OpenCloudOS-Kernel/sound/soc/amd/raven/acp3x-pcm-dma.c

797 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0+
//
// AMD ALSA SoC PCM Driver
//
//Copyright 2016 Advanced Micro Devices, Inc.
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/pm_runtime.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dai.h>
#include "acp3x.h"
#define DRV_NAME "acp3x-i2s-audio"
struct i2s_dev_data {
bool tdm_mode;
unsigned int i2s_irq;
u32 tdm_fmt;
void __iomem *acp3x_base;
struct snd_pcm_substream *play_stream;
struct snd_pcm_substream *capture_stream;
};
struct i2s_stream_instance {
u16 num_pages;
u16 channels;
u32 xfer_resolution;
u64 bytescount;
dma_addr_t dma_addr;
void __iomem *acp3x_base;
};
static const struct snd_pcm_hardware acp3x_pcm_hardware_playback = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_BATCH |
SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S24_LE |
SNDRV_PCM_FMTBIT_S32_LE,
.channels_min = 2,
.channels_max = 8,
.rates = SNDRV_PCM_RATE_8000_96000,
.rate_min = 8000,
.rate_max = 96000,
.buffer_bytes_max = PLAYBACK_MAX_NUM_PERIODS * PLAYBACK_MAX_PERIOD_SIZE,
.period_bytes_min = PLAYBACK_MIN_PERIOD_SIZE,
.period_bytes_max = PLAYBACK_MAX_PERIOD_SIZE,
.periods_min = PLAYBACK_MIN_NUM_PERIODS,
.periods_max = PLAYBACK_MAX_NUM_PERIODS,
};
static const struct snd_pcm_hardware acp3x_pcm_hardware_capture = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_BATCH |
SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S24_LE |
SNDRV_PCM_FMTBIT_S32_LE,
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_48000,
.rate_min = 8000,
.rate_max = 48000,
.buffer_bytes_max = CAPTURE_MAX_NUM_PERIODS * CAPTURE_MAX_PERIOD_SIZE,
.period_bytes_min = CAPTURE_MIN_PERIOD_SIZE,
.period_bytes_max = CAPTURE_MAX_PERIOD_SIZE,
.periods_min = CAPTURE_MIN_NUM_PERIODS,
.periods_max = CAPTURE_MAX_NUM_PERIODS,
};
static int acp3x_power_on(void __iomem *acp3x_base, bool on)
{
u16 val, mask;
u32 timeout;
if (on == true) {
val = 1;
mask = ACP3x_POWER_ON;
} else {
val = 0;
mask = ACP3x_POWER_OFF;
}
rv_writel(val, acp3x_base + mmACP_PGFSM_CONTROL);
timeout = 0;
while (true) {
val = rv_readl(acp3x_base + mmACP_PGFSM_STATUS);
if ((val & ACP3x_POWER_OFF_IN_PROGRESS) == mask)
break;
if (timeout > 100) {
pr_err("ACP3x power state change failure\n");
return -ENODEV;
}
timeout++;
cpu_relax();
}
return 0;
}
static int acp3x_reset(void __iomem *acp3x_base)
{
u32 val, timeout;
rv_writel(1, acp3x_base + mmACP_SOFT_RESET);
timeout = 0;
while (true) {
val = rv_readl(acp3x_base + mmACP_SOFT_RESET);
if ((val & ACP3x_SOFT_RESET__SoftResetAudDone_MASK) ||
timeout > 100) {
if (val & ACP3x_SOFT_RESET__SoftResetAudDone_MASK)
break;
return -ENODEV;
}
timeout++;
cpu_relax();
}
rv_writel(0, acp3x_base + mmACP_SOFT_RESET);
timeout = 0;
while (true) {
val = rv_readl(acp3x_base + mmACP_SOFT_RESET);
if (!val || timeout > 100) {
if (!val)
break;
return -ENODEV;
}
timeout++;
cpu_relax();
}
return 0;
}
static int acp3x_init(void __iomem *acp3x_base)
{
int ret;
/* power on */
ret = acp3x_power_on(acp3x_base, true);
if (ret) {
pr_err("ACP3x power on failed\n");
return ret;
}
/* Reset */
ret = acp3x_reset(acp3x_base);
if (ret) {
pr_err("ACP3x reset failed\n");
return ret;
}
return 0;
}
static int acp3x_deinit(void __iomem *acp3x_base)
{
int ret;
/* Reset */
ret = acp3x_reset(acp3x_base);
if (ret) {
pr_err("ACP3x reset failed\n");
return ret;
}
/* power off */
ret = acp3x_power_on(acp3x_base, false);
if (ret) {
pr_err("ACP3x power off failed\n");
return ret;
}
return 0;
}
static irqreturn_t i2s_irq_handler(int irq, void *dev_id)
{
u16 play_flag, cap_flag;
u32 val;
struct i2s_dev_data *rv_i2s_data = dev_id;
if (!rv_i2s_data)
return IRQ_NONE;
play_flag = 0;
cap_flag = 0;
val = rv_readl(rv_i2s_data->acp3x_base + mmACP_EXTERNAL_INTR_STAT);
if ((val & BIT(BT_TX_THRESHOLD)) && rv_i2s_data->play_stream) {
rv_writel(BIT(BT_TX_THRESHOLD), rv_i2s_data->acp3x_base +
mmACP_EXTERNAL_INTR_STAT);
snd_pcm_period_elapsed(rv_i2s_data->play_stream);
play_flag = 1;
}
if ((val & BIT(BT_RX_THRESHOLD)) && rv_i2s_data->capture_stream) {
rv_writel(BIT(BT_RX_THRESHOLD), rv_i2s_data->acp3x_base +
mmACP_EXTERNAL_INTR_STAT);
snd_pcm_period_elapsed(rv_i2s_data->capture_stream);
cap_flag = 1;
}
if (play_flag | cap_flag)
return IRQ_HANDLED;
else
return IRQ_NONE;
}
static void config_acp3x_dma(struct i2s_stream_instance *rtd, int direction)
{
u16 page_idx;
u32 low, high, val, acp_fifo_addr;
dma_addr_t addr = rtd->dma_addr;
/* 8 scratch registers used to map one 64 bit address */
if (direction == SNDRV_PCM_STREAM_PLAYBACK)
val = 0;
else
val = rtd->num_pages * 8;
/* Group Enable */
rv_writel(ACP_SRAM_PTE_OFFSET | BIT(31), rtd->acp3x_base +
mmACPAXI2AXI_ATU_BASE_ADDR_GRP_1);
rv_writel(PAGE_SIZE_4K_ENABLE, rtd->acp3x_base +
mmACPAXI2AXI_ATU_PAGE_SIZE_GRP_1);
for (page_idx = 0; page_idx < rtd->num_pages; page_idx++) {
/* Load the low address of page int ACP SRAM through SRBM */
low = lower_32_bits(addr);
high = upper_32_bits(addr);
rv_writel(low, rtd->acp3x_base + mmACP_SCRATCH_REG_0 + val);
high |= BIT(31);
rv_writel(high, rtd->acp3x_base + mmACP_SCRATCH_REG_0 + val
+ 4);
/* Move to next physically contiguos page */
val += 8;
addr += PAGE_SIZE;
}
if (direction == SNDRV_PCM_STREAM_PLAYBACK) {
/* Config ringbuffer */
rv_writel(MEM_WINDOW_START, rtd->acp3x_base +
mmACP_BT_TX_RINGBUFADDR);
rv_writel(MAX_BUFFER, rtd->acp3x_base +
mmACP_BT_TX_RINGBUFSIZE);
rv_writel(DMA_SIZE, rtd->acp3x_base + mmACP_BT_TX_DMA_SIZE);
/* Config audio fifo */
acp_fifo_addr = ACP_SRAM_PTE_OFFSET + (rtd->num_pages * 8)
+ PLAYBACK_FIFO_ADDR_OFFSET;
rv_writel(acp_fifo_addr, rtd->acp3x_base +
mmACP_BT_TX_FIFOADDR);
rv_writel(FIFO_SIZE, rtd->acp3x_base + mmACP_BT_TX_FIFOSIZE);
} else {
/* Config ringbuffer */
rv_writel(MEM_WINDOW_START + MAX_BUFFER, rtd->acp3x_base +
mmACP_BT_RX_RINGBUFADDR);
rv_writel(MAX_BUFFER, rtd->acp3x_base +
mmACP_BT_RX_RINGBUFSIZE);
rv_writel(DMA_SIZE, rtd->acp3x_base + mmACP_BT_RX_DMA_SIZE);
/* Config audio fifo */
acp_fifo_addr = ACP_SRAM_PTE_OFFSET +
(rtd->num_pages * 8) + CAPTURE_FIFO_ADDR_OFFSET;
rv_writel(acp_fifo_addr, rtd->acp3x_base +
mmACP_BT_RX_FIFOADDR);
rv_writel(FIFO_SIZE, rtd->acp3x_base + mmACP_BT_RX_FIFOSIZE);
}
/* Enable watermark/period interrupt to host */
rv_writel(BIT(BT_TX_THRESHOLD) | BIT(BT_RX_THRESHOLD),
rtd->acp3x_base + mmACP_EXTERNAL_INTR_CNTL);
}
static int acp3x_dma_open(struct snd_pcm_substream *substream)
{
int ret = 0;
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_soc_pcm_runtime *prtd = substream->private_data;
struct snd_soc_component *component = snd_soc_rtdcom_lookup(prtd,
DRV_NAME);
struct i2s_dev_data *adata = dev_get_drvdata(component->dev);
struct i2s_stream_instance *i2s_data = kzalloc(sizeof(struct i2s_stream_instance),
GFP_KERNEL);
if (!i2s_data)
return -EINVAL;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
runtime->hw = acp3x_pcm_hardware_playback;
else
runtime->hw = acp3x_pcm_hardware_capture;
ret = snd_pcm_hw_constraint_integer(runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
if (ret < 0) {
dev_err(component->dev, "set integer constraint failed\n");
kfree(i2s_data);
return ret;
}
if (!adata->play_stream && !adata->capture_stream)
rv_writel(1, adata->acp3x_base + mmACP_EXTERNAL_INTR_ENB);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
adata->play_stream = substream;
else
adata->capture_stream = substream;
i2s_data->acp3x_base = adata->acp3x_base;
runtime->private_data = i2s_data;
return 0;
}
static u64 acp_get_byte_count(struct i2s_stream_instance *rtd, int direction)
{
u64 byte_count;
if (direction == SNDRV_PCM_STREAM_PLAYBACK) {
byte_count = rv_readl(rtd->acp3x_base +
mmACP_BT_TX_LINEARPOSITIONCNTR_HIGH);
byte_count |= rv_readl(rtd->acp3x_base +
mmACP_BT_TX_LINEARPOSITIONCNTR_LOW);
} else {
byte_count = rv_readl(rtd->acp3x_base +
mmACP_BT_RX_LINEARPOSITIONCNTR_HIGH);
byte_count |= rv_readl(rtd->acp3x_base +
mmACP_BT_RX_LINEARPOSITIONCNTR_LOW);
}
return byte_count;
}
static int acp3x_dma_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
int status;
u64 size;
struct snd_pcm_runtime *runtime = substream->runtime;
struct i2s_stream_instance *rtd = runtime->private_data;
if (!rtd)
return -EINVAL;
size = params_buffer_bytes(params);
status = snd_pcm_lib_malloc_pages(substream, size);
if (status < 0)
return status;
memset(substream->runtime->dma_area, 0, params_buffer_bytes(params));
if (substream->dma_buffer.area) {
rtd->dma_addr = substream->dma_buffer.addr;
rtd->num_pages = (PAGE_ALIGN(size) >> PAGE_SHIFT);
config_acp3x_dma(rtd, substream->stream);
status = 0;
} else {
status = -ENOMEM;
}
return status;
}
static snd_pcm_uframes_t acp3x_dma_pointer(struct snd_pcm_substream *substream)
{
u32 pos = 0;
u32 buffersize = 0;
u64 bytescount = 0;
struct i2s_stream_instance *rtd =
substream->runtime->private_data;
buffersize = frames_to_bytes(substream->runtime,
substream->runtime->buffer_size);
bytescount = acp_get_byte_count(rtd, substream->stream);
if (bytescount > rtd->bytescount)
bytescount -= rtd->bytescount;
pos = do_div(bytescount, buffersize);
return bytes_to_frames(substream->runtime, pos);
}
static int acp3x_dma_new(struct snd_soc_pcm_runtime *rtd)
{
struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd,
DRV_NAME);
struct device *parent = component->dev->parent;
snd_pcm_lib_preallocate_pages_for_all(rtd->pcm, SNDRV_DMA_TYPE_DEV,
parent, MIN_BUFFER, MAX_BUFFER);
return 0;
}
static int acp3x_dma_hw_free(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
static int acp3x_dma_mmap(struct snd_pcm_substream *substream,
struct vm_area_struct *vma)
{
return snd_pcm_lib_default_mmap(substream, vma);
}
static int acp3x_dma_close(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *prtd = substream->private_data;
struct i2s_stream_instance *rtd = substream->runtime->private_data;
struct snd_soc_component *component = snd_soc_rtdcom_lookup(prtd,
DRV_NAME);
struct i2s_dev_data *adata = dev_get_drvdata(component->dev);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
adata->play_stream = NULL;
else
adata->capture_stream = NULL;
/* Disable ACP irq, when the current stream is being closed and
* another stream is also not active.
*/
if (!adata->play_stream && !adata->capture_stream)
rv_writel(0, adata->acp3x_base + mmACP_EXTERNAL_INTR_ENB);
kfree(rtd);
return 0;
}
static struct snd_pcm_ops acp3x_dma_ops = {
.open = acp3x_dma_open,
.close = acp3x_dma_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = acp3x_dma_hw_params,
.hw_free = acp3x_dma_hw_free,
.pointer = acp3x_dma_pointer,
.mmap = acp3x_dma_mmap,
};
static int acp3x_dai_i2s_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
struct i2s_dev_data *adata = snd_soc_dai_get_drvdata(cpu_dai);
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
adata->tdm_mode = false;
break;
case SND_SOC_DAIFMT_DSP_A:
adata->tdm_mode = true;
break;
default:
return -EINVAL;
}
return 0;
}
static int acp3x_dai_set_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
u32 rx_mask, int slots, int slot_width)
{
u32 val = 0;
u16 slot_len;
struct i2s_dev_data *adata = snd_soc_dai_get_drvdata(cpu_dai);
switch (slot_width) {
case SLOT_WIDTH_8:
slot_len = 8;
break;
case SLOT_WIDTH_16:
slot_len = 16;
break;
case SLOT_WIDTH_24:
slot_len = 24;
break;
case SLOT_WIDTH_32:
slot_len = 0;
break;
default:
return -EINVAL;
}
val = rv_readl(adata->acp3x_base + mmACP_BTTDM_ITER);
rv_writel((val | 0x2), adata->acp3x_base + mmACP_BTTDM_ITER);
val = rv_readl(adata->acp3x_base + mmACP_BTTDM_IRER);
rv_writel((val | 0x2), adata->acp3x_base + mmACP_BTTDM_IRER);
val = (FRM_LEN | (slots << 15) | (slot_len << 18));
rv_writel(val, adata->acp3x_base + mmACP_BTTDM_TXFRMT);
rv_writel(val, adata->acp3x_base + mmACP_BTTDM_RXFRMT);
adata->tdm_fmt = val;
return 0;
}
static int acp3x_dai_i2s_hwparams(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
u32 val = 0;
struct i2s_stream_instance *rtd = substream->runtime->private_data;
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_U8:
case SNDRV_PCM_FORMAT_S8:
rtd->xfer_resolution = 0x0;
break;
case SNDRV_PCM_FORMAT_S16_LE:
rtd->xfer_resolution = 0x02;
break;
case SNDRV_PCM_FORMAT_S24_LE:
rtd->xfer_resolution = 0x04;
break;
case SNDRV_PCM_FORMAT_S32_LE:
rtd->xfer_resolution = 0x05;
break;
default:
return -EINVAL;
}
val = rv_readl(rtd->acp3x_base + mmACP_BTTDM_ITER);
val = val | (rtd->xfer_resolution << 3);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
rv_writel(val, rtd->acp3x_base + mmACP_BTTDM_ITER);
else
rv_writel(val, rtd->acp3x_base + mmACP_BTTDM_IRER);
return 0;
}
static int acp3x_dai_i2s_trigger(struct snd_pcm_substream *substream,
int cmd, struct snd_soc_dai *dai)
{
int ret = 0;
struct i2s_stream_instance *rtd = substream->runtime->private_data;
u32 val, period_bytes;
period_bytes = frames_to_bytes(substream->runtime,
substream->runtime->period_size);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
rtd->bytescount = acp_get_byte_count(rtd, substream->stream);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
rv_writel(period_bytes, rtd->acp3x_base +
mmACP_BT_TX_INTR_WATERMARK_SIZE);
val = rv_readl(rtd->acp3x_base + mmACP_BTTDM_ITER);
val = val | BIT(0);
rv_writel(val, rtd->acp3x_base + mmACP_BTTDM_ITER);
} else {
rv_writel(period_bytes, rtd->acp3x_base +
mmACP_BT_RX_INTR_WATERMARK_SIZE);
val = rv_readl(rtd->acp3x_base + mmACP_BTTDM_IRER);
val = val | BIT(0);
rv_writel(val, rtd->acp3x_base + mmACP_BTTDM_IRER);
}
rv_writel(1, rtd->acp3x_base + mmACP_BTTDM_IER);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
val = rv_readl(rtd->acp3x_base + mmACP_BTTDM_ITER);
val = val & ~BIT(0);
rv_writel(val, rtd->acp3x_base + mmACP_BTTDM_ITER);
} else {
val = rv_readl(rtd->acp3x_base + mmACP_BTTDM_IRER);
val = val & ~BIT(0);
rv_writel(val, rtd->acp3x_base + mmACP_BTTDM_IRER);
}
rv_writel(0, rtd->acp3x_base + mmACP_BTTDM_IER);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static struct snd_soc_dai_ops acp3x_dai_i2s_ops = {
.hw_params = acp3x_dai_i2s_hwparams,
.trigger = acp3x_dai_i2s_trigger,
.set_fmt = acp3x_dai_i2s_set_fmt,
.set_tdm_slot = acp3x_dai_set_tdm_slot,
};
static struct snd_soc_dai_driver acp3x_i2s_dai_driver = {
.playback = {
.rates = SNDRV_PCM_RATE_8000_96000,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_U8 |
SNDRV_PCM_FMTBIT_S24_LE |
SNDRV_PCM_FMTBIT_S32_LE,
.channels_min = 2,
.channels_max = 8,
.rate_min = 8000,
.rate_max = 96000,
},
.capture = {
.rates = SNDRV_PCM_RATE_8000_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_U8 |
SNDRV_PCM_FMTBIT_S24_LE |
SNDRV_PCM_FMTBIT_S32_LE,
.channels_min = 2,
.channels_max = 2,
.rate_min = 8000,
.rate_max = 48000,
},
.ops = &acp3x_dai_i2s_ops,
};
static const struct snd_soc_component_driver acp3x_i2s_component = {
.name = DRV_NAME,
.ops = &acp3x_dma_ops,
.pcm_new = acp3x_dma_new,
};
static int acp3x_audio_probe(struct platform_device *pdev)
{
int status;
struct resource *res;
struct i2s_dev_data *adata;
unsigned int irqflags;
if (!pdev->dev.platform_data) {
dev_err(&pdev->dev, "platform_data not retrieved\n");
return -ENODEV;
}
irqflags = *((unsigned int *)(pdev->dev.platform_data));
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "IORESOURCE_IRQ FAILED\n");
return -ENODEV;
}
adata = devm_kzalloc(&pdev->dev, sizeof(*adata), GFP_KERNEL);
if (!adata)
return -ENOMEM;
adata->acp3x_base = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res) {
dev_err(&pdev->dev, "IORESOURCE_IRQ FAILED\n");
return -ENODEV;
}
adata->i2s_irq = res->start;
adata->play_stream = NULL;
adata->capture_stream = NULL;
dev_set_drvdata(&pdev->dev, adata);
/* Initialize ACP */
status = acp3x_init(adata->acp3x_base);
if (status)
return -ENODEV;
status = devm_snd_soc_register_component(&pdev->dev,
&acp3x_i2s_component,
&acp3x_i2s_dai_driver, 1);
if (status) {
dev_err(&pdev->dev, "Fail to register acp i2s dai\n");
goto dev_err;
}
status = devm_request_irq(&pdev->dev, adata->i2s_irq, i2s_irq_handler,
irqflags, "ACP3x_I2S_IRQ", adata);
if (status) {
dev_err(&pdev->dev, "ACP3x I2S IRQ request failed\n");
goto dev_err;
}
pm_runtime_set_autosuspend_delay(&pdev->dev, 10000);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_enable(&pdev->dev);
return 0;
dev_err:
status = acp3x_deinit(adata->acp3x_base);
if (status)
dev_err(&pdev->dev, "ACP de-init failed\n");
else
dev_info(&pdev->dev, "ACP de-initialized\n");
/*ignore device status and return driver probe error*/
return -ENODEV;
}
static int acp3x_audio_remove(struct platform_device *pdev)
{
int ret;
struct i2s_dev_data *adata = dev_get_drvdata(&pdev->dev);
ret = acp3x_deinit(adata->acp3x_base);
if (ret)
dev_err(&pdev->dev, "ACP de-init failed\n");
else
dev_info(&pdev->dev, "ACP de-initialized\n");
pm_runtime_disable(&pdev->dev);
return 0;
}
static int acp3x_resume(struct device *dev)
{
int status;
u32 val;
struct i2s_dev_data *adata = dev_get_drvdata(dev);
status = acp3x_init(adata->acp3x_base);
if (status)
return -ENODEV;
if (adata->play_stream && adata->play_stream->runtime) {
struct i2s_stream_instance *rtd =
adata->play_stream->runtime->private_data;
config_acp3x_dma(rtd, SNDRV_PCM_STREAM_PLAYBACK);
rv_writel((rtd->xfer_resolution << 3),
rtd->acp3x_base + mmACP_BTTDM_ITER);
if (adata->tdm_mode == true) {
rv_writel(adata->tdm_fmt, adata->acp3x_base +
mmACP_BTTDM_TXFRMT);
val = rv_readl(adata->acp3x_base + mmACP_BTTDM_ITER);
rv_writel((val | 0x2), adata->acp3x_base +
mmACP_BTTDM_ITER);
}
}
if (adata->capture_stream && adata->capture_stream->runtime) {
struct i2s_stream_instance *rtd =
adata->capture_stream->runtime->private_data;
config_acp3x_dma(rtd, SNDRV_PCM_STREAM_CAPTURE);
rv_writel((rtd->xfer_resolution << 3),
rtd->acp3x_base + mmACP_BTTDM_IRER);
if (adata->tdm_mode == true) {
rv_writel(adata->tdm_fmt, adata->acp3x_base +
mmACP_BTTDM_RXFRMT);
val = rv_readl(adata->acp3x_base + mmACP_BTTDM_IRER);
rv_writel((val | 0x2), adata->acp3x_base +
mmACP_BTTDM_IRER);
}
}
rv_writel(1, adata->acp3x_base + mmACP_EXTERNAL_INTR_ENB);
return 0;
}
static int acp3x_pcm_runtime_suspend(struct device *dev)
{
int status;
struct i2s_dev_data *adata = dev_get_drvdata(dev);
status = acp3x_deinit(adata->acp3x_base);
if (status)
dev_err(dev, "ACP de-init failed\n");
else
dev_info(dev, "ACP de-initialized\n");
rv_writel(0, adata->acp3x_base + mmACP_EXTERNAL_INTR_ENB);
return 0;
}
static int acp3x_pcm_runtime_resume(struct device *dev)
{
int status;
struct i2s_dev_data *adata = dev_get_drvdata(dev);
status = acp3x_init(adata->acp3x_base);
if (status)
return -ENODEV;
rv_writel(1, adata->acp3x_base + mmACP_EXTERNAL_INTR_ENB);
return 0;
}
static const struct dev_pm_ops acp3x_pm_ops = {
.runtime_suspend = acp3x_pcm_runtime_suspend,
.runtime_resume = acp3x_pcm_runtime_resume,
.resume = acp3x_resume,
};
static struct platform_driver acp3x_dma_driver = {
.probe = acp3x_audio_probe,
.remove = acp3x_audio_remove,
.driver = {
.name = "acp3x_rv_i2s",
.pm = &acp3x_pm_ops,
},
};
module_platform_driver(acp3x_dma_driver);
MODULE_AUTHOR("Maruthi.Bayyavarapu@amd.com");
MODULE_AUTHOR("Vijendar.Mukunda@amd.com");
MODULE_DESCRIPTION("AMD ACP 3.x PCM Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRV_NAME);