
|
|
*/
|
|
int ptep_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep,
|
|
pte_t entry, int dirty)
|
|
{
|
|
pteval_t old_pteval, pteval;
|
|
pte_t pte = READ_ONCE(*ptep);
|
|
|
|
if (pte_same(pte, entry))
|
|
return 0;
|
|
|
|
/* only preserve the access flags and write permission */
|
|
pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
|
|
|
|
/*
|
|
* Setting the flags must be done atomically to avoid racing with the
|
|
* hardware update of the access/dirty state. The PTE_RDONLY bit must
|
|
* be set to the most permissive (lowest value) of *ptep and entry
|
|
* (calculated as: a & b == ~(~a | ~b)).
|
|
*/
|
|
pte_val(entry) ^= PTE_RDONLY;
|
|
pteval = pte_val(pte);
|
|
do {
|
|
old_pteval = pteval;
|
|
pteval ^= PTE_RDONLY;
|
|
pteval |= pte_val(entry);
|
|
pteval ^= PTE_RDONLY;
|
|
pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
|
|
} while (pteval != old_pteval);
|
|
|
|
/* Invalidate a stale read-only entry */
|
|
if (dirty)
|
|
flush_tlb_page(vma, address);
|
|
return 1;
|
|
}
|
|
|
|
static bool is_el1_instruction_abort(unsigned long esr)
|
|
{
|
|
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
|
|
}
|
|
|
|
static bool is_el1_data_abort(unsigned long esr)
|
|
{
|
|
return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
|
|
}
|
|
|
|
static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
unsigned long fsc_type = esr & ESR_ELx_FSC_TYPE;
|
|
|
|
if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
|
|
return false;
|
|
|
|
if (fsc_type == ESR_ELx_FSC_PERM)
|
|
return true;
|
|
|
|
if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
|
|
return fsc_type == ESR_ELx_FSC_FAULT &&
|
|
(regs->pstate & PSR_PAN_BIT);
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
|
|
unsigned long esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
unsigned long flags;
|
|
u64 par, dfsc;
|
|
|
|
if (!is_el1_data_abort(esr) ||
|
|
(esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
|
|
return false;
|
|
|
|
local_irq_save(flags);
|
|
asm volatile("at s1e1r, %0" :: "r" (addr));
|
|
isb();
|
|
par = read_sysreg_par();
|
|
local_irq_restore(flags);
|
|
|
|
/*
|
|
* If we now have a valid translation, treat the translation fault as
|
|
* spurious.
|
|
*/
|
|
if (!(par & SYS_PAR_EL1_F))
|
|
return true;
|
|
|
|
/*
|
|
* If we got a different type of fault from the AT instruction,
|
|
* treat the translation fault as spurious.
|
|
*/
|
|
dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
|
|
return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
|
|
}
|
|
|
|
static void die_kernel_fault(const char *msg, unsigned long addr,
|
|
unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
bust_spinlocks(1);
|
|
|
|
pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
|
|
addr);
|
|
|
|
kasan_non_canonical_hook(addr);
|
|
|
|
mem_abort_decode(esr);
|
|
|
|
show_pte(addr);
|
|
die("Oops", regs, esr);
|
|
bust_spinlocks(0);
|
|
make_task_dead(SIGKILL);
|
|
}
|
|
|
|
#ifdef CONFIG_KASAN_HW_TAGS
|
|
static void report_tag_fault(unsigned long addr, unsigned long esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* SAS bits aren't set for all faults reported in EL1, so we can't
|
|
* find out access size.
|
|
*/
|
|
bool is_write = !!(esr & ESR_ELx_WNR);
|
|
kasan_report((void *)addr, 0, is_write, regs->pc);
|
|
}
|
|
#else
|
|
/* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
|
|
static inline void report_tag_fault(unsigned long addr, unsigned long esr,
|
|
struct pt_regs *regs) { }
|
|
#endif
|
|
|
|
static void do_tag_recovery(unsigned long addr, unsigned long esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
|
|
report_tag_fault(addr, esr, regs);
|
|
|
|
/*
|
|
* Disable MTE Tag Checking on the local CPU for the current EL.
|
|
* It will be done lazily on the other CPUs when they will hit a
|
|
* tag fault.
|
|
*/
|
|
sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
|
|
SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
|
|
isb();
|
|
}
|
|
|
|
static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
|
|
{
|
|
unsigned long fsc = esr & ESR_ELx_FSC;
|
|
|
|
if (!is_el1_data_abort(esr))
|
|
return false;
|
|
|
|
if (fsc == ESR_ELx_FSC_MTE)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool is_translation_fault(unsigned long esr)
|
|
{
|
|
return (esr & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_FAULT;
|
|
}
|
|
|
|
static void __do_kernel_fault(unsigned long addr, unsigned long esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
const char *msg;
|
|
|
|
/*
|
|
* Are we prepared to handle this kernel fault?
|
|
* We are almost certainly not prepared to handle instruction faults.
|
|
*/
|
|
if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
|
|
return;
|
|
|
|
if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
|
|
"Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
|
|
return;
|
|
|
|
if (is_el1_mte_sync_tag_check_fault(esr)) {
|
|
do_tag_recovery(addr, esr, regs);
|
|
|
|
return;
|
|
}
|
|
|
|
if (is_el1_permission_fault(addr, esr, regs)) {
|
|
if (esr & ESR_ELx_WNR)
|
|
msg = "write to read-only memory";
|
|
else if (is_el1_instruction_abort(esr))
|
|
msg = "execute from non-executable memory";
|
|
else
|
|
msg = "read from unreadable memory";
|
|
} else if (addr < PAGE_SIZE) {
|
|
msg = "NULL pointer dereference";
|
|
} else {
|
|
if (is_translation_fault(esr) &&
|
|
kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
|
|
return;
|
|
|
|
msg = "paging request";
|
|
}
|
|
|
|
if (efi_runtime_fixup_exception(regs, msg))
|
|
return;
|
|
|
|
die_kernel_fault(msg, addr, esr, regs);
|
|
}
|
|
|
|
static void set_thread_esr(unsigned long address, unsigned long esr)
|
|
{
|
|
current->thread.fault_address = address;
|
|
|
|
/*
|
|
* If the faulting address is in the kernel, we must sanitize the ESR.
|
|
* From userspace's point of view, kernel-only mappings don't exist
|
|
* at all, so we report them as level 0 translation faults.
|
|
* (This is not quite the way that "no mapping there at all" behaves:
|
|
* an alignment fault not caused by the memory type would take
|
|
* precedence over translation fault for a real access to empty
|
|
* space. Unfortunately we can't easily distinguish "alignment fault
|
|
* not caused by memory type" from "alignment fault caused by memory
|
|
* type", so we ignore this wrinkle and just return the translation
|
|
* fault.)
|
|
*/
|
|
if (!is_ttbr0_addr(current->thread.fault_address)) {
|
|
switch (ESR_ELx_EC(esr)) {
|
|
case ESR_ELx_EC_DABT_LOW:
|
|
/*
|
|
* These bits provide only information about the
|
|
* faulting instruction, which userspace knows already.
|
|
* We explicitly clear bits which are architecturally
|
|
* RES0 in case they are given meanings in future.
|
|
* We always report the ESR as if the fault was taken
|
|
* to EL1 and so ISV and the bits in ISS[23:14] are
|
|
* clear. (In fact it always will be a fault to EL1.)
|
|
*/
|
|
esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
|
|
ESR_ELx_CM | ESR_ELx_WNR;
|
|
esr |= ESR_ELx_FSC_FAULT;
|
|
break;
|
|
case ESR_ELx_EC_IABT_LOW:
|
|
/*
|
|
* Claim a level 0 translation fault.
|
|
* All other bits are architecturally RES0 for faults
|
|
* reported with that DFSC value, so we clear them.
|
|
*/
|
|
esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
|
|
esr |= ESR_ELx_FSC_FAULT;
|
|
break;
|
|
default:
|
|
/*
|
|
* This should never happen (entry.S only brings us
|
|
* into this code for insn and data aborts from a lower
|
|
* exception level). Fail safe by not providing an ESR
|
|
* context record at all.
|
|
*/
|
|
WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
|
|
esr = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
current->thread.fault_code = esr;
|
|
}
|
|
|
|
static void do_bad_area(unsigned long far, unsigned long esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
unsigned long addr = untagged_addr(far);
|
|
|
|
/*
|
|
* If we are in kernel mode at this point, we have no context to
|
|
* handle this fault with.
|
|
*/
|
|
if (user_mode(regs)) {
|
|
const struct fault_info *inf = esr_to_fault_info(esr);
|
|
|
|
set_thread_esr(addr, esr);
|
|
arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
|
|
} else {
|
|
__do_kernel_fault(addr, esr, regs);
|
|
}
|
|
}
|
|
|
|
#define VM_FAULT_BADMAP ((__force vm_fault_t)0x010000)
|
|
#define VM_FAULT_BADACCESS ((__force vm_fault_t)0x020000)
|
|
|
|
static vm_fault_t __do_page_fault(struct mm_struct *mm,
|
|
struct vm_area_struct *vma, unsigned long addr,
|
|
unsigned int mm_flags, unsigned long vm_flags,
|
|
struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* Ok, we have a good vm_area for this memory access, so we can handle
|
|
* it.
|
|
* Check that the permissions on the VMA allow for the fault which
|
|
* occurred.
|
|
*/
|
|
if (!(vma->vm_flags & vm_flags))
|
|
return VM_FAULT_BADACCESS;
|
|
return handle_mm_fault(vma, addr, mm_flags, regs);
|
|
}
|
|
|
|
static bool is_el0_instruction_abort(unsigned long esr)
|
|
{
|
|
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
|
|
}
|
|
|
|
/*
|
|
* Note: not valid for EL1 DC IVAC, but we never use that such that it
|
|
* should fault. EL0 cannot issue DC IVAC (undef).
|
|
*/
|
|
static bool is_write_abort(unsigned long esr)
|
|
{
|
|
return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
|
|
}
|
|
|
|
static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
const struct fault_info *inf;
|
|
struct mm_struct *mm = current->mm;
|
|
vm_fault_t fault;
|
|
unsigned long vm_flags;
|
|
unsigned int mm_flags = FAULT_FLAG_DEFAULT;
|
|
unsigned long addr = untagged_addr(far);
|
|
struct vm_area_struct *vma;
|
|
|
|
if (kprobe_page_fault(regs, esr))
|
|
return 0;
|
|
|
|
/*
|
|
* If we're in an interrupt or have no user context, we must not take
|
|
* the fault.
|
|
*/
|
|
if (faulthandler_disabled() || !mm)
|
|
goto no_context;
|
|
|
|
if (user_mode(regs))
|
|
mm_flags |= FAULT_FLAG_USER;
|
|
|
|
/*
|
|
* vm_flags tells us what bits we must have in vma->vm_flags
|
|
* for the fault to be benign, __do_page_fault() would check
|
|
* vma->vm_flags & vm_flags and returns an error if the
|
|
* intersection is empty
|
|
*/
|
|
if (is_el0_instruction_abort(esr)) {
|
|
/* It was exec fault */
|
|
vm_flags = VM_EXEC;
|
|
mm_flags |= FAULT_FLAG_INSTRUCTION;
|
|
} else if (is_write_abort(esr)) {
|
|
/* It was write fault */
|
|
vm_flags = VM_WRITE;
|
|
mm_flags |= FAULT_FLAG_WRITE;
|
|
} else {
|
|
/* It was read fault */
|
|
vm_flags = VM_READ;
|
|
/* Write implies read */
|
|
vm_flags |= VM_WRITE;
|
|
/* If EPAN is absent then exec implies read */
|
|
if (!cpus_have_const_cap(ARM64_HAS_EPAN))
|
|
vm_flags |= VM_EXEC;
|
|
}
|
|
|
|
if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
|
|
if (is_el1_instruction_abort(esr))
|
|
die_kernel_fault("execution of user memory",
|
|
addr, esr, regs);
|
|
|
|
if (!search_exception_tables(regs->pc))
|
|
die_kernel_fault("access to user memory outside uaccess routines",
|
|
addr, esr, regs);
|
|
}
|
|
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
|
|
|
|
if (!(mm_flags & FAULT_FLAG_USER))
|
|
goto lock_mmap;
|
|
|
|
vma = lock_vma_under_rcu(mm, addr);
|
|
if (!vma)
|
|
goto lock_mmap;
|
|
|
|
if (!(vma->vm_flags & vm_flags)) {
|
|
vma_end_read(vma);
|
|
goto lock_mmap;
|
|
}
|
|
fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs);
|
|
if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
|
|
vma_end_read(vma);
|
|
|
|
if (!(fault & VM_FAULT_RETRY)) {
|
|
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
|
|
goto done;
|
|
}
|
|
count_vm_vma_lock_event(VMA_LOCK_RETRY);
|
|
|
|
/* Quick path to respond to signals */
|
|
if (fault_signal_pending(fault, regs)) {
|
|
if (!user_mode(regs))
|
|
goto no_context;
|
|
return 0;
|
|
}
|
|
lock_mmap:
|
|
|
|
retry:
|
|
vma = lock_mm_and_find_vma(mm, addr, regs);
|
|
if (unlikely(!vma)) {
|
|
fault = VM_FAULT_BADMAP;
|
|
goto done;
|
|
}
|
|
|
|
fault = __do_page_fault(mm, vma, addr, mm_flags, vm_flags, regs);
|
|
|
|
/* Quick path to respond to signals */
|
|
if (fault_signal_pending(fault, regs)) {
|
|
if (!user_mode(regs))
|
|
goto no_context;
|
|
return 0;
|
|
}
|
|
|
|
/* The fault is fully completed (including releasing mmap lock) */
|
|
if (fault & VM_FAULT_COMPLETED)
|
|
return 0;
|
|
|
|
if (fault & VM_FAULT_RETRY) {
|
|
mm_flags |= FAULT_FLAG_TRIED;
|
|
goto retry;
|
|
}
|
|
mmap_read_unlock(mm);
|
|
|
|
done:
|
|
/*
|
|
* Handle the "normal" (no error) case first.
|
|
*/
|
|
if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
|
|
VM_FAULT_BADACCESS))))
|
|
return 0;
|
|
|
|
/*
|
|
* If we are in kernel mode at this point, we have no context to
|
|
* handle this fault with.
|
|
*/
|
|
if (!user_mode(regs))
|
|
goto no_context;
|
|
|
|
if (fault & VM_FAULT_OOM) {
|
|
/*
|
|
* We ran out of memory, call the OOM killer, and return to
|
|
* userspace (which will retry the fault, or kill us if we got
|
|
* oom-killed).
|
|
*/
|
|
pagefault_out_of_memory();
|
|
return 0;
|
|
}
|
|
|
|
inf = esr_to_fault_info(esr);
|
|
set_thread_esr(addr, esr);
|
|
if (fault & VM_FAULT_SIGBUS) {
|
|
/*
|
|
* We had some memory, but were unable to successfully fix up
|
|
* this page fault.
|
|
*/
|
|
arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
|
|
} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
|
|
unsigned int lsb;
|
|
|
|
lsb = PAGE_SHIFT;
|
|
if (fault & VM_FAULT_HWPOISON_LARGE)
|
|
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
|
|
|
|
arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
|
|
} else {
|
|
/*
|
|
* Something tried to access memory that isn't in our memory
|
|
* map.
|
|
*/
|
|
arm64_force_sig_fault(SIGSEGV,
|
|
fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
|
|
far, inf->name);
|
|
}
|
|
|
|
return 0;
|
|
|
|
no_context:
|
|
__do_kernel_fault(addr, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
static int __kprobes do_translation_fault(unsigned long far,
|
|
unsigned long esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
unsigned long addr = untagged_addr(far);
|
|
|
|
if (is_ttbr0_addr(addr))
|
|
return do_page_fault(far, esr, regs);
|
|
|
|
do_bad_area(far, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
static int copy_from_user_io(void *to, const void __user *from, unsigned long n)
|
|
{
|
|
const u8 __user *src = from;
|
|
u8 *dest = to;
|
|
|
|
for (; n; n--)
|
|
if (get_user(*dest++, src++))
|
|
break;
|
|
return n;
|
|
}
|
|
|
|
static int copy_to_user_io(void __user *to, const void *from, unsigned long n)
|
|
{
|
|
const u8 *src = from;
|
|
u8 __user *dest = to;
|
|
|
|
for (; n; n--)
|
|
if (put_user(*src++, dest++))
|
|
break;
|
|
return n;
|
|
}
|
|
|
|
static int align_load(unsigned long addr, int sz, u64 *out)
|
|
{
|
|
union {
|
|
u8 d8;
|
|
u16 d16;
|
|
u32 d32;
|
|
u64 d64;
|
|
char c[8];
|
|
} data;
|
|
|
|
if (sz != 1 && sz != 2 && sz != 4 && sz != 8)
|
|
return 1;
|
|
if (is_ttbr0_addr(addr)) {
|
|
if (copy_from_user_io(data.c, (const void __user *)addr, sz))
|
|
return 1;
|
|
} else
|
|
memcpy_fromio(data.c, (const void __iomem *)addr, sz);
|
|
switch (sz) {
|
|
case 1:
|
|
*out = data.d8;
|
|
break;
|
|
case 2:
|
|
*out = data.d16;
|
|
break;
|
|
case 4:
|
|
*out = data.d32;
|
|
break;
|
|
case 8:
|
|
*out = data.d64;
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int align_store(unsigned long addr, int sz, u64 val)
|
|
{
|
|
union {
|
|
u8 d8;
|
|
u16 d16;
|
|
u32 d32;
|
|
u64 d64;
|
|
char c[8];
|
|
} data;
|
|
|
|
switch (sz) {
|
|
case 1:
|
|
data.d8 = val;
|
|
break;
|
|
case 2:
|
|
data.d16 = val;
|
|
break;
|
|
case 4:
|
|
data.d32 = val;
|
|
break;
|
|
case 8:
|
|
data.d64 = val;
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
if (is_ttbr0_addr(addr)) {
|
|
if (copy_to_user_io((void __user *)addr, data.c, sz))
|
|
return 1;
|
|
} else
|
|
memcpy_toio((void __iomem *)addr, data.c, sz);
|
|
return 0;
|
|
}
|
|
|
|
static int align_dc_zva(unsigned long addr, struct pt_regs *regs)
|
|
{
|
|
int bs = read_cpuid(DCZID_EL0) & 0xf;
|
|
int sz = 1 << (bs + 2);
|
|
|
|
addr &= ~(sz - 1);
|
|
if (is_ttbr0_addr(addr)) {
|
|
for (; sz; sz--) {
|
|
if (align_store(addr, 1, 0))
|
|
return 1;
|
|
}
|
|
} else
|
|
memset_io((void __iomem *)addr, 0, sz);
|
|
return 0;
|
|
}
|
|
|
|
static u64 get_vn_dt(int n, int t)
|
|
{
|
|
u64 res;
|
|
|
|
switch (n) {
|
|
#define V(n) \
|
|
case n: \
|
|
asm("cbnz %w1, 1f\n\t" \
|
|
"mov %0, v"#n".d[0]\n\t" \
|
|
"b 2f\n\t" \
|
|
"1: mov %0, v"#n".d[1]\n\t" \
|
|
"2:" : "=r" (res) : "r" (t)); \
|
|
break
|
|
V(0); V(1); V(2); V(3); V(4); V(5); V(6); V(7);
|
|
V(8); V(9); V(10); V(11); V(12); V(13); V(14); V(15);
|
|
V(16); V(17); V(18); V(19); V(20); V(21); V(22); V(23);
|
|
V(24); V(25); V(26); V(27); V(28); V(29); V(30); V(31);
|
|
#undef V
|
|
default:
|
|
res = 0;
|
|
break;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static void set_vn_dt(int n, int t, u64 val)
|
|
{
|
|
switch (n) {
|
|
#define V(n) \
|
|
case n: \
|
|
asm("cbnz %w1, 1f\n\t" \
|
|
"mov v"#n".d[0], %0\n\t" \
|
|
"b 2f\n\t" \
|
|
"1: mov v"#n".d[1], %0\n\t" \
|
|
"2:" :: "r" (val), "r" (t)); \
|
|
break
|
|
V(0); V(1); V(2); V(3); V(4); V(5); V(6); V(7);
|
|
V(8); V(9); V(10); V(11); V(12); V(13); V(14); V(15);
|
|
V(16); V(17); V(18); V(19); V(20); V(21); V(22); V(23);
|
|
V(24); V(25); V(26); V(27); V(28); V(29); V(30); V(31);
|
|
#undef V
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static u64 replicate64(u64 val, int bits)
|
|
{
|
|
switch (bits) {
|
|
case 8:
|
|
val = (val << 8) | (val & 0xff);
|
|
fallthrough;
|
|
case 16:
|
|
val = (val << 16) | (val & 0xffff);
|
|
fallthrough;
|
|
case 32:
|
|
val = (val << 32) | (val & 0xffffffff);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static u64 elem_get(u64 hi, u64 lo, int index, int esize)
|
|
{
|
|
int shift = index * esize;
|
|
u64 mask = GENMASK(esize - 1, 0);
|
|
if (shift < 64)
|
|
return (lo >> shift) & mask;
|
|
else
|
|
return (hi >> (shift - 64)) & mask;
|
|
}
|
|
|
|
static void elem_set(u64 *hi, u64 *lo, int index, int esize, u64 val)
|
|
{
|
|
int shift = index * esize;
|
|
u64 mask = GENMASK(esize - 1, 0);
|
|
if (shift < 64)
|
|
*lo = (*lo & ~(mask << shift)) | ((val & mask) << shift);
|
|
else
|
|
*hi = (*hi & ~(mask << (shift - 64))) | ((val & mask) << (shift - 64));
|
|
}
|
|
|
|
static int align_ldst_pair(u32 insn, struct pt_regs *regs)
|
|
{
|
|
const u32 OPC = GENMASK(31, 30);
|
|
const u32 L_MASK = BIT(22);
|
|
|
|
int opc = FIELD_GET(OPC, insn);
|
|
int L = FIELD_GET(L_MASK, insn);
|
|
|
|
bool wback = !!(insn & BIT(23));
|
|
bool postindex = !(insn & BIT(24));
|
|
|
|
int n = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, insn);
|
|
int t = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
|
|
int t2 = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT2, insn);
|
|
bool is_store = !L;
|
|
bool is_signed = !!(opc & 1);
|
|
int scale = 2 + (opc >> 1);
|
|
int datasize = 8 << scale;
|
|
u64 uoffset = aarch64_insn_decode_immediate(AARCH64_INSN_IMM_7, insn);
|
|
s64 offset = sign_extend64(uoffset, 6) << scale;
|
|
u64 address;
|
|
u64 data1, data2;
|
|
u64 dbytes;
|
|
|
|
if ((is_store && (opc & 1)) || opc == 3)
|
|
return 1;
|
|
|
|
if (wback && (t == n || t2 == n) && n != 31)
|
|
return 1;
|
|
|
|
if (!is_store && t == t2)
|
|
return 1;
|
|
|
|
dbytes = datasize / 8;
|
|
|
|
address = regs_get_register(regs, n << 3);
|
|
|
|
if (!postindex)
|
|
address += offset;
|
|
|
|
if (is_store) {
|
|
data1 = pt_regs_read_reg(regs, t);
|
|
data2 = pt_regs_read_reg(regs, t2);
|
|
if (align_store(address, dbytes, data1) ||
|
|
align_store(address + dbytes, dbytes, data2))
|
|
return 1;
|
|
} else {
|
|
if (align_load(address, dbytes, &data1) ||
|
|
align_load(address + dbytes, dbytes, &data2))
|
|
return 1;
|
|
if (is_signed) {
|
|
data1 = sign_extend64(data1, datasize - 1);
|
|
data2 = sign_extend64(data2, datasize - 1);
|
|
}
|
|
pt_regs_write_reg(regs, t, data1);
|
|
pt_regs_write_reg(regs, t2, data2);
|
|
}
|
|
|
|
if (wback) {
|
|
if (postindex)
|
|
address += offset;
|
|
if (n == 31)
|
|
regs->sp = address;
|
|
else
|
|
pt_regs_write_reg(regs, n, address);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int align_ldst_vector_single(u32 insn, struct pt_regs *regs)
|
|
{
|
|
const u32 Q_MASK = BIT(30);
|
|
const u32 L_MASK = BIT(22);
|
|
const u32 R_MASK = BIT(21);
|
|
const u32 OPCODE = GENMASK(15, 13);
|
|
const u32 S_MASK = BIT(12);
|
|
const u32 SIZE = GENMASK(11, 10);
|
|
u32 Q = FIELD_GET(Q_MASK, insn);
|
|
u32 L = FIELD_GET(L_MASK, insn);
|
|
u32 R = FIELD_GET(R_MASK, insn);
|
|
u32 opcode = FIELD_GET(OPCODE, insn);
|
|
u32 S = FIELD_GET(S_MASK, insn);
|
|
u32 size = FIELD_GET(SIZE, insn);
|
|
int t = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
|
|
int n = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, insn);
|
|
int m = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RM, insn);
|
|
bool wback = !!(insn & BIT(23));
|
|
int init_scale = opcode >> 1;
|
|
int scale = init_scale;
|
|
int selem = (((opcode & 1) << 1) | R) + 1;
|
|
bool replicate = false;
|
|
int index;
|
|
int datasize;
|
|
int esize;
|
|
u64 address;
|
|
u64 offs;
|
|
u64 rval_d0, rval_d1;
|
|
u64 element;
|
|
int ebytes;
|
|
int s;
|
|
u64 data;
|
|
switch (scale) {
|
|
case 3:
|
|
if (!L || S)
|
|
return 1;
|
|
scale = size;
|
|
replicate = true;
|
|
break;
|
|
case 0:
|
|
index = (Q << 3) | (S << 2) | size;
|
|
break;
|
|
case 1:
|
|
if (size & 1)
|
|
return 1;
|
|
index = (Q << 2) | (S << 1) | (size >> 1);
|
|
break;
|
|
case 2:
|
|
if (size & 2)
|
|
return 1;
|
|
if (!(size & 1))
|
|
index = (Q << 1) | S;
|
|
else {
|
|
if (S)
|
|
return 1;
|
|
index = Q;
|
|
scale = 3;
|
|
}
|
|
break;
|
|
}
|
|
datasize = Q ? 128 : 64;
|
|
esize = 8 << scale;
|
|
ebytes = esize / 8;
|
|
address = regs_get_register(regs, n << 3);
|
|
offs = 0;
|
|
if (replicate) {
|
|
for (s = 0; s < selem; s++) {
|
|
if (align_load(address + offs, ebytes, &element))
|
|
return 1;
|
|
data = replicate64(element, esize);
|
|
set_vn_dt(t, 0, data);
|
|
if (datasize == 128)
|
|
set_vn_dt(t, 1, data);
|
|
else
|
|
set_vn_dt(t, 1, 0);
|
|
offs += ebytes;
|
|
t = (t + 1) & 31;
|
|
}
|
|
} else {
|
|
for (s = 0; s < selem; s++) {
|
|
rval_d0 = get_vn_dt(t, 0);
|
|
rval_d1 = get_vn_dt(t, 1);
|
|
if (L) {
|
|
if (align_load(address + offs, ebytes, &data))
|
|
return 1;
|
|
elem_set(&rval_d1, &rval_d0, index, esize, data);
|
|
set_vn_dt(t, 0, rval_d0);
|
|
set_vn_dt(t, 1, rval_d1);
|
|
} else {
|
|
data = elem_get(rval_d1, rval_d0, index, esize);
|
|
if (align_store(address + offs, ebytes, data))
|
|
return 1;
|
|
}
|
|
offs += ebytes;
|
|
t = (t + 1) & 31;
|
|
}
|
|
}
|
|
if (wback) {
|
|
if (m != 31)
|
|
offs = regs_get_register(regs, m << 3);
|
|
if (n == 31)
|
|
regs->sp = address + offs;
|
|
else
|
|
pt_regs_write_reg(regs, n, address + offs);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int align_ldst_pair_simdfp(u32 insn, struct pt_regs *regs)
|
|
{
|
|
const u32 OPC = GENMASK(31, 30);
|
|
const u32 L_MASK = BIT(22);
|
|
|
|
int opc = FIELD_GET(OPC, insn);
|
|
int L = FIELD_GET(L_MASK, insn);
|
|
|
|
bool wback = !!(insn & BIT(23));
|
|
bool postindex = !(insn & BIT(24));
|
|
|
|
int n = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, insn);
|
|
int t = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
|
|
int t2 = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT2, insn);
|
|
bool is_store = !L;
|
|
int scale = 2 + opc;
|
|
int datasize = 8 << scale;
|
|
u64 uoffset = aarch64_insn_decode_immediate(AARCH64_INSN_IMM_7, insn);
|
|
s64 offset = sign_extend64(uoffset, 6) << scale;
|
|
u64 address;
|
|
u64 data1_d0, data1_d1, data2_d0, data2_d1;
|
|
u64 dbytes;
|
|
|
|
if (opc == 0x3)
|
|
return 1;
|
|
|
|
if (!is_store && t == t2)
|
|
return 1;
|
|
|
|
dbytes = datasize / 8;
|
|
|
|
address = regs_get_register(regs, n << 3);
|
|
|
|
if (!postindex)
|
|
address += offset;
|
|
|
|
if (is_store) {
|
|
data1_d0 = get_vn_dt(t, 0);
|
|
data2_d0 = get_vn_dt(t2, 0);
|
|
if (datasize == 128) {
|
|
data1_d1 = get_vn_dt(t, 1);
|
|
data2_d1 = get_vn_dt(t2, 1);
|
|
if (align_store(address, 8, data1_d0) ||
|
|
align_store(address + 8, 8, data1_d1) ||
|
|
align_store(address + 16, 8, data2_d0) ||
|
|
align_store(address + 24, 8, data2_d1))
|
|
return 1;
|
|
} else {
|
|
if (align_store(address, dbytes, data1_d0) ||
|
|
align_store(address + dbytes, dbytes, data2_d0))
|
|
return 1;
|
|
}
|
|
} else {
|
|
if (datasize == 128) {
|
|
if (align_load(address, 8, &data1_d0) ||
|
|
align_load(address + 8, 8, &data1_d1) ||
|
|
align_load(address + 16, 8, &data2_d0) ||
|
|
align_load(address + 24, 8, &data2_d1))
|
|
return 1;
|
|
} else {
|
|
if (align_load(address, dbytes, &data1_d0) ||
|
|
align_load(address + dbytes, dbytes, &data2_d0))
|
|
return 1;
|
|
data1_d1 = data2_d1 = 0;
|
|
}
|
|
set_vn_dt(t, 0, data1_d0);
|
|
set_vn_dt(t, 1, data1_d1);
|
|
set_vn_dt(t2, 0, data2_d0);
|
|
set_vn_dt(t2, 1, data2_d1);
|
|
}
|
|
|
|
if (wback) {
|
|
if (postindex)
|
|
address += offset;
|
|
if (n == 31)
|
|
regs->sp = address;
|
|
else
|
|
pt_regs_write_reg(regs, n, address);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int align_ldst_regoff(u32 insn, struct pt_regs *regs)
|
|
{
|
|
const u32 SIZE = GENMASK(31, 30);
|
|
const u32 OPC = GENMASK(23, 22);
|
|
const u32 OPTION = GENMASK(15, 13);
|
|
const u32 S = BIT(12);
|
|
|
|
u32 size = FIELD_GET(SIZE, insn);
|
|
u32 opc = FIELD_GET(OPC, insn);
|
|
u32 option = FIELD_GET(OPTION, insn);
|
|
u32 s = FIELD_GET(S, insn);
|
|
int scale = size;
|
|
int extend_len = (option & 0x1) ? 64 : 32;
|
|
bool extend_unsigned = !(option & 0x4);
|
|
int shift = s ? scale : 0;
|
|
|
|
int n = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, insn);
|
|
int t = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
|
|
int m = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RM, insn);
|
|
bool is_store;
|
|
bool is_signed;
|
|
int regsize;
|
|
int datasize;
|
|
u64 offset;
|
|
u64 address;
|
|
u64 data;
|
|
|
|
if ((opc & 0x2) == 0) {
|
|
/* store or zero-extending load */
|
|
is_store = !(opc & 0x1);
|
|
regsize = size == 0x3 ? 64 : 32;
|
|
is_signed = false;
|
|
} else {
|
|
if (size == 0x3) {
|
|
if ((opc & 0x1) == 0) {
|
|
/* prefetch */
|
|
return 0;
|
|
} else {
|
|
/* undefined */
|
|
return 1;
|
|
}
|
|
} else {
|
|
/* sign-extending load */
|
|
is_store = false;
|
|
if (size == 0x2 && (opc & 0x1) == 0x1) {
|
|
/* undefined */
|
|
return 1;
|
|
}
|
|
regsize = (opc & 0x1) == 0x1 ? 32 : 64;
|
|
is_signed = true;
|
|
}
|
|
}
|
|
|
|
datasize = 8 << scale;
|
|
|
|
if (n == t && n != 31)
|
|
return 1;
|
|
|
|
offset = pt_regs_read_reg(regs, m);
|
|
if (extend_len == 32) {
|
|
offset &= (u32)~0;
|
|
if (!extend_unsigned)
|
|
sign_extend64(offset, 31);
|
|
}
|
|
offset <<= shift;
|
|
|
|
address = regs_get_register(regs, n << 3) + offset;
|
|
|
|
if (is_store) {
|
|
data = pt_regs_read_reg(regs, t);
|
|
if (align_store(address, datasize / 8, data))
|
|
return 1;
|
|
} else {
|
|
if (align_load(address, datasize / 8, &data))
|
|
return 1;
|
|
if (is_signed) {
|
|
if (regsize == 32)
|
|
data = sign_extend32(data, datasize - 1);
|
|
else
|
|
data = sign_extend64(data, datasize - 1);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int align_ldst_regoff_simdfp(u32 insn, struct pt_regs *regs)
|
|
{
|
|
const u32 SIZE = GENMASK(31, 30);
|
|
const u32 OPC = GENMASK(23, 22);
|
|
const u32 OPTION = GENMASK(15, 13);
|
|
const u32 S = BIT(12);
|
|
|
|
u32 size = FIELD_GET(SIZE, insn);
|
|
u32 opc = FIELD_GET(OPC, insn);
|
|
u32 option = FIELD_GET(OPTION, insn);
|
|
u32 s = FIELD_GET(S, insn);
|
|
int scale = (opc & 0x2) << 1 | size;
|
|
int extend_len = (option & 0x1) ? 64 : 32;
|
|
bool extend_unsigned = !(option & 0x4);
|
|
int shift = s ? scale : 0;
|
|
|
|
int n = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, insn);
|
|
int t = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
|
|
int m = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RM, insn);
|
|
bool is_store = !(opc & BIT(0));
|
|
int datasize;
|
|
u64 offset;
|
|
u64 address;
|
|
u64 data_d0, data_d1;
|
|
|
|
if ((opc & 0x2) == 0)
|
|
return 1;
|
|
|
|
datasize = 8 << scale;
|
|
|
|
if (n == t && n != 31)
|
|
return 1;
|
|
|
|
offset = pt_regs_read_reg(regs, m);
|
|
if (extend_len == 32) {
|
|
offset &= (u32)~0;
|
|
if (!extend_unsigned)
|
|
sign_extend64(offset, 31);
|
|
}
|
|
offset <<= shift;
|
|
|
|
address = regs_get_register(regs, n << 3) + offset;
|
|
|
|
if (is_store) {
|
|
data_d0 = get_vn_dt(t, 0);
|
|
if (datasize == 128) {
|
|
data_d1 = get_vn_dt(t, 1);
|
|
if (align_store(address, 8, data_d0) ||
|
|
align_store(address + 8, 8, data_d1))
|
|
return 1;
|
|
} else {
|
|
if (align_store(address, datasize / 8, data_d0))
|
|
return 1;
|
|
}
|
|
} else {
|
|
if (datasize == 128) {
|
|
if (align_load(address, 8, &data_d0) ||
|
|
align_load(address + 8, 8, &data_d1))
|
|
return 1;
|
|
} else {
|
|
if (align_load(address, datasize / 8, &data_d0))
|
|
return 1;
|
|
data_d1 = 0;
|
|
}
|
|
set_vn_dt(t, 0, data_d0);
|
|
set_vn_dt(t, 1, data_d1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int align_ldst_imm(u32 insn, struct pt_regs *regs)
|
|
{
|
|
const u32 SIZE = GENMASK(31, 30);
|
|
const u32 OPC = GENMASK(23, 22);
|
|
|
|
u32 size = FIELD_GET(SIZE, insn);
|
|
u32 opc = FIELD_GET(OPC, insn);
|
|
bool wback = !(insn & BIT(24)) && !!(insn & BIT(10));
|
|
bool postindex = wback && !(insn & BIT(11));
|
|
int scale = size;
|
|
u64 offset;
|
|
|
|
int n = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, insn);
|
|
int t = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
|
|
bool is_store;
|
|
bool is_signed;
|
|
int regsize;
|
|
int datasize;
|
|
u64 address;
|
|
u64 data;
|
|
|
|
if (!(insn & BIT(24))) {
|
|
u64 uoffset =
|
|
aarch64_insn_decode_immediate(AARCH64_INSN_IMM_9, insn);
|
|
offset = sign_extend64(uoffset, 8);
|
|
} else {
|
|
offset = aarch64_insn_decode_immediate(AARCH64_INSN_IMM_12, insn);
|
|
offset <<= scale;
|
|
}
|
|
|
|
if ((opc & 0x2) == 0) {
|
|
/* store or zero-extending load */
|
|
is_store = !(opc & 0x1);
|
|
regsize = size == 0x3 ? 64 : 32;
|
|
is_signed = false;
|
|
} else {
|
|
if (size == 0x3) {
|
|
if (FIELD_GET(GENMASK(11, 10), insn) == 0 && (opc & 0x1) == 0) {
|
|
/* prefetch */
|
|
return 0;
|
|
} else {
|
|
/* undefined */
|
|
return 1;
|
|
}
|
|
} else {
|
|
/* sign-extending load */
|
|
is_store = false;
|
|
if (size == 0x2 && (opc & 0x1) == 0x1) {
|
|
/* undefined */
|
|
return 1;
|
|
}
|
|
regsize = (opc & 0x1) == 0x1 ? 32 : 64;
|
|
is_signed = true;
|
|
}
|
|
}
|
|
|
|
datasize = 8 << scale;
|
|
|
|
if (n == t && n != 31)
|
|
return 1;
|
|
|
|
address = regs_get_register(regs, n << 3);
|
|
|
|
if (!postindex)
|
|
address += offset;
|
|
|
|
if (is_store) {
|
|
data = pt_regs_read_reg(regs, t);
|
|
if (align_store(address, datasize / 8, data))
|
|
return 1;
|
|
} else {
|
|
if (align_load(address, datasize / 8, &data))
|
|
return 1;
|
|
if (is_signed) {
|
|
if (regsize == 32)
|
|
data = sign_extend32(data, datasize - 1);
|
|
else
|
|
data = sign_extend64(data, datasize - 1);
|
|
}
|
|
pt_regs_write_reg(regs, t, data);
|
|
}
|
|
|
|
if (wback) {
|
|
if (postindex)
|
|
address += offset;
|
|
if (n == 31)
|
|
regs->sp = address;
|
|
else
|
|
pt_regs_write_reg(regs, n, address);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int align_ldst_imm_simdfp(u32 insn, struct pt_regs *regs)
|
|
{
|
|
const u32 SIZE = GENMASK(31, 30);
|
|
const u32 OPC = GENMASK(23, 22);
|
|
|
|
u32 size = FIELD_GET(SIZE, insn);
|
|
u32 opc = FIELD_GET(OPC, insn);
|
|
bool wback = !(insn & BIT(24)) && !!(insn & BIT(10));
|
|
bool postindex = wback && !(insn & BIT(11));
|
|
int scale = (opc & 0x2) << 1 | size;
|
|
u64 offset;
|
|
|
|
int n = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, insn);
|
|
int t = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
|
|
bool is_store = !(opc & BIT(0)) ;
|
|
int datasize;
|
|
u64 address;
|
|
u64 data_d0, data_d1;
|
|
|
|
if (scale > 4)
|
|
return 1;
|
|
|
|
if (!(insn & BIT(24))) {
|
|
u64 uoffset =
|
|
aarch64_insn_decode_immediate(AARCH64_INSN_IMM_9, insn);
|
|
offset = sign_extend64(uoffset, 8);
|
|
} else {
|
|
offset = aarch64_insn_decode_immediate(AARCH64_INSN_IMM_12, insn);
|
|
offset <<= scale;
|
|
}
|
|
|
|
datasize = 8 << scale;
|
|
|
|
address = regs_get_register(regs, n << 3);
|
|
|
|
if (!postindex)
|
|
address += offset;
|
|
|
|
if (is_store) {
|
|
data_d0 = get_vn_dt(t, 0);
|
|
if (datasize == 128) {
|
|
data_d1 = get_vn_dt(t, 1);
|
|
if (align_store(address, 8, data_d0) ||
|
|
align_store(address + 8, 8, data_d1))
|
|
return 1;
|
|
} else {
|
|
if (align_store(address, datasize / 8, data_d0))
|
|
return 1;
|
|
}
|
|
} else {
|
|
if (datasize == 128) {
|
|
if (align_load(address, 8, &data_d0) ||
|
|
align_load(address + 8, 8, &data_d1))
|
|
return 1;
|
|
} else {
|
|
if (align_load(address, datasize / 8, &data_d0))
|
|
return 1;
|
|
data_d1 = 0;
|
|
}
|
|
set_vn_dt(t, 0, data_d0);
|
|
set_vn_dt(t, 1, data_d1);
|
|
}
|
|
|
|
if (wback) {
|
|
if (postindex)
|
|
address += offset;
|
|
if (n == 31)
|
|
regs->sp = address;
|
|
else
|
|
pt_regs_write_reg(regs, n, address);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int align_ldst(u32 insn, struct pt_regs *regs)
|
|
{
|
|
const u32 op0 = FIELD_GET(GENMASK(31, 28), insn);
|
|
const u32 op1 = FIELD_GET(BIT(26), insn);
|
|
const u32 op2 = FIELD_GET(GENMASK(24, 23), insn);
|
|
const u32 op3 = FIELD_GET(GENMASK(21, 16), insn);
|
|
const u32 op4 = FIELD_GET(GENMASK(11, 10), insn);
|
|
|
|
if ((op0 & 0x3) == 0x2) {
|
|
/*
|
|
* |------+-----+-----+-----+-----+-----------------------------------------|
|
|
* | op0 | op1 | op2 | op3 | op4 | Decode group |
|
|
* |------+-----+-----+-----+-----+-----------------------------------------|
|
|
* | xx10 | - | 00 | - | - | Load/store no-allocate pair (offset) |
|
|
* | xx10 | - | 01 | - | - | Load/store register pair (post-indexed) |
|
|
* | xx10 | - | 10 | - | - | Load/store register pair (offset) |
|
|
* | xx10 | - | 11 | - | - | Load/store register pair (pre-indexed) |
|
|
* |------+-----+-----+-----+-----+-----------------------------------------|
|
|
*/
|
|
|
|
if (op1 == 0) { /* V == 0 */
|
|
/* general */
|
|
return align_ldst_pair(insn, regs);
|
|
} else {
|
|
/* simdfp */
|
|
return align_ldst_pair_simdfp(insn, regs);
|
|
}
|
|
} else if ((op0 & 0x3) == 0x3 &&
|
|
(((op2 & 0x2) == 0 && (op3 & 0x20) == 0 && op4 != 0x2) ||
|
|
((op2 & 0x2) == 0x2))) {
|
|
/*
|
|
* |------+-----+-----+--------+-----+----------------------------------------------|
|
|
* | op0 | op1 | op2 | op3 | op4 | Decode group |
|
|
* |------+-----+-----+--------+-----+----------------------------------------------|
|
|
* | xx11 | - | 0x | 0xxxxx | 00 | Load/store register (unscaled immediate) |
|
|
* | xx11 | - | 0x | 0xxxxx | 01 | Load/store register (immediate post-indexed) |
|
|
* | xx11 | - | 0x | 0xxxxx | 11 | Load/store register (immediate pre-indexed) |
|
|
* | xx11 | - | 1x | - | - | Load/store register (unsigned immediate) |
|
|
* |------+-----+-----+--------+-----+----------------------------------------------|
|
|
*/
|
|
|
|
if (op1 == 0) { /* V == 0 */
|
|
/* general */
|
|
return align_ldst_imm(insn, regs);
|
|
} else {
|
|
/* simdfp */
|
|
return align_ldst_imm_simdfp(insn, regs);
|
|
}
|
|
} else if ((op0 & 0x3) == 0x3 && (op2 & 0x2) == 0 &&
|
|
(op3 & 0x20) == 0x20 && op4 == 0x2) {
|
|
/*
|
|
* |------+-----+-----+--------+-----+---------------------------------------|
|
|
* | op0 | op1 | op2 | op3 | op4 | |
|
|
* |------+-----+-----+--------+-----+---------------------------------------|
|
|
* | xx11 | - | 0x | 1xxxxx | 10 | Load/store register (register offset) |
|
|
* |------+-----+-----+--------+-----+---------------------------------------|
|
|
*/
|
|
if (op1 == 0) { /* V == 0 */
|
|
/* general */
|
|
return align_ldst_regoff(insn, regs);
|
|
} else {
|
|
/* simdfp */
|
|
return align_ldst_regoff_simdfp(insn, regs);
|
|
}
|
|
} else if ((op0 & 0xb) == 0 && op1 == 1 &&
|
|
((op2 == 2 && ((op3 & 0x1f) == 0)) || op2 == 3)) {
|
|
/*
|
|
* |------+-----+-----+--------+-----+-------------------------------------------|
|
|
* | op0 | op1 | op2 | op3 | op4 | |
|
|
* |------+-----+-----+--------+-----+-------------------------------------------|
|
|
* | 0x00 | 1 | 10 | x00000 | - | Advanced SIMD load/store single structure |
|
|
* | 0x00 | 1 | 11 | - | - | Advanced SIMD load/store single structure |
|
|
* | | | | | | (post-indexed) |
|
|
* |------+-----+-----+--------+-----+-------------------------------------------|
|
|
*/
|
|
return align_ldst_vector_single(insn, regs);
|
|
|
|
} else
|
|
return 1;
|
|
}
|
|
|
|
enum aarch64_insn_encoding_class {
|
|
AARCH64_INSN_CLS_UNKNOWN, /* UNALLOCATED */
|
|
AARCH64_INSN_CLS_SVE, /* SVE instructions */
|
|
AARCH64_INSN_CLS_DP_IMM, /* Data processing - immediate */
|
|
AARCH64_INSN_CLS_DP_REG, /* Data processing - register */
|
|
AARCH64_INSN_CLS_DP_FPSIMD, /* Data processing - SIMD and FP */
|
|
AARCH64_INSN_CLS_LDST, /* Loads and stores */
|
|
AARCH64_INSN_CLS_BR_SYS, /* Branch, exception generation and
|
|
system instructions */
|
|
};
|
|
|
|
static const int aarch64_insn_encoding_class[] = {
|
|
AARCH64_INSN_CLS_UNKNOWN,
|
|
AARCH64_INSN_CLS_UNKNOWN,
|
|
AARCH64_INSN_CLS_SVE,
|
|
AARCH64_INSN_CLS_UNKNOWN,
|
|
AARCH64_INSN_CLS_LDST,
|
|
AARCH64_INSN_CLS_DP_REG,
|
|
AARCH64_INSN_CLS_LDST,
|
|
AARCH64_INSN_CLS_DP_FPSIMD,
|
|
AARCH64_INSN_CLS_DP_IMM,
|
|
AARCH64_INSN_CLS_DP_IMM,
|
|
AARCH64_INSN_CLS_BR_SYS,
|
|
AARCH64_INSN_CLS_BR_SYS,
|
|
AARCH64_INSN_CLS_LDST,
|
|
AARCH64_INSN_CLS_DP_REG,
|
|
AARCH64_INSN_CLS_LDST,
|
|
AARCH64_INSN_CLS_DP_FPSIMD,
|
|
};
|
|
|
|
enum aarch64_insn_encoding_class __kprobes aarch64_get_insn_class(u32 insn)
|
|
{
|
|
return aarch64_insn_encoding_class[(insn >> 25) & 0xf];
|
|
}
|
|
|
|
#include "pcie_unalign_access.c"
|
|
|
|
static int fixup_alignment(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
u32 insn;
|
|
int res;
|
|
struct pt_regs t = *regs;
|
|
int type;
|
|
|
|
if (user_mode(regs)) {
|
|
__le32 insn_le;
|
|
|
|
if (!is_ttbr0_addr(addr))
|
|
return 1;
|
|
|
|
if (get_user(insn_le,
|
|
(__le32 __user *)instruction_pointer(regs)))
|
|
return 1;
|
|
insn = le32_to_cpu(insn_le);
|
|
} else {
|
|
if (aarch64_insn_read((void *)instruction_pointer(regs), &insn))
|
|
return 1;
|
|
}
|
|
|
|
pr_debug("start to handle insn:%x\n", insn);
|
|
|
|
type = aarch64_get_insn_class(insn);
|
|
switch (type) {
|
|
case AARCH64_INSN_CLS_BR_SYS:
|
|
if (aarch64_insn_is_dc_zva(insn))
|
|
res = align_dc_zva(addr, regs);
|
|
else
|
|
res = 1;
|
|
break;
|
|
case AARCH64_INSN_CLS_LDST:
|
|
res = align_ldst(insn, regs);
|
|
if (res) {
|
|
/* Try it again, copy back if we succeed */
|
|
res = align_ldst_new(insn, &t);
|
|
if (!res)
|
|
*regs = t;
|
|
}
|
|
break;
|
|
default:
|
|
res = 1;
|
|
}
|
|
if (!res) {
|
|
instruction_pointer_set(regs, instruction_pointer(regs) + 4);
|
|
} else {
|
|
pr_err("cannot handle insn:%x, type:%d\n", insn, type);
|
|
dump_stack();
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static int do_alignment_fault(unsigned long far, unsigned long esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
|
|
compat_user_mode(regs))
|
|
return do_compat_alignment_fixup(far, regs);
|
|
#ifdef CONFIG_ALTRA_ERRATUM_82288
|
|
if (!fixup_alignment(far, esr, regs))
|
|
return 0;
|
|
#endif
|
|
do_bad_area(far, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
return 1; /* "fault" */
|
|
}
|
|
|
|
static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
const struct fault_info *inf;
|
|
unsigned long siaddr;
|
|
|
|
inf = esr_to_fault_info(esr);
|
|
|
|
if (user_mode(regs) && apei_claim_sea(regs) == 0) {
|
|
/*
|
|
* APEI claimed this as a firmware-first notification.
|
|
* Some processing deferred to task_work before ret_to_user().
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
if (esr & ESR_ELx_FnV) {
|
|
siaddr = 0;
|
|
} else {
|
|
/*
|
|
* The architecture specifies that the tag bits of FAR_EL1 are
|
|
* UNKNOWN for synchronous external aborts. Mask them out now
|
|
* so that userspace doesn't see them.
|
|
*/
|
|
siaddr = untagged_addr(far);
|
|
}
|
|
arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_tag_check_fault(unsigned long far, unsigned long esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
|
|
* for tag check faults. Set them to corresponding bits in the untagged
|
|
* address.
|
|
*/
|
|
far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
|
|
do_bad_area(far, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
static const struct fault_info fault_info[] = {
|
|
{ do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
|
|
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
|
|
{ do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
|
|
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
|
|
{ do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
|
|
{ do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
|
|
};
|
|
|
|
void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
const struct fault_info *inf = esr_to_fault_info(esr);
|
|
unsigned long addr = untagged_addr(far);
|
|
|
|
if (!inf->fn(far, esr, regs))
|
|
return;
|
|
|
|
if (!user_mode(regs))
|
|
die_kernel_fault(inf->name, addr, esr, regs);
|
|
|
|
/*
|
|
* At this point we have an unrecognized fault type whose tag bits may
|
|
* have been defined as UNKNOWN. Therefore we only expose the untagged
|
|
* address to the signal handler.
|
|
*/
|
|
arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
|
|
}
|
|
NOKPROBE_SYMBOL(do_mem_abort);
|
|
|
|
void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
|
|
addr, esr);
|
|
}
|
|
NOKPROBE_SYMBOL(do_sp_pc_abort);
|
|
|
|
/*
|
|
* __refdata because early_brk64 is __init, but the reference to it is
|
|
* clobbered at arch_initcall time.
|
|
* See traps.c and debug-monitors.c:debug_traps_init().
|
|
*/
|
|
static struct fault_info __refdata debug_fault_info[] = {
|
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
|
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
|
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
|
|
{ do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
|
|
{ early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
|
|
};
|
|
|
|
void __init hook_debug_fault_code(int nr,
|
|
int (*fn)(unsigned long, unsigned long, struct pt_regs *),
|
|
int sig, int code, const char *name)
|
|
{
|
|
BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
|
|
|
|
debug_fault_info[nr].fn = fn;
|
|
debug_fault_info[nr].sig = sig;
|
|
debug_fault_info[nr].code = code;
|
|
debug_fault_info[nr].name = name;
|
|
}
|
|
|
|
/*
|
|
* In debug exception context, we explicitly disable preemption despite
|
|
* having interrupts disabled.
|
|
* This serves two purposes: it makes it much less likely that we would
|
|
* accidentally schedule in exception context and it will force a warning
|
|
* if we somehow manage to schedule by accident.
|
|
*/
|
|
static void debug_exception_enter(struct pt_regs *regs)
|
|
{
|
|
preempt_disable();
|
|
|
|
/* This code is a bit fragile. Test it. */
|
|
RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
|
|
}
|
|
NOKPROBE_SYMBOL(debug_exception_enter);
|
|
|
|
static void debug_exception_exit(struct pt_regs *regs)
|
|
{
|
|
preempt_enable_no_resched();
|
|
}
|
|
NOKPROBE_SYMBOL(debug_exception_exit);
|
|
|
|
void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
const struct fault_info *inf = esr_to_debug_fault_info(esr);
|
|
unsigned long pc = instruction_pointer(regs);
|
|
|
|
debug_exception_enter(regs);
|
|
|
|
if (user_mode(regs) && !is_ttbr0_addr(pc))
|
|
arm64_apply_bp_hardening();
|
|
|
|
if (inf->fn(addr_if_watchpoint, esr, regs)) {
|
|
arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
|
|
}
|
|
|
|
debug_exception_exit(regs);
|
|
}
|
|
NOKPROBE_SYMBOL(do_debug_exception);
|
|
|
|
/*
|
|
* Used during anonymous page fault handling.
|
|
*/
|
|
struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
|
|
unsigned long vaddr)
|
|
{
|
|
gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
|
|
|
|
/*
|
|
* If the page is mapped with PROT_MTE, initialise the tags at the
|
|
* point of allocation and page zeroing as this is usually faster than
|
|
* separate DC ZVA and STGM.
|
|
*/
|
|
if (vma->vm_flags & VM_MTE)
|
|
flags |= __GFP_ZEROTAGS;
|
|
|
|
return vma_alloc_folio(flags, 0, vma, vaddr, false);
|
|
}
|
|
|
|
void tag_clear_highpage(struct page *page)
|
|
{
|
|
/* Newly allocated page, shouldn't have been tagged yet */
|
|
WARN_ON_ONCE(!try_page_mte_tagging(page));
|
|
mte_zero_clear_page_tags(page_address(page));
|
|
set_page_mte_tagged(page);
|
|
}
|