OpenCloudOS-Kernel/net/sctp/protocol.c

1632 lines
43 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* SCTP kernel implementation
* (C) Copyright IBM Corp. 2001, 2004
* Copyright (c) 1999-2000 Cisco, Inc.
* Copyright (c) 1999-2001 Motorola, Inc.
* Copyright (c) 2001 Intel Corp.
* Copyright (c) 2001 Nokia, Inc.
* Copyright (c) 2001 La Monte H.P. Yarroll
*
* This file is part of the SCTP kernel implementation
*
* Initialization/cleanup for SCTP protocol support.
*
* Please send any bug reports or fixes you make to the
* email address(es):
* lksctp developers <linux-sctp@vger.kernel.org>
*
* Written or modified by:
* La Monte H.P. Yarroll <piggy@acm.org>
* Karl Knutson <karl@athena.chicago.il.us>
* Jon Grimm <jgrimm@us.ibm.com>
* Sridhar Samudrala <sri@us.ibm.com>
* Daisy Chang <daisyc@us.ibm.com>
* Ardelle Fan <ardelle.fan@intel.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/seq_file.h>
#include <linux/memblock.h>
#include <linux/highmem.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <net/net_namespace.h>
#include <net/protocol.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/route.h>
#include <net/sctp/sctp.h>
#include <net/addrconf.h>
#include <net/inet_common.h>
#include <net/inet_ecn.h>
#define MAX_SCTP_PORT_HASH_ENTRIES (64 * 1024)
/* Global data structures. */
struct sctp_globals sctp_globals __read_mostly;
struct idr sctp_assocs_id;
DEFINE_SPINLOCK(sctp_assocs_id_lock);
static struct sctp_pf *sctp_pf_inet6_specific;
static struct sctp_pf *sctp_pf_inet_specific;
static struct sctp_af *sctp_af_v4_specific;
static struct sctp_af *sctp_af_v6_specific;
struct kmem_cache *sctp_chunk_cachep __read_mostly;
struct kmem_cache *sctp_bucket_cachep __read_mostly;
long sysctl_sctp_mem[3];
int sysctl_sctp_rmem[3];
int sysctl_sctp_wmem[3];
/* Private helper to extract ipv4 address and stash them in
* the protocol structure.
*/
static void sctp_v4_copy_addrlist(struct list_head *addrlist,
struct net_device *dev)
{
struct in_device *in_dev;
struct in_ifaddr *ifa;
struct sctp_sockaddr_entry *addr;
rcu_read_lock();
if ((in_dev = __in_dev_get_rcu(dev)) == NULL) {
rcu_read_unlock();
return;
}
in_dev_for_each_ifa_rcu(ifa, in_dev) {
/* Add the address to the local list. */
addr = kzalloc(sizeof(*addr), GFP_ATOMIC);
if (addr) {
addr->a.v4.sin_family = AF_INET;
addr->a.v4.sin_addr.s_addr = ifa->ifa_local;
addr->valid = 1;
INIT_LIST_HEAD(&addr->list);
list_add_tail(&addr->list, addrlist);
}
}
rcu_read_unlock();
}
/* Extract our IP addresses from the system and stash them in the
* protocol structure.
*/
static void sctp_get_local_addr_list(struct net *net)
{
struct net_device *dev;
struct list_head *pos;
struct sctp_af *af;
rcu_read_lock();
for_each_netdev_rcu(net, dev) {
list_for_each(pos, &sctp_address_families) {
af = list_entry(pos, struct sctp_af, list);
af->copy_addrlist(&net->sctp.local_addr_list, dev);
}
}
rcu_read_unlock();
}
/* Free the existing local addresses. */
static void sctp_free_local_addr_list(struct net *net)
{
struct sctp_sockaddr_entry *addr;
struct list_head *pos, *temp;
list_for_each_safe(pos, temp, &net->sctp.local_addr_list) {
addr = list_entry(pos, struct sctp_sockaddr_entry, list);
list_del(pos);
kfree(addr);
}
}
/* Copy the local addresses which are valid for 'scope' into 'bp'. */
int sctp_copy_local_addr_list(struct net *net, struct sctp_bind_addr *bp,
enum sctp_scope scope, gfp_t gfp, int copy_flags)
{
struct sctp_sockaddr_entry *addr;
union sctp_addr laddr;
int error = 0;
rcu_read_lock();
list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
if (!addr->valid)
continue;
if (!sctp_in_scope(net, &addr->a, scope))
continue;
/* Now that the address is in scope, check to see if
* the address type is really supported by the local
* sock as well as the remote peer.
*/
if (addr->a.sa.sa_family == AF_INET &&
(!(copy_flags & SCTP_ADDR4_ALLOWED) ||
!(copy_flags & SCTP_ADDR4_PEERSUPP)))
continue;
if (addr->a.sa.sa_family == AF_INET6 &&
(!(copy_flags & SCTP_ADDR6_ALLOWED) ||
!(copy_flags & SCTP_ADDR6_PEERSUPP)))
continue;
laddr = addr->a;
/* also works for setting ipv6 address port */
laddr.v4.sin_port = htons(bp->port);
if (sctp_bind_addr_state(bp, &laddr) != -1)
continue;
error = sctp_add_bind_addr(bp, &addr->a, sizeof(addr->a),
SCTP_ADDR_SRC, GFP_ATOMIC);
if (error)
break;
}
rcu_read_unlock();
return error;
}
/* Copy over any ip options */
static void sctp_v4_copy_ip_options(struct sock *sk, struct sock *newsk)
{
struct inet_sock *newinet, *inet = inet_sk(sk);
struct ip_options_rcu *inet_opt, *newopt = NULL;
newinet = inet_sk(newsk);
rcu_read_lock();
inet_opt = rcu_dereference(inet->inet_opt);
if (inet_opt) {
newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
inet_opt->opt.optlen, GFP_ATOMIC);
if (newopt)
memcpy(newopt, inet_opt, sizeof(*inet_opt) +
inet_opt->opt.optlen);
else
pr_err("%s: Failed to copy ip options\n", __func__);
}
RCU_INIT_POINTER(newinet->inet_opt, newopt);
rcu_read_unlock();
}
/* Account for the IP options */
static int sctp_v4_ip_options_len(struct sock *sk)
{
struct inet_sock *inet = inet_sk(sk);
struct ip_options_rcu *inet_opt;
int len = 0;
rcu_read_lock();
inet_opt = rcu_dereference(inet->inet_opt);
if (inet_opt)
len = inet_opt->opt.optlen;
rcu_read_unlock();
return len;
}
/* Initialize a sctp_addr from in incoming skb. */
static void sctp_v4_from_skb(union sctp_addr *addr, struct sk_buff *skb,
int is_saddr)
{
/* Always called on head skb, so this is safe */
struct sctphdr *sh = sctp_hdr(skb);
struct sockaddr_in *sa = &addr->v4;
addr->v4.sin_family = AF_INET;
if (is_saddr) {
sa->sin_port = sh->source;
sa->sin_addr.s_addr = ip_hdr(skb)->saddr;
} else {
sa->sin_port = sh->dest;
sa->sin_addr.s_addr = ip_hdr(skb)->daddr;
}
memset(sa->sin_zero, 0, sizeof(sa->sin_zero));
}
/* Initialize an sctp_addr from a socket. */
static void sctp_v4_from_sk(union sctp_addr *addr, struct sock *sk)
{
addr->v4.sin_family = AF_INET;
addr->v4.sin_port = 0;
addr->v4.sin_addr.s_addr = inet_sk(sk)->inet_rcv_saddr;
memset(addr->v4.sin_zero, 0, sizeof(addr->v4.sin_zero));
}
/* Initialize sk->sk_rcv_saddr from sctp_addr. */
static void sctp_v4_to_sk_saddr(union sctp_addr *addr, struct sock *sk)
{
inet_sk(sk)->inet_rcv_saddr = addr->v4.sin_addr.s_addr;
}
/* Initialize sk->sk_daddr from sctp_addr. */
static void sctp_v4_to_sk_daddr(union sctp_addr *addr, struct sock *sk)
{
inet_sk(sk)->inet_daddr = addr->v4.sin_addr.s_addr;
}
/* Initialize a sctp_addr from an address parameter. */
static bool sctp_v4_from_addr_param(union sctp_addr *addr,
union sctp_addr_param *param,
__be16 port, int iif)
{
if (ntohs(param->v4.param_hdr.length) < sizeof(struct sctp_ipv4addr_param))
return false;
addr->v4.sin_family = AF_INET;
addr->v4.sin_port = port;
addr->v4.sin_addr.s_addr = param->v4.addr.s_addr;
memset(addr->v4.sin_zero, 0, sizeof(addr->v4.sin_zero));
return true;
}
/* Initialize an address parameter from a sctp_addr and return the length
* of the address parameter.
*/
static int sctp_v4_to_addr_param(const union sctp_addr *addr,
union sctp_addr_param *param)
{
int length = sizeof(struct sctp_ipv4addr_param);
param->v4.param_hdr.type = SCTP_PARAM_IPV4_ADDRESS;
param->v4.param_hdr.length = htons(length);
param->v4.addr.s_addr = addr->v4.sin_addr.s_addr;
return length;
}
/* Initialize a sctp_addr from a dst_entry. */
static void sctp_v4_dst_saddr(union sctp_addr *saddr, struct flowi4 *fl4,
__be16 port)
{
saddr->v4.sin_family = AF_INET;
saddr->v4.sin_port = port;
saddr->v4.sin_addr.s_addr = fl4->saddr;
memset(saddr->v4.sin_zero, 0, sizeof(saddr->v4.sin_zero));
}
/* Compare two addresses exactly. */
static int sctp_v4_cmp_addr(const union sctp_addr *addr1,
const union sctp_addr *addr2)
{
if (addr1->sa.sa_family != addr2->sa.sa_family)
return 0;
if (addr1->v4.sin_port != addr2->v4.sin_port)
return 0;
if (addr1->v4.sin_addr.s_addr != addr2->v4.sin_addr.s_addr)
return 0;
return 1;
}
/* Initialize addr struct to INADDR_ANY. */
static void sctp_v4_inaddr_any(union sctp_addr *addr, __be16 port)
{
addr->v4.sin_family = AF_INET;
addr->v4.sin_addr.s_addr = htonl(INADDR_ANY);
addr->v4.sin_port = port;
memset(addr->v4.sin_zero, 0, sizeof(addr->v4.sin_zero));
}
/* Is this a wildcard address? */
static int sctp_v4_is_any(const union sctp_addr *addr)
{
return htonl(INADDR_ANY) == addr->v4.sin_addr.s_addr;
}
/* This function checks if the address is a valid address to be used for
* SCTP binding.
*
* Output:
* Return 0 - If the address is a non-unicast or an illegal address.
* Return 1 - If the address is a unicast.
*/
static int sctp_v4_addr_valid(union sctp_addr *addr,
struct sctp_sock *sp,
const struct sk_buff *skb)
{
/* IPv4 addresses not allowed */
if (sp && ipv6_only_sock(sctp_opt2sk(sp)))
return 0;
/* Is this a non-unicast address or a unusable SCTP address? */
if (IS_IPV4_UNUSABLE_ADDRESS(addr->v4.sin_addr.s_addr))
return 0;
/* Is this a broadcast address? */
if (skb && skb_rtable(skb)->rt_flags & RTCF_BROADCAST)
return 0;
return 1;
}
/* Should this be available for binding? */
static int sctp_v4_available(union sctp_addr *addr, struct sctp_sock *sp)
{
struct net *net = sock_net(&sp->inet.sk);
int ret = inet_addr_type(net, addr->v4.sin_addr.s_addr);
if (addr->v4.sin_addr.s_addr != htonl(INADDR_ANY) &&
ret != RTN_LOCAL &&
!sp->inet.freebind &&
!READ_ONCE(net->ipv4.sysctl_ip_nonlocal_bind))
return 0;
if (ipv6_only_sock(sctp_opt2sk(sp)))
return 0;
return 1;
}
/* Checking the loopback, private and other address scopes as defined in
* RFC 1918. The IPv4 scoping is based on the draft for SCTP IPv4
* scoping <draft-stewart-tsvwg-sctp-ipv4-00.txt>.
*
* Level 0 - unusable SCTP addresses
* Level 1 - loopback address
* Level 2 - link-local addresses
* Level 3 - private addresses.
* Level 4 - global addresses
* For INIT and INIT-ACK address list, let L be the level of
* of requested destination address, sender and receiver
* SHOULD include all of its addresses with level greater
* than or equal to L.
*
* IPv4 scoping can be controlled through sysctl option
* net.sctp.addr_scope_policy
*/
static enum sctp_scope sctp_v4_scope(union sctp_addr *addr)
{
enum sctp_scope retval;
/* Check for unusable SCTP addresses. */
if (IS_IPV4_UNUSABLE_ADDRESS(addr->v4.sin_addr.s_addr)) {
retval = SCTP_SCOPE_UNUSABLE;
} else if (ipv4_is_loopback(addr->v4.sin_addr.s_addr)) {
retval = SCTP_SCOPE_LOOPBACK;
} else if (ipv4_is_linklocal_169(addr->v4.sin_addr.s_addr)) {
retval = SCTP_SCOPE_LINK;
} else if (ipv4_is_private_10(addr->v4.sin_addr.s_addr) ||
ipv4_is_private_172(addr->v4.sin_addr.s_addr) ||
ipv4_is_private_192(addr->v4.sin_addr.s_addr) ||
ipv4_is_test_198(addr->v4.sin_addr.s_addr)) {
retval = SCTP_SCOPE_PRIVATE;
} else {
retval = SCTP_SCOPE_GLOBAL;
}
return retval;
}
/* Returns a valid dst cache entry for the given source and destination ip
* addresses. If an association is passed, trys to get a dst entry with a
* source address that matches an address in the bind address list.
*/
static void sctp_v4_get_dst(struct sctp_transport *t, union sctp_addr *saddr,
struct flowi *fl, struct sock *sk)
{
struct sctp_association *asoc = t->asoc;
struct rtable *rt;
struct flowi _fl;
struct flowi4 *fl4 = &_fl.u.ip4;
struct sctp_bind_addr *bp;
struct sctp_sockaddr_entry *laddr;
struct dst_entry *dst = NULL;
union sctp_addr *daddr = &t->ipaddr;
union sctp_addr dst_saddr;
__u8 tos = inet_sk(sk)->tos;
if (t->dscp & SCTP_DSCP_SET_MASK)
tos = t->dscp & SCTP_DSCP_VAL_MASK;
memset(&_fl, 0x0, sizeof(_fl));
fl4->daddr = daddr->v4.sin_addr.s_addr;
fl4->fl4_dport = daddr->v4.sin_port;
fl4->flowi4_proto = IPPROTO_SCTP;
if (asoc) {
fl4->flowi4_tos = RT_CONN_FLAGS_TOS(asoc->base.sk, tos);
fl4->flowi4_oif = asoc->base.sk->sk_bound_dev_if;
fl4->fl4_sport = htons(asoc->base.bind_addr.port);
}
if (saddr) {
fl4->saddr = saddr->v4.sin_addr.s_addr;
if (!fl4->fl4_sport)
fl4->fl4_sport = saddr->v4.sin_port;
}
pr_debug("%s: dst:%pI4, src:%pI4 - ", __func__, &fl4->daddr,
&fl4->saddr);
rt = ip_route_output_key(sock_net(sk), fl4);
if (!IS_ERR(rt)) {
dst = &rt->dst;
t->dst = dst;
memcpy(fl, &_fl, sizeof(_fl));
}
/* If there is no association or if a source address is passed, no
* more validation is required.
*/
if (!asoc || saddr)
goto out;
bp = &asoc->base.bind_addr;
if (dst) {
/* Walk through the bind address list and look for a bind
* address that matches the source address of the returned dst.
*/
sctp_v4_dst_saddr(&dst_saddr, fl4, htons(bp->port));
rcu_read_lock();
list_for_each_entry_rcu(laddr, &bp->address_list, list) {
if (!laddr->valid || (laddr->state == SCTP_ADDR_DEL) ||
(laddr->state != SCTP_ADDR_SRC &&
!asoc->src_out_of_asoc_ok))
continue;
if (sctp_v4_cmp_addr(&dst_saddr, &laddr->a))
goto out_unlock;
}
rcu_read_unlock();
/* None of the bound addresses match the source address of the
* dst. So release it.
*/
dst_release(dst);
dst = NULL;
}
/* Walk through the bind address list and try to get a dst that
* matches a bind address as the source address.
*/
rcu_read_lock();
list_for_each_entry_rcu(laddr, &bp->address_list, list) {
struct net_device *odev;
if (!laddr->valid)
continue;
if (laddr->state != SCTP_ADDR_SRC ||
AF_INET != laddr->a.sa.sa_family)
continue;
fl4->fl4_sport = laddr->a.v4.sin_port;
flowi4_update_output(fl4,
asoc->base.sk->sk_bound_dev_if,
RT_CONN_FLAGS_TOS(asoc->base.sk, tos),
daddr->v4.sin_addr.s_addr,
laddr->a.v4.sin_addr.s_addr);
rt = ip_route_output_key(sock_net(sk), fl4);
if (IS_ERR(rt))
continue;
/* Ensure the src address belongs to the output
* interface.
*/
odev = __ip_dev_find(sock_net(sk), laddr->a.v4.sin_addr.s_addr,
false);
if (!odev || odev->ifindex != fl4->flowi4_oif) {
if (!dst) {
dst = &rt->dst;
t->dst = dst;
memcpy(fl, &_fl, sizeof(_fl));
} else {
dst_release(&rt->dst);
}
continue;
}
dst_release(dst);
dst = &rt->dst;
t->dst = dst;
memcpy(fl, &_fl, sizeof(_fl));
break;
}
out_unlock:
rcu_read_unlock();
out:
if (dst) {
pr_debug("rt_dst:%pI4, rt_src:%pI4\n",
&fl->u.ip4.daddr, &fl->u.ip4.saddr);
} else {
t->dst = NULL;
pr_debug("no route\n");
}
}
/* For v4, the source address is cached in the route entry(dst). So no need
* to cache it separately and hence this is an empty routine.
*/
static void sctp_v4_get_saddr(struct sctp_sock *sk,
struct sctp_transport *t,
struct flowi *fl)
{
union sctp_addr *saddr = &t->saddr;
struct rtable *rt = (struct rtable *)t->dst;
if (rt) {
saddr->v4.sin_family = AF_INET;
saddr->v4.sin_addr.s_addr = fl->u.ip4.saddr;
}
}
/* What interface did this skb arrive on? */
static int sctp_v4_skb_iif(const struct sk_buff *skb)
{
return inet_iif(skb);
}
/* Was this packet marked by Explicit Congestion Notification? */
static int sctp_v4_is_ce(const struct sk_buff *skb)
{
return INET_ECN_is_ce(ip_hdr(skb)->tos);
}
/* Create and initialize a new sk for the socket returned by accept(). */
static struct sock *sctp_v4_create_accept_sk(struct sock *sk,
struct sctp_association *asoc,
bool kern)
{
struct sock *newsk = sk_alloc(sock_net(sk), PF_INET, GFP_KERNEL,
sk->sk_prot, kern);
struct inet_sock *newinet;
if (!newsk)
goto out;
sock_init_data(NULL, newsk);
sctp_copy_sock(newsk, sk, asoc);
sock_reset_flag(newsk, SOCK_ZAPPED);
sctp_v4_copy_ip_options(sk, newsk);
newinet = inet_sk(newsk);
newinet->inet_daddr = asoc->peer.primary_addr.v4.sin_addr.s_addr;
sk_refcnt_debug_inc(newsk);
if (newsk->sk_prot->init(newsk)) {
sk_common_release(newsk);
newsk = NULL;
}
out:
return newsk;
}
static int sctp_v4_addr_to_user(struct sctp_sock *sp, union sctp_addr *addr)
{
/* No address mapping for V4 sockets */
memset(addr->v4.sin_zero, 0, sizeof(addr->v4.sin_zero));
return sizeof(struct sockaddr_in);
}
/* Dump the v4 addr to the seq file. */
static void sctp_v4_seq_dump_addr(struct seq_file *seq, union sctp_addr *addr)
{
seq_printf(seq, "%pI4 ", &addr->v4.sin_addr);
}
static void sctp_v4_ecn_capable(struct sock *sk)
{
INET_ECN_xmit(sk);
}
static void sctp_addr_wq_timeout_handler(struct timer_list *t)
{
struct net *net = from_timer(net, t, sctp.addr_wq_timer);
struct sctp_sockaddr_entry *addrw, *temp;
struct sctp_sock *sp;
spin_lock_bh(&net->sctp.addr_wq_lock);
list_for_each_entry_safe(addrw, temp, &net->sctp.addr_waitq, list) {
pr_debug("%s: the first ent in wq:%p is addr:%pISc for cmd:%d at "
"entry:%p\n", __func__, &net->sctp.addr_waitq, &addrw->a.sa,
addrw->state, addrw);
#if IS_ENABLED(CONFIG_IPV6)
/* Now we send an ASCONF for each association */
/* Note. we currently don't handle link local IPv6 addressees */
if (addrw->a.sa.sa_family == AF_INET6) {
struct in6_addr *in6;
if (ipv6_addr_type(&addrw->a.v6.sin6_addr) &
IPV6_ADDR_LINKLOCAL)
goto free_next;
in6 = (struct in6_addr *)&addrw->a.v6.sin6_addr;
if (ipv6_chk_addr(net, in6, NULL, 0) == 0 &&
addrw->state == SCTP_ADDR_NEW) {
unsigned long timeo_val;
pr_debug("%s: this is on DAD, trying %d sec "
"later\n", __func__,
SCTP_ADDRESS_TICK_DELAY);
timeo_val = jiffies;
timeo_val += msecs_to_jiffies(SCTP_ADDRESS_TICK_DELAY);
mod_timer(&net->sctp.addr_wq_timer, timeo_val);
break;
}
}
#endif
list_for_each_entry(sp, &net->sctp.auto_asconf_splist, auto_asconf_list) {
struct sock *sk;
sk = sctp_opt2sk(sp);
/* ignore bound-specific endpoints */
if (!sctp_is_ep_boundall(sk))
continue;
bh_lock_sock(sk);
if (sctp_asconf_mgmt(sp, addrw) < 0)
pr_debug("%s: sctp_asconf_mgmt failed\n", __func__);
bh_unlock_sock(sk);
}
#if IS_ENABLED(CONFIG_IPV6)
free_next:
#endif
list_del(&addrw->list);
kfree(addrw);
}
spin_unlock_bh(&net->sctp.addr_wq_lock);
}
static void sctp_free_addr_wq(struct net *net)
{
struct sctp_sockaddr_entry *addrw;
struct sctp_sockaddr_entry *temp;
spin_lock_bh(&net->sctp.addr_wq_lock);
del_timer(&net->sctp.addr_wq_timer);
list_for_each_entry_safe(addrw, temp, &net->sctp.addr_waitq, list) {
list_del(&addrw->list);
kfree(addrw);
}
spin_unlock_bh(&net->sctp.addr_wq_lock);
}
/* lookup the entry for the same address in the addr_waitq
* sctp_addr_wq MUST be locked
*/
static struct sctp_sockaddr_entry *sctp_addr_wq_lookup(struct net *net,
struct sctp_sockaddr_entry *addr)
{
struct sctp_sockaddr_entry *addrw;
list_for_each_entry(addrw, &net->sctp.addr_waitq, list) {
if (addrw->a.sa.sa_family != addr->a.sa.sa_family)
continue;
if (addrw->a.sa.sa_family == AF_INET) {
if (addrw->a.v4.sin_addr.s_addr ==
addr->a.v4.sin_addr.s_addr)
return addrw;
} else if (addrw->a.sa.sa_family == AF_INET6) {
if (ipv6_addr_equal(&addrw->a.v6.sin6_addr,
&addr->a.v6.sin6_addr))
return addrw;
}
}
return NULL;
}
void sctp_addr_wq_mgmt(struct net *net, struct sctp_sockaddr_entry *addr, int cmd)
{
struct sctp_sockaddr_entry *addrw;
unsigned long timeo_val;
/* first, we check if an opposite message already exist in the queue.
* If we found such message, it is removed.
* This operation is a bit stupid, but the DHCP client attaches the
* new address after a couple of addition and deletion of that address
*/
spin_lock_bh(&net->sctp.addr_wq_lock);
/* Offsets existing events in addr_wq */
addrw = sctp_addr_wq_lookup(net, addr);
if (addrw) {
if (addrw->state != cmd) {
pr_debug("%s: offsets existing entry for %d, addr:%pISc "
"in wq:%p\n", __func__, addrw->state, &addrw->a.sa,
&net->sctp.addr_waitq);
list_del(&addrw->list);
kfree(addrw);
}
spin_unlock_bh(&net->sctp.addr_wq_lock);
return;
}
/* OK, we have to add the new address to the wait queue */
addrw = kmemdup(addr, sizeof(struct sctp_sockaddr_entry), GFP_ATOMIC);
if (addrw == NULL) {
spin_unlock_bh(&net->sctp.addr_wq_lock);
return;
}
addrw->state = cmd;
list_add_tail(&addrw->list, &net->sctp.addr_waitq);
pr_debug("%s: add new entry for cmd:%d, addr:%pISc in wq:%p\n",
__func__, addrw->state, &addrw->a.sa, &net->sctp.addr_waitq);
if (!timer_pending(&net->sctp.addr_wq_timer)) {
timeo_val = jiffies;
timeo_val += msecs_to_jiffies(SCTP_ADDRESS_TICK_DELAY);
mod_timer(&net->sctp.addr_wq_timer, timeo_val);
}
spin_unlock_bh(&net->sctp.addr_wq_lock);
}
/* Event handler for inet address addition/deletion events.
* The sctp_local_addr_list needs to be protocted by a spin lock since
* multiple notifiers (say IPv4 and IPv6) may be running at the same
* time and thus corrupt the list.
* The reader side is protected with RCU.
*/
static int sctp_inetaddr_event(struct notifier_block *this, unsigned long ev,
void *ptr)
{
struct in_ifaddr *ifa = (struct in_ifaddr *)ptr;
struct sctp_sockaddr_entry *addr = NULL;
struct sctp_sockaddr_entry *temp;
struct net *net = dev_net(ifa->ifa_dev->dev);
int found = 0;
switch (ev) {
case NETDEV_UP:
addr = kzalloc(sizeof(*addr), GFP_ATOMIC);
if (addr) {
addr->a.v4.sin_family = AF_INET;
addr->a.v4.sin_addr.s_addr = ifa->ifa_local;
addr->valid = 1;
spin_lock_bh(&net->sctp.local_addr_lock);
list_add_tail_rcu(&addr->list, &net->sctp.local_addr_list);
sctp_addr_wq_mgmt(net, addr, SCTP_ADDR_NEW);
spin_unlock_bh(&net->sctp.local_addr_lock);
}
break;
case NETDEV_DOWN:
spin_lock_bh(&net->sctp.local_addr_lock);
list_for_each_entry_safe(addr, temp,
&net->sctp.local_addr_list, list) {
if (addr->a.sa.sa_family == AF_INET &&
addr->a.v4.sin_addr.s_addr ==
ifa->ifa_local) {
sctp_addr_wq_mgmt(net, addr, SCTP_ADDR_DEL);
found = 1;
addr->valid = 0;
list_del_rcu(&addr->list);
break;
}
}
spin_unlock_bh(&net->sctp.local_addr_lock);
if (found)
kfree_rcu(addr, rcu);
break;
}
return NOTIFY_DONE;
}
/*
* Initialize the control inode/socket with a control endpoint data
* structure. This endpoint is reserved exclusively for the OOTB processing.
*/
static int sctp_ctl_sock_init(struct net *net)
{
int err;
sa_family_t family = PF_INET;
if (sctp_get_pf_specific(PF_INET6))
family = PF_INET6;
err = inet_ctl_sock_create(&net->sctp.ctl_sock, family,
SOCK_SEQPACKET, IPPROTO_SCTP, net);
/* If IPv6 socket could not be created, try the IPv4 socket */
if (err < 0 && family == PF_INET6)
err = inet_ctl_sock_create(&net->sctp.ctl_sock, AF_INET,
SOCK_SEQPACKET, IPPROTO_SCTP,
net);
if (err < 0) {
pr_err("Failed to create the SCTP control socket\n");
return err;
}
return 0;
}
/* Register address family specific functions. */
int sctp_register_af(struct sctp_af *af)
{
switch (af->sa_family) {
case AF_INET:
if (sctp_af_v4_specific)
return 0;
sctp_af_v4_specific = af;
break;
case AF_INET6:
if (sctp_af_v6_specific)
return 0;
sctp_af_v6_specific = af;
break;
default:
return 0;
}
INIT_LIST_HEAD(&af->list);
list_add_tail(&af->list, &sctp_address_families);
return 1;
}
/* Get the table of functions for manipulating a particular address
* family.
*/
struct sctp_af *sctp_get_af_specific(sa_family_t family)
{
switch (family) {
case AF_INET:
return sctp_af_v4_specific;
case AF_INET6:
return sctp_af_v6_specific;
default:
return NULL;
}
}
/* Common code to initialize a AF_INET msg_name. */
static void sctp_inet_msgname(char *msgname, int *addr_len)
{
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)msgname;
*addr_len = sizeof(struct sockaddr_in);
sin->sin_family = AF_INET;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
}
/* Copy the primary address of the peer primary address as the msg_name. */
static void sctp_inet_event_msgname(struct sctp_ulpevent *event, char *msgname,
int *addr_len)
{
struct sockaddr_in *sin, *sinfrom;
if (msgname) {
struct sctp_association *asoc;
asoc = event->asoc;
sctp_inet_msgname(msgname, addr_len);
sin = (struct sockaddr_in *)msgname;
sinfrom = &asoc->peer.primary_addr.v4;
sin->sin_port = htons(asoc->peer.port);
sin->sin_addr.s_addr = sinfrom->sin_addr.s_addr;
}
}
/* Initialize and copy out a msgname from an inbound skb. */
static void sctp_inet_skb_msgname(struct sk_buff *skb, char *msgname, int *len)
{
if (msgname) {
struct sctphdr *sh = sctp_hdr(skb);
struct sockaddr_in *sin = (struct sockaddr_in *)msgname;
sctp_inet_msgname(msgname, len);
sin->sin_port = sh->source;
sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
}
}
/* Do we support this AF? */
static int sctp_inet_af_supported(sa_family_t family, struct sctp_sock *sp)
{
/* PF_INET only supports AF_INET addresses. */
return AF_INET == family;
}
/* Address matching with wildcards allowed. */
static int sctp_inet_cmp_addr(const union sctp_addr *addr1,
const union sctp_addr *addr2,
struct sctp_sock *opt)
{
/* PF_INET only supports AF_INET addresses. */
if (addr1->sa.sa_family != addr2->sa.sa_family)
return 0;
if (htonl(INADDR_ANY) == addr1->v4.sin_addr.s_addr ||
htonl(INADDR_ANY) == addr2->v4.sin_addr.s_addr)
return 1;
if (addr1->v4.sin_addr.s_addr == addr2->v4.sin_addr.s_addr)
return 1;
return 0;
}
/* Verify that provided sockaddr looks bindable. Common verification has
* already been taken care of.
*/
static int sctp_inet_bind_verify(struct sctp_sock *opt, union sctp_addr *addr)
{
return sctp_v4_available(addr, opt);
}
/* Verify that sockaddr looks sendable. Common verification has already
* been taken care of.
*/
static int sctp_inet_send_verify(struct sctp_sock *opt, union sctp_addr *addr)
{
return 1;
}
/* Fill in Supported Address Type information for INIT and INIT-ACK
* chunks. Returns number of addresses supported.
*/
static int sctp_inet_supported_addrs(const struct sctp_sock *opt,
__be16 *types)
{
types[0] = SCTP_PARAM_IPV4_ADDRESS;
return 1;
}
/* Wrapper routine that calls the ip transmit routine. */
static inline int sctp_v4_xmit(struct sk_buff *skb,
struct sctp_transport *transport)
{
struct inet_sock *inet = inet_sk(skb->sk);
__u8 dscp = inet->tos;
pr_debug("%s: skb:%p, len:%d, src:%pI4, dst:%pI4\n", __func__, skb,
skb->len, &transport->fl.u.ip4.saddr,
&transport->fl.u.ip4.daddr);
if (transport->dscp & SCTP_DSCP_SET_MASK)
dscp = transport->dscp & SCTP_DSCP_VAL_MASK;
inet->pmtudisc = transport->param_flags & SPP_PMTUD_ENABLE ?
IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
SCTP_INC_STATS(sock_net(&inet->sk), SCTP_MIB_OUTSCTPPACKS);
return __ip_queue_xmit(&inet->sk, skb, &transport->fl, dscp);
}
static struct sctp_af sctp_af_inet;
static struct sctp_pf sctp_pf_inet = {
.event_msgname = sctp_inet_event_msgname,
.skb_msgname = sctp_inet_skb_msgname,
.af_supported = sctp_inet_af_supported,
.cmp_addr = sctp_inet_cmp_addr,
.bind_verify = sctp_inet_bind_verify,
.send_verify = sctp_inet_send_verify,
.supported_addrs = sctp_inet_supported_addrs,
.create_accept_sk = sctp_v4_create_accept_sk,
.addr_to_user = sctp_v4_addr_to_user,
.to_sk_saddr = sctp_v4_to_sk_saddr,
.to_sk_daddr = sctp_v4_to_sk_daddr,
.copy_ip_options = sctp_v4_copy_ip_options,
.af = &sctp_af_inet
};
/* Notifier for inetaddr addition/deletion events. */
static struct notifier_block sctp_inetaddr_notifier = {
.notifier_call = sctp_inetaddr_event,
};
/* Socket operations. */
static const struct proto_ops inet_seqpacket_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release, /* Needs to be wrapped... */
.bind = inet_bind,
.connect = sctp_inet_connect,
.socketpair = sock_no_socketpair,
.accept = inet_accept,
.getname = inet_getname, /* Semantics are different. */
.poll = sctp_poll,
.ioctl = inet_ioctl,
.gettstamp = sock_gettstamp,
.listen = sctp_inet_listen,
.shutdown = inet_shutdown, /* Looks harmless. */
.setsockopt = sock_common_setsockopt, /* IP_SOL IP_OPTION is a problem */
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.recvmsg = inet_recvmsg,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_sock_common_setsockopt,
.compat_getsockopt = compat_sock_common_getsockopt,
#endif
};
/* Registration with AF_INET family. */
static struct inet_protosw sctp_seqpacket_protosw = {
.type = SOCK_SEQPACKET,
.protocol = IPPROTO_SCTP,
.prot = &sctp_prot,
.ops = &inet_seqpacket_ops,
.flags = SCTP_PROTOSW_FLAG
};
static struct inet_protosw sctp_stream_protosw = {
.type = SOCK_STREAM,
.protocol = IPPROTO_SCTP,
.prot = &sctp_prot,
.ops = &inet_seqpacket_ops,
.flags = SCTP_PROTOSW_FLAG
};
/* Register with IP layer. */
static const struct net_protocol sctp_protocol = {
.handler = sctp_rcv,
.err_handler = sctp_v4_err,
.no_policy = 1,
.netns_ok = 1,
.icmp_strict_tag_validation = 1,
};
/* IPv4 address related functions. */
static struct sctp_af sctp_af_inet = {
.sa_family = AF_INET,
.sctp_xmit = sctp_v4_xmit,
.setsockopt = ip_setsockopt,
.getsockopt = ip_getsockopt,
.get_dst = sctp_v4_get_dst,
.get_saddr = sctp_v4_get_saddr,
.copy_addrlist = sctp_v4_copy_addrlist,
.from_skb = sctp_v4_from_skb,
.from_sk = sctp_v4_from_sk,
.from_addr_param = sctp_v4_from_addr_param,
.to_addr_param = sctp_v4_to_addr_param,
.cmp_addr = sctp_v4_cmp_addr,
.addr_valid = sctp_v4_addr_valid,
.inaddr_any = sctp_v4_inaddr_any,
.is_any = sctp_v4_is_any,
.available = sctp_v4_available,
.scope = sctp_v4_scope,
.skb_iif = sctp_v4_skb_iif,
.is_ce = sctp_v4_is_ce,
.seq_dump_addr = sctp_v4_seq_dump_addr,
.ecn_capable = sctp_v4_ecn_capable,
.net_header_len = sizeof(struct iphdr),
.sockaddr_len = sizeof(struct sockaddr_in),
.ip_options_len = sctp_v4_ip_options_len,
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_ip_setsockopt,
.compat_getsockopt = compat_ip_getsockopt,
#endif
};
struct sctp_pf *sctp_get_pf_specific(sa_family_t family)
{
switch (family) {
case PF_INET:
return sctp_pf_inet_specific;
case PF_INET6:
return sctp_pf_inet6_specific;
default:
return NULL;
}
}
/* Register the PF specific function table. */
int sctp_register_pf(struct sctp_pf *pf, sa_family_t family)
{
switch (family) {
case PF_INET:
if (sctp_pf_inet_specific)
return 0;
sctp_pf_inet_specific = pf;
break;
case PF_INET6:
if (sctp_pf_inet6_specific)
return 0;
sctp_pf_inet6_specific = pf;
break;
default:
return 0;
}
return 1;
}
static inline int init_sctp_mibs(struct net *net)
{
net->sctp.sctp_statistics = alloc_percpu(struct sctp_mib);
if (!net->sctp.sctp_statistics)
return -ENOMEM;
return 0;
}
static inline void cleanup_sctp_mibs(struct net *net)
{
free_percpu(net->sctp.sctp_statistics);
}
static void sctp_v4_pf_init(void)
{
/* Initialize the SCTP specific PF functions. */
sctp_register_pf(&sctp_pf_inet, PF_INET);
sctp_register_af(&sctp_af_inet);
}
static void sctp_v4_pf_exit(void)
{
list_del(&sctp_af_inet.list);
}
static int sctp_v4_protosw_init(void)
{
int rc;
rc = proto_register(&sctp_prot, 1);
if (rc)
return rc;
/* Register SCTP(UDP and TCP style) with socket layer. */
inet_register_protosw(&sctp_seqpacket_protosw);
inet_register_protosw(&sctp_stream_protosw);
return 0;
}
static void sctp_v4_protosw_exit(void)
{
inet_unregister_protosw(&sctp_stream_protosw);
inet_unregister_protosw(&sctp_seqpacket_protosw);
proto_unregister(&sctp_prot);
}
static int sctp_v4_add_protocol(void)
{
/* Register notifier for inet address additions/deletions. */
register_inetaddr_notifier(&sctp_inetaddr_notifier);
/* Register SCTP with inet layer. */
if (inet_add_protocol(&sctp_protocol, IPPROTO_SCTP) < 0)
return -EAGAIN;
return 0;
}
static void sctp_v4_del_protocol(void)
{
inet_del_protocol(&sctp_protocol, IPPROTO_SCTP);
unregister_inetaddr_notifier(&sctp_inetaddr_notifier);
}
static int __net_init sctp_defaults_init(struct net *net)
{
int status;
/*
* 14. Suggested SCTP Protocol Parameter Values
*/
/* The following protocol parameters are RECOMMENDED: */
/* RTO.Initial - 3 seconds */
net->sctp.rto_initial = SCTP_RTO_INITIAL;
/* RTO.Min - 1 second */
net->sctp.rto_min = SCTP_RTO_MIN;
/* RTO.Max - 60 seconds */
net->sctp.rto_max = SCTP_RTO_MAX;
/* RTO.Alpha - 1/8 */
net->sctp.rto_alpha = SCTP_RTO_ALPHA;
/* RTO.Beta - 1/4 */
net->sctp.rto_beta = SCTP_RTO_BETA;
/* Valid.Cookie.Life - 60 seconds */
net->sctp.valid_cookie_life = SCTP_DEFAULT_COOKIE_LIFE;
/* Whether Cookie Preservative is enabled(1) or not(0) */
net->sctp.cookie_preserve_enable = 1;
/* Default sctp sockets to use md5 as their hmac alg */
#if defined (CONFIG_SCTP_DEFAULT_COOKIE_HMAC_MD5)
net->sctp.sctp_hmac_alg = "md5";
#elif defined (CONFIG_SCTP_DEFAULT_COOKIE_HMAC_SHA1)
net->sctp.sctp_hmac_alg = "sha1";
#else
net->sctp.sctp_hmac_alg = NULL;
#endif
/* Max.Burst - 4 */
net->sctp.max_burst = SCTP_DEFAULT_MAX_BURST;
/* Enable pf state by default */
net->sctp.pf_enable = 1;
/* Association.Max.Retrans - 10 attempts
* Path.Max.Retrans - 5 attempts (per destination address)
* Max.Init.Retransmits - 8 attempts
*/
net->sctp.max_retrans_association = 10;
net->sctp.max_retrans_path = 5;
net->sctp.max_retrans_init = 8;
/* Sendbuffer growth - do per-socket accounting */
net->sctp.sndbuf_policy = 0;
/* Rcvbuffer growth - do per-socket accounting */
net->sctp.rcvbuf_policy = 0;
/* HB.interval - 30 seconds */
net->sctp.hb_interval = SCTP_DEFAULT_TIMEOUT_HEARTBEAT;
/* delayed SACK timeout */
net->sctp.sack_timeout = SCTP_DEFAULT_TIMEOUT_SACK;
/* Disable ADDIP by default. */
net->sctp.addip_enable = 0;
net->sctp.addip_noauth = 0;
net->sctp.default_auto_asconf = 0;
/* Enable PR-SCTP by default. */
net->sctp.prsctp_enable = 1;
/* Disable RECONF by default. */
net->sctp.reconf_enable = 0;
/* Disable AUTH by default. */
net->sctp.auth_enable = 0;
/* Enable ECN by default. */
net->sctp.ecn_enable = 1;
/* Set SCOPE policy to enabled */
net->sctp.scope_policy = SCTP_SCOPE_POLICY_ENABLE;
/* Set the default rwnd update threshold */
net->sctp.rwnd_upd_shift = SCTP_DEFAULT_RWND_SHIFT;
/* Initialize maximum autoclose timeout. */
net->sctp.max_autoclose = INT_MAX / HZ;
status = sctp_sysctl_net_register(net);
if (status)
goto err_sysctl_register;
/* Allocate and initialise sctp mibs. */
status = init_sctp_mibs(net);
if (status)
goto err_init_mibs;
#ifdef CONFIG_PROC_FS
/* Initialize proc fs directory. */
status = sctp_proc_init(net);
if (status)
goto err_init_proc;
#endif
sctp_dbg_objcnt_init(net);
/* Initialize the local address list. */
INIT_LIST_HEAD(&net->sctp.local_addr_list);
spin_lock_init(&net->sctp.local_addr_lock);
sctp_get_local_addr_list(net);
/* Initialize the address event list */
INIT_LIST_HEAD(&net->sctp.addr_waitq);
INIT_LIST_HEAD(&net->sctp.auto_asconf_splist);
spin_lock_init(&net->sctp.addr_wq_lock);
net->sctp.addr_wq_timer.expires = 0;
timer_setup(&net->sctp.addr_wq_timer, sctp_addr_wq_timeout_handler, 0);
return 0;
#ifdef CONFIG_PROC_FS
err_init_proc:
cleanup_sctp_mibs(net);
#endif
err_init_mibs:
sctp_sysctl_net_unregister(net);
err_sysctl_register:
return status;
}
static void __net_exit sctp_defaults_exit(struct net *net)
{
/* Free the local address list */
sctp_free_addr_wq(net);
sctp_free_local_addr_list(net);
#ifdef CONFIG_PROC_FS
remove_proc_subtree("sctp", net->proc_net);
net->sctp.proc_net_sctp = NULL;
#endif
cleanup_sctp_mibs(net);
sctp_sysctl_net_unregister(net);
}
static struct pernet_operations sctp_defaults_ops = {
.init = sctp_defaults_init,
.exit = sctp_defaults_exit,
};
static int __net_init sctp_ctrlsock_init(struct net *net)
{
int status;
/* Initialize the control inode/socket for handling OOTB packets. */
status = sctp_ctl_sock_init(net);
if (status)
pr_err("Failed to initialize the SCTP control sock\n");
return status;
}
static void __net_exit sctp_ctrlsock_exit(struct net *net)
{
/* Free the control endpoint. */
inet_ctl_sock_destroy(net->sctp.ctl_sock);
}
static struct pernet_operations sctp_ctrlsock_ops = {
.init = sctp_ctrlsock_init,
.exit = sctp_ctrlsock_exit,
};
/* Initialize the universe into something sensible. */
static __init int sctp_init(void)
{
int i;
int status = -EINVAL;
unsigned long goal;
unsigned long limit;
unsigned long nr_pages = totalram_pages();
int max_share;
int order;
int num_entries;
int max_entry_order;
sock_skb_cb_check_size(sizeof(struct sctp_ulpevent));
/* Allocate bind_bucket and chunk caches. */
status = -ENOBUFS;
sctp_bucket_cachep = kmem_cache_create("sctp_bind_bucket",
sizeof(struct sctp_bind_bucket),
0, SLAB_HWCACHE_ALIGN,
NULL);
if (!sctp_bucket_cachep)
goto out;
sctp_chunk_cachep = kmem_cache_create("sctp_chunk",
sizeof(struct sctp_chunk),
0, SLAB_HWCACHE_ALIGN,
NULL);
if (!sctp_chunk_cachep)
goto err_chunk_cachep;
status = percpu_counter_init(&sctp_sockets_allocated, 0, GFP_KERNEL);
if (status)
goto err_percpu_counter_init;
/* Implementation specific variables. */
/* Initialize default stream count setup information. */
sctp_max_instreams = SCTP_DEFAULT_INSTREAMS;
sctp_max_outstreams = SCTP_DEFAULT_OUTSTREAMS;
/* Initialize handle used for association ids. */
idr_init(&sctp_assocs_id);
limit = nr_free_buffer_pages() / 8;
limit = max(limit, 128UL);
sysctl_sctp_mem[0] = limit / 4 * 3;
sysctl_sctp_mem[1] = limit;
sysctl_sctp_mem[2] = sysctl_sctp_mem[0] * 2;
/* Set per-socket limits to no more than 1/128 the pressure threshold*/
limit = (sysctl_sctp_mem[1]) << (PAGE_SHIFT - 7);
max_share = min(4UL*1024*1024, limit);
sysctl_sctp_rmem[0] = SK_MEM_QUANTUM; /* give each asoc 1 page min */
sysctl_sctp_rmem[1] = 1500 * SKB_TRUESIZE(1);
sysctl_sctp_rmem[2] = max(sysctl_sctp_rmem[1], max_share);
sysctl_sctp_wmem[0] = SK_MEM_QUANTUM;
sysctl_sctp_wmem[1] = 16*1024;
sysctl_sctp_wmem[2] = max(64*1024, max_share);
/* Size and allocate the association hash table.
* The methodology is similar to that of the tcp hash tables.
* Though not identical. Start by getting a goal size
*/
if (nr_pages >= (128 * 1024))
goal = nr_pages >> (22 - PAGE_SHIFT);
else
goal = nr_pages >> (24 - PAGE_SHIFT);
/* Then compute the page order for said goal */
order = get_order(goal);
/* Now compute the required page order for the maximum sized table we
* want to create
*/
max_entry_order = get_order(MAX_SCTP_PORT_HASH_ENTRIES *
sizeof(struct sctp_bind_hashbucket));
/* Limit the page order by that maximum hash table size */
order = min(order, max_entry_order);
/* Allocate and initialize the endpoint hash table. */
sctp_ep_hashsize = 64;
sctp_ep_hashtable =
kmalloc_array(64, sizeof(struct sctp_hashbucket), GFP_KERNEL);
if (!sctp_ep_hashtable) {
pr_err("Failed endpoint_hash alloc\n");
status = -ENOMEM;
goto err_ehash_alloc;
}
for (i = 0; i < sctp_ep_hashsize; i++) {
rwlock_init(&sctp_ep_hashtable[i].lock);
INIT_HLIST_HEAD(&sctp_ep_hashtable[i].chain);
}
/* Allocate and initialize the SCTP port hash table.
* Note that order is initalized to start at the max sized
* table we want to support. If we can't get that many pages
* reduce the order and try again
*/
do {
sctp_port_hashtable = (struct sctp_bind_hashbucket *)
__get_free_pages(GFP_KERNEL | __GFP_NOWARN, order);
} while (!sctp_port_hashtable && --order > 0);
if (!sctp_port_hashtable) {
pr_err("Failed bind hash alloc\n");
status = -ENOMEM;
goto err_bhash_alloc;
}
/* Now compute the number of entries that will fit in the
* port hash space we allocated
*/
num_entries = (1UL << order) * PAGE_SIZE /
sizeof(struct sctp_bind_hashbucket);
/* And finish by rounding it down to the nearest power of two
* this wastes some memory of course, but its needed because
* the hash function operates based on the assumption that
* that the number of entries is a power of two
*/
sctp_port_hashsize = rounddown_pow_of_two(num_entries);
for (i = 0; i < sctp_port_hashsize; i++) {
spin_lock_init(&sctp_port_hashtable[i].lock);
INIT_HLIST_HEAD(&sctp_port_hashtable[i].chain);
}
status = sctp_transport_hashtable_init();
if (status)
goto err_thash_alloc;
pr_info("Hash tables configured (bind %d/%d)\n", sctp_port_hashsize,
num_entries);
sctp_sysctl_register();
INIT_LIST_HEAD(&sctp_address_families);
sctp_v4_pf_init();
sctp_v6_pf_init();
sctp_sched_ops_init();
status = register_pernet_subsys(&sctp_defaults_ops);
if (status)
goto err_register_defaults;
status = sctp_v4_protosw_init();
if (status)
goto err_protosw_init;
status = sctp_v6_protosw_init();
if (status)
goto err_v6_protosw_init;
status = register_pernet_subsys(&sctp_ctrlsock_ops);
if (status)
goto err_register_ctrlsock;
status = sctp_v4_add_protocol();
if (status)
goto err_add_protocol;
/* Register SCTP with inet6 layer. */
status = sctp_v6_add_protocol();
if (status)
goto err_v6_add_protocol;
if (sctp_offload_init() < 0)
pr_crit("%s: Cannot add SCTP protocol offload\n", __func__);
out:
return status;
err_v6_add_protocol:
sctp_v4_del_protocol();
err_add_protocol:
unregister_pernet_subsys(&sctp_ctrlsock_ops);
err_register_ctrlsock:
sctp_v6_protosw_exit();
err_v6_protosw_init:
sctp_v4_protosw_exit();
err_protosw_init:
unregister_pernet_subsys(&sctp_defaults_ops);
err_register_defaults:
sctp_v4_pf_exit();
sctp_v6_pf_exit();
sctp_sysctl_unregister();
free_pages((unsigned long)sctp_port_hashtable,
get_order(sctp_port_hashsize *
sizeof(struct sctp_bind_hashbucket)));
err_bhash_alloc:
sctp_transport_hashtable_destroy();
err_thash_alloc:
kfree(sctp_ep_hashtable);
err_ehash_alloc:
percpu_counter_destroy(&sctp_sockets_allocated);
err_percpu_counter_init:
kmem_cache_destroy(sctp_chunk_cachep);
err_chunk_cachep:
kmem_cache_destroy(sctp_bucket_cachep);
goto out;
}
/* Exit handler for the SCTP protocol. */
static __exit void sctp_exit(void)
{
/* BUG. This should probably do something useful like clean
* up all the remaining associations and all that memory.
*/
/* Unregister with inet6/inet layers. */
sctp_v6_del_protocol();
sctp_v4_del_protocol();
unregister_pernet_subsys(&sctp_ctrlsock_ops);
/* Free protosw registrations */
sctp_v6_protosw_exit();
sctp_v4_protosw_exit();
unregister_pernet_subsys(&sctp_defaults_ops);
/* Unregister with socket layer. */
sctp_v6_pf_exit();
sctp_v4_pf_exit();
sctp_sysctl_unregister();
free_pages((unsigned long)sctp_port_hashtable,
get_order(sctp_port_hashsize *
sizeof(struct sctp_bind_hashbucket)));
kfree(sctp_ep_hashtable);
sctp_transport_hashtable_destroy();
percpu_counter_destroy(&sctp_sockets_allocated);
rcu_barrier(); /* Wait for completion of call_rcu()'s */
kmem_cache_destroy(sctp_chunk_cachep);
kmem_cache_destroy(sctp_bucket_cachep);
}
module_init(sctp_init);
module_exit(sctp_exit);
/*
* __stringify doesn't likes enums, so use IPPROTO_SCTP value (132) directly.
*/
MODULE_ALIAS("net-pf-" __stringify(PF_INET) "-proto-132");
MODULE_ALIAS("net-pf-" __stringify(PF_INET6) "-proto-132");
MODULE_AUTHOR("Linux Kernel SCTP developers <linux-sctp@vger.kernel.org>");
MODULE_DESCRIPTION("Support for the SCTP protocol (RFC2960)");
module_param_named(no_checksums, sctp_checksum_disable, bool, 0644);
MODULE_PARM_DESC(no_checksums, "Disable checksums computing and verification");
MODULE_LICENSE("GPL");