1907 lines
51 KiB
C
1907 lines
51 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* VFIO PCI config space virtualization
|
|
*
|
|
* Copyright (C) 2012 Red Hat, Inc. All rights reserved.
|
|
* Author: Alex Williamson <alex.williamson@redhat.com>
|
|
*
|
|
* Derived from original vfio:
|
|
* Copyright 2010 Cisco Systems, Inc. All rights reserved.
|
|
* Author: Tom Lyon, pugs@cisco.com
|
|
*/
|
|
|
|
/*
|
|
* This code handles reading and writing of PCI configuration registers.
|
|
* This is hairy because we want to allow a lot of flexibility to the
|
|
* user driver, but cannot trust it with all of the config fields.
|
|
* Tables determine which fields can be read and written, as well as
|
|
* which fields are 'virtualized' - special actions and translations to
|
|
* make it appear to the user that he has control, when in fact things
|
|
* must be negotiated with the underlying OS.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/vfio.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "vfio_pci_private.h"
|
|
|
|
/* Fake capability ID for standard config space */
|
|
#define PCI_CAP_ID_BASIC 0
|
|
|
|
#define is_bar(offset) \
|
|
((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
|
|
(offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
|
|
|
|
/*
|
|
* Lengths of PCI Config Capabilities
|
|
* 0: Removed from the user visible capability list
|
|
* FF: Variable length
|
|
*/
|
|
static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
|
|
[PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */
|
|
[PCI_CAP_ID_PM] = PCI_PM_SIZEOF,
|
|
[PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF,
|
|
[PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF,
|
|
[PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */
|
|
[PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */
|
|
[PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */
|
|
[PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */
|
|
[PCI_CAP_ID_HT] = 0xFF, /* hypertransport */
|
|
[PCI_CAP_ID_VNDR] = 0xFF, /* variable */
|
|
[PCI_CAP_ID_DBG] = 0, /* debug - don't care */
|
|
[PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */
|
|
[PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */
|
|
[PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */
|
|
[PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */
|
|
[PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */
|
|
[PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */
|
|
[PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF,
|
|
[PCI_CAP_ID_SATA] = 0xFF,
|
|
[PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF,
|
|
};
|
|
|
|
/*
|
|
* Lengths of PCIe/PCI-X Extended Config Capabilities
|
|
* 0: Removed or masked from the user visible capability list
|
|
* FF: Variable length
|
|
*/
|
|
static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
|
|
[PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND,
|
|
[PCI_EXT_CAP_ID_VC] = 0xFF,
|
|
[PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF,
|
|
[PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF,
|
|
[PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */
|
|
[PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */
|
|
[PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */
|
|
[PCI_EXT_CAP_ID_MFVC] = 0xFF,
|
|
[PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */
|
|
[PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */
|
|
[PCI_EXT_CAP_ID_VNDR] = 0xFF,
|
|
[PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */
|
|
[PCI_EXT_CAP_ID_ACS] = 0xFF,
|
|
[PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF,
|
|
[PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF,
|
|
[PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF,
|
|
[PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */
|
|
[PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
|
|
[PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF,
|
|
[PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */
|
|
[PCI_EXT_CAP_ID_REBAR] = 0xFF,
|
|
[PCI_EXT_CAP_ID_DPA] = 0xFF,
|
|
[PCI_EXT_CAP_ID_TPH] = 0xFF,
|
|
[PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF,
|
|
[PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */
|
|
[PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */
|
|
[PCI_EXT_CAP_ID_PASID] = 0, /* not yet */
|
|
};
|
|
|
|
/*
|
|
* Read/Write Permission Bits - one bit for each bit in capability
|
|
* Any field can be read if it exists, but what is read depends on
|
|
* whether the field is 'virtualized', or just pass thru to the
|
|
* hardware. Any virtualized field is also virtualized for writes.
|
|
* Writes are only permitted if they have a 1 bit here.
|
|
*/
|
|
struct perm_bits {
|
|
u8 *virt; /* read/write virtual data, not hw */
|
|
u8 *write; /* writeable bits */
|
|
int (*readfn)(struct vfio_pci_device *vdev, int pos, int count,
|
|
struct perm_bits *perm, int offset, __le32 *val);
|
|
int (*writefn)(struct vfio_pci_device *vdev, int pos, int count,
|
|
struct perm_bits *perm, int offset, __le32 val);
|
|
};
|
|
|
|
#define NO_VIRT 0
|
|
#define ALL_VIRT 0xFFFFFFFFU
|
|
#define NO_WRITE 0
|
|
#define ALL_WRITE 0xFFFFFFFFU
|
|
|
|
static int vfio_user_config_read(struct pci_dev *pdev, int offset,
|
|
__le32 *val, int count)
|
|
{
|
|
int ret = -EINVAL;
|
|
u32 tmp_val = 0;
|
|
|
|
switch (count) {
|
|
case 1:
|
|
{
|
|
u8 tmp;
|
|
ret = pci_user_read_config_byte(pdev, offset, &tmp);
|
|
tmp_val = tmp;
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
u16 tmp;
|
|
ret = pci_user_read_config_word(pdev, offset, &tmp);
|
|
tmp_val = tmp;
|
|
break;
|
|
}
|
|
case 4:
|
|
ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
|
|
break;
|
|
}
|
|
|
|
*val = cpu_to_le32(tmp_val);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vfio_user_config_write(struct pci_dev *pdev, int offset,
|
|
__le32 val, int count)
|
|
{
|
|
int ret = -EINVAL;
|
|
u32 tmp_val = le32_to_cpu(val);
|
|
|
|
switch (count) {
|
|
case 1:
|
|
ret = pci_user_write_config_byte(pdev, offset, tmp_val);
|
|
break;
|
|
case 2:
|
|
ret = pci_user_write_config_word(pdev, offset, tmp_val);
|
|
break;
|
|
case 4:
|
|
ret = pci_user_write_config_dword(pdev, offset, tmp_val);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
|
|
int count, struct perm_bits *perm,
|
|
int offset, __le32 *val)
|
|
{
|
|
__le32 virt = 0;
|
|
|
|
memcpy(val, vdev->vconfig + pos, count);
|
|
|
|
memcpy(&virt, perm->virt + offset, count);
|
|
|
|
/* Any non-virtualized bits? */
|
|
if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
__le32 phys_val = 0;
|
|
int ret;
|
|
|
|
ret = vfio_user_config_read(pdev, pos, &phys_val, count);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*val = (phys_val & ~virt) | (*val & virt);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
|
|
int count, struct perm_bits *perm,
|
|
int offset, __le32 val)
|
|
{
|
|
__le32 virt = 0, write = 0;
|
|
|
|
memcpy(&write, perm->write + offset, count);
|
|
|
|
if (!write)
|
|
return count; /* drop, no writable bits */
|
|
|
|
memcpy(&virt, perm->virt + offset, count);
|
|
|
|
/* Virtualized and writable bits go to vconfig */
|
|
if (write & virt) {
|
|
__le32 virt_val = 0;
|
|
|
|
memcpy(&virt_val, vdev->vconfig + pos, count);
|
|
|
|
virt_val &= ~(write & virt);
|
|
virt_val |= (val & (write & virt));
|
|
|
|
memcpy(vdev->vconfig + pos, &virt_val, count);
|
|
}
|
|
|
|
/* Non-virtualzed and writable bits go to hardware */
|
|
if (write & ~virt) {
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
__le32 phys_val = 0;
|
|
int ret;
|
|
|
|
ret = vfio_user_config_read(pdev, pos, &phys_val, count);
|
|
if (ret)
|
|
return ret;
|
|
|
|
phys_val &= ~(write & ~virt);
|
|
phys_val |= (val & (write & ~virt));
|
|
|
|
ret = vfio_user_config_write(pdev, pos, phys_val, count);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Allow direct read from hardware, except for capability next pointer */
|
|
static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
|
|
int count, struct perm_bits *perm,
|
|
int offset, __le32 *val)
|
|
{
|
|
int ret;
|
|
|
|
ret = vfio_user_config_read(vdev->pdev, pos, val, count);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
|
|
if (offset < 4)
|
|
memcpy(val, vdev->vconfig + pos, count);
|
|
} else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
|
|
if (offset == PCI_CAP_LIST_ID && count > 1)
|
|
memcpy(val, vdev->vconfig + pos,
|
|
min(PCI_CAP_FLAGS, count));
|
|
else if (offset == PCI_CAP_LIST_NEXT)
|
|
memcpy(val, vdev->vconfig + pos, 1);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Raw access skips any kind of virtualization */
|
|
static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
|
|
int count, struct perm_bits *perm,
|
|
int offset, __le32 val)
|
|
{
|
|
int ret;
|
|
|
|
ret = vfio_user_config_write(vdev->pdev, pos, val, count);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return count;
|
|
}
|
|
|
|
static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
|
|
int count, struct perm_bits *perm,
|
|
int offset, __le32 *val)
|
|
{
|
|
int ret;
|
|
|
|
ret = vfio_user_config_read(vdev->pdev, pos, val, count);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Virt access uses only virtualization */
|
|
static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos,
|
|
int count, struct perm_bits *perm,
|
|
int offset, __le32 val)
|
|
{
|
|
memcpy(vdev->vconfig + pos, &val, count);
|
|
return count;
|
|
}
|
|
|
|
static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos,
|
|
int count, struct perm_bits *perm,
|
|
int offset, __le32 *val)
|
|
{
|
|
memcpy(val, vdev->vconfig + pos, count);
|
|
return count;
|
|
}
|
|
|
|
/* Default capability regions to read-only, no-virtualization */
|
|
static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
|
|
[0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
|
|
};
|
|
static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
|
|
[0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
|
|
};
|
|
/*
|
|
* Default unassigned regions to raw read-write access. Some devices
|
|
* require this to function as they hide registers between the gaps in
|
|
* config space (be2net). Like MMIO and I/O port registers, we have
|
|
* to trust the hardware isolation.
|
|
*/
|
|
static struct perm_bits unassigned_perms = {
|
|
.readfn = vfio_raw_config_read,
|
|
.writefn = vfio_raw_config_write
|
|
};
|
|
|
|
static struct perm_bits virt_perms = {
|
|
.readfn = vfio_virt_config_read,
|
|
.writefn = vfio_virt_config_write
|
|
};
|
|
|
|
static void free_perm_bits(struct perm_bits *perm)
|
|
{
|
|
kfree(perm->virt);
|
|
kfree(perm->write);
|
|
perm->virt = NULL;
|
|
perm->write = NULL;
|
|
}
|
|
|
|
static int alloc_perm_bits(struct perm_bits *perm, int size)
|
|
{
|
|
/*
|
|
* Round up all permission bits to the next dword, this lets us
|
|
* ignore whether a read/write exceeds the defined capability
|
|
* structure. We can do this because:
|
|
* - Standard config space is already dword aligned
|
|
* - Capabilities are all dword aligned (bits 0:1 of next reserved)
|
|
* - Express capabilities defined as dword aligned
|
|
*/
|
|
size = round_up(size, 4);
|
|
|
|
/*
|
|
* Zero state is
|
|
* - All Readable, None Writeable, None Virtualized
|
|
*/
|
|
perm->virt = kzalloc(size, GFP_KERNEL);
|
|
perm->write = kzalloc(size, GFP_KERNEL);
|
|
if (!perm->virt || !perm->write) {
|
|
free_perm_bits(perm);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
perm->readfn = vfio_default_config_read;
|
|
perm->writefn = vfio_default_config_write;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Helper functions for filling in permission tables
|
|
*/
|
|
static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
|
|
{
|
|
p->virt[off] = virt;
|
|
p->write[off] = write;
|
|
}
|
|
|
|
/* Handle endian-ness - pci and tables are little-endian */
|
|
static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
|
|
{
|
|
*(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
|
|
*(__le16 *)(&p->write[off]) = cpu_to_le16(write);
|
|
}
|
|
|
|
/* Handle endian-ness - pci and tables are little-endian */
|
|
static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
|
|
{
|
|
*(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
|
|
*(__le32 *)(&p->write[off]) = cpu_to_le32(write);
|
|
}
|
|
|
|
/* Caller should hold memory_lock semaphore */
|
|
bool __vfio_pci_memory_enabled(struct vfio_pci_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
|
|
|
|
/*
|
|
* SR-IOV VF memory enable is handled by the MSE bit in the
|
|
* PF SR-IOV capability, there's therefore no need to trigger
|
|
* faults based on the virtual value.
|
|
*/
|
|
return pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY);
|
|
}
|
|
|
|
/*
|
|
* Restore the *real* BARs after we detect a FLR or backdoor reset.
|
|
* (backdoor = some device specific technique that we didn't catch)
|
|
*/
|
|
static void vfio_bar_restore(struct vfio_pci_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
u32 *rbar = vdev->rbar;
|
|
u16 cmd;
|
|
int i;
|
|
|
|
if (pdev->is_virtfn)
|
|
return;
|
|
|
|
pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__);
|
|
|
|
for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
|
|
pci_user_write_config_dword(pdev, i, *rbar);
|
|
|
|
pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
|
|
|
|
if (vdev->nointx) {
|
|
pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
|
|
cmd |= PCI_COMMAND_INTX_DISABLE;
|
|
pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
|
|
}
|
|
}
|
|
|
|
static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
|
|
{
|
|
unsigned long flags = pci_resource_flags(pdev, bar);
|
|
u32 val;
|
|
|
|
if (flags & IORESOURCE_IO)
|
|
return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
|
|
|
|
val = PCI_BASE_ADDRESS_SPACE_MEMORY;
|
|
|
|
if (flags & IORESOURCE_PREFETCH)
|
|
val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
|
|
|
|
if (flags & IORESOURCE_MEM_64)
|
|
val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
|
|
|
|
return cpu_to_le32(val);
|
|
}
|
|
|
|
/*
|
|
* Pretend we're hardware and tweak the values of the *virtual* PCI BARs
|
|
* to reflect the hardware capabilities. This implements BAR sizing.
|
|
*/
|
|
static void vfio_bar_fixup(struct vfio_pci_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
int i;
|
|
__le32 *bar;
|
|
u64 mask;
|
|
|
|
bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
|
|
|
|
for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
|
|
if (!pci_resource_start(pdev, i)) {
|
|
*bar = 0; /* Unmapped by host = unimplemented to user */
|
|
continue;
|
|
}
|
|
|
|
mask = ~(pci_resource_len(pdev, i) - 1);
|
|
|
|
*bar &= cpu_to_le32((u32)mask);
|
|
*bar |= vfio_generate_bar_flags(pdev, i);
|
|
|
|
if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
|
|
bar++;
|
|
*bar &= cpu_to_le32((u32)(mask >> 32));
|
|
i++;
|
|
}
|
|
}
|
|
|
|
bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
|
|
|
|
/*
|
|
* NB. REGION_INFO will have reported zero size if we weren't able
|
|
* to read the ROM, but we still return the actual BAR size here if
|
|
* it exists (or the shadow ROM space).
|
|
*/
|
|
if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
|
|
mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
|
|
mask |= PCI_ROM_ADDRESS_ENABLE;
|
|
*bar &= cpu_to_le32((u32)mask);
|
|
} else if (pdev->resource[PCI_ROM_RESOURCE].flags &
|
|
IORESOURCE_ROM_SHADOW) {
|
|
mask = ~(0x20000 - 1);
|
|
mask |= PCI_ROM_ADDRESS_ENABLE;
|
|
*bar &= cpu_to_le32((u32)mask);
|
|
} else
|
|
*bar = 0;
|
|
|
|
vdev->bardirty = false;
|
|
}
|
|
|
|
static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
|
|
int count, struct perm_bits *perm,
|
|
int offset, __le32 *val)
|
|
{
|
|
if (is_bar(offset)) /* pos == offset for basic config */
|
|
vfio_bar_fixup(vdev);
|
|
|
|
count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
|
|
|
|
/* Mask in virtual memory enable */
|
|
if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) {
|
|
u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
|
|
u32 tmp_val = le32_to_cpu(*val);
|
|
|
|
tmp_val |= cmd & PCI_COMMAND_MEMORY;
|
|
*val = cpu_to_le32(tmp_val);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Test whether BARs match the value we think they should contain */
|
|
static bool vfio_need_bar_restore(struct vfio_pci_device *vdev)
|
|
{
|
|
int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
|
|
u32 bar;
|
|
|
|
for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
|
|
if (vdev->rbar[i]) {
|
|
ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
|
|
if (ret || vdev->rbar[i] != bar)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
|
|
int count, struct perm_bits *perm,
|
|
int offset, __le32 val)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
__le16 *virt_cmd;
|
|
u16 new_cmd = 0;
|
|
int ret;
|
|
|
|
virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
|
|
|
|
if (offset == PCI_COMMAND) {
|
|
bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
|
|
u16 phys_cmd;
|
|
|
|
ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
new_cmd = le32_to_cpu(val);
|
|
|
|
phys_io = !!(phys_cmd & PCI_COMMAND_IO);
|
|
virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
|
|
new_io = !!(new_cmd & PCI_COMMAND_IO);
|
|
|
|
phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
|
|
virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
|
|
new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
|
|
|
|
if (!new_mem)
|
|
vfio_pci_zap_and_down_write_memory_lock(vdev);
|
|
else
|
|
down_write(&vdev->memory_lock);
|
|
|
|
/*
|
|
* If the user is writing mem/io enable (new_mem/io) and we
|
|
* think it's already enabled (virt_mem/io), but the hardware
|
|
* shows it disabled (phys_mem/io, then the device has
|
|
* undergone some kind of backdoor reset and needs to be
|
|
* restored before we allow it to enable the bars.
|
|
* SR-IOV devices will trigger this - for mem enable let's
|
|
* catch this now and for io enable it will be caught later
|
|
*/
|
|
if ((new_mem && virt_mem && !phys_mem &&
|
|
!pdev->no_command_memory) ||
|
|
(new_io && virt_io && !phys_io) ||
|
|
vfio_need_bar_restore(vdev))
|
|
vfio_bar_restore(vdev);
|
|
}
|
|
|
|
count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
|
|
if (count < 0) {
|
|
if (offset == PCI_COMMAND)
|
|
up_write(&vdev->memory_lock);
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Save current memory/io enable bits in vconfig to allow for
|
|
* the test above next time.
|
|
*/
|
|
if (offset == PCI_COMMAND) {
|
|
u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
|
|
|
|
*virt_cmd &= cpu_to_le16(~mask);
|
|
*virt_cmd |= cpu_to_le16(new_cmd & mask);
|
|
|
|
up_write(&vdev->memory_lock);
|
|
}
|
|
|
|
/* Emulate INTx disable */
|
|
if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
|
|
bool virt_intx_disable;
|
|
|
|
virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
|
|
PCI_COMMAND_INTX_DISABLE);
|
|
|
|
if (virt_intx_disable && !vdev->virq_disabled) {
|
|
vdev->virq_disabled = true;
|
|
vfio_pci_intx_mask(vdev);
|
|
} else if (!virt_intx_disable && vdev->virq_disabled) {
|
|
vdev->virq_disabled = false;
|
|
vfio_pci_intx_unmask(vdev);
|
|
}
|
|
}
|
|
|
|
if (is_bar(offset))
|
|
vdev->bardirty = true;
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Permissions for the Basic PCI Header */
|
|
static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
|
|
{
|
|
if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
|
|
return -ENOMEM;
|
|
|
|
perm->readfn = vfio_basic_config_read;
|
|
perm->writefn = vfio_basic_config_write;
|
|
|
|
/* Virtualized for SR-IOV functions, which just have FFFF */
|
|
p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
|
|
p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
|
|
|
|
/*
|
|
* Virtualize INTx disable, we use it internally for interrupt
|
|
* control and can emulate it for non-PCI 2.3 devices.
|
|
*/
|
|
p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
|
|
|
|
/* Virtualize capability list, we might want to skip/disable */
|
|
p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
|
|
|
|
/* No harm to write */
|
|
p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
|
|
p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
|
|
p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
|
|
|
|
/* Virtualize all bars, can't touch the real ones */
|
|
p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
|
|
p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
|
|
p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
|
|
p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
|
|
p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
|
|
p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
|
|
p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
|
|
|
|
/* Allow us to adjust capability chain */
|
|
p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
|
|
|
|
/* Sometimes used by sw, just virtualize */
|
|
p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
|
|
|
|
/* Virtualize interrupt pin to allow hiding INTx */
|
|
p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
|
|
int count, struct perm_bits *perm,
|
|
int offset, __le32 val)
|
|
{
|
|
count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
|
|
if (count < 0)
|
|
return count;
|
|
|
|
if (offset == PCI_PM_CTRL) {
|
|
pci_power_t state;
|
|
|
|
switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
|
|
case 0:
|
|
state = PCI_D0;
|
|
break;
|
|
case 1:
|
|
state = PCI_D1;
|
|
break;
|
|
case 2:
|
|
state = PCI_D2;
|
|
break;
|
|
case 3:
|
|
state = PCI_D3hot;
|
|
break;
|
|
}
|
|
|
|
vfio_pci_set_power_state(vdev, state);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Permissions for the Power Management capability */
|
|
static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
|
|
{
|
|
if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
|
|
return -ENOMEM;
|
|
|
|
perm->writefn = vfio_pm_config_write;
|
|
|
|
/*
|
|
* We always virtualize the next field so we can remove
|
|
* capabilities from the chain if we want to.
|
|
*/
|
|
p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
|
|
|
|
/*
|
|
* Power management is defined *per function*, so we can let
|
|
* the user change power state, but we trap and initiate the
|
|
* change ourselves, so the state bits are read-only.
|
|
*/
|
|
p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
|
|
return 0;
|
|
}
|
|
|
|
static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
|
|
int count, struct perm_bits *perm,
|
|
int offset, __le32 val)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
__le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
|
|
__le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
|
|
u16 addr;
|
|
u32 data;
|
|
|
|
/*
|
|
* Write through to emulation. If the write includes the upper byte
|
|
* of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
|
|
* have work to do.
|
|
*/
|
|
count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
|
|
if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
|
|
offset + count <= PCI_VPD_ADDR + 1)
|
|
return count;
|
|
|
|
addr = le16_to_cpu(*paddr);
|
|
|
|
if (addr & PCI_VPD_ADDR_F) {
|
|
data = le32_to_cpu(*pdata);
|
|
if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
|
|
return count;
|
|
} else {
|
|
data = 0;
|
|
if (pci_read_vpd(pdev, addr, 4, &data) < 0)
|
|
return count;
|
|
*pdata = cpu_to_le32(data);
|
|
}
|
|
|
|
/*
|
|
* Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
|
|
* signal completion. If an error occurs above, we assume that not
|
|
* toggling this bit will induce a driver timeout.
|
|
*/
|
|
addr ^= PCI_VPD_ADDR_F;
|
|
*paddr = cpu_to_le16(addr);
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Permissions for Vital Product Data capability */
|
|
static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
|
|
{
|
|
if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
|
|
return -ENOMEM;
|
|
|
|
perm->writefn = vfio_vpd_config_write;
|
|
|
|
/*
|
|
* We always virtualize the next field so we can remove
|
|
* capabilities from the chain if we want to.
|
|
*/
|
|
p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
|
|
|
|
/*
|
|
* Both the address and data registers are virtualized to
|
|
* enable access through the pci_vpd_read/write functions
|
|
*/
|
|
p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
|
|
p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Permissions for PCI-X capability */
|
|
static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
|
|
{
|
|
/* Alloc 24, but only 8 are used in v0 */
|
|
if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
|
|
return -ENOMEM;
|
|
|
|
p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
|
|
|
|
p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
|
|
p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
|
|
return 0;
|
|
}
|
|
|
|
static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos,
|
|
int count, struct perm_bits *perm,
|
|
int offset, __le32 val)
|
|
{
|
|
__le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
|
|
offset + PCI_EXP_DEVCTL);
|
|
int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
|
|
|
|
count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
|
|
if (count < 0)
|
|
return count;
|
|
|
|
/*
|
|
* The FLR bit is virtualized, if set and the device supports PCIe
|
|
* FLR, issue a reset_function. Regardless, clear the bit, the spec
|
|
* requires it to be always read as zero. NB, reset_function might
|
|
* not use a PCIe FLR, we don't have that level of granularity.
|
|
*/
|
|
if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
|
|
u32 cap;
|
|
int ret;
|
|
|
|
*ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
|
|
|
|
ret = pci_user_read_config_dword(vdev->pdev,
|
|
pos - offset + PCI_EXP_DEVCAP,
|
|
&cap);
|
|
|
|
if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) {
|
|
vfio_pci_zap_and_down_write_memory_lock(vdev);
|
|
pci_try_reset_function(vdev->pdev);
|
|
up_write(&vdev->memory_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* MPS is virtualized to the user, writes do not change the physical
|
|
* register since determining a proper MPS value requires a system wide
|
|
* device view. The MRRS is largely independent of MPS, but since the
|
|
* user does not have that system-wide view, they might set a safe, but
|
|
* inefficiently low value. Here we allow writes through to hardware,
|
|
* but we set the floor to the physical device MPS setting, so that
|
|
* we can at least use full TLPs, as defined by the MPS value.
|
|
*
|
|
* NB, if any devices actually depend on an artificially low MRRS
|
|
* setting, this will need to be revisited, perhaps with a quirk
|
|
* though pcie_set_readrq().
|
|
*/
|
|
if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
|
|
readrq = 128 <<
|
|
((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
|
|
readrq = max(readrq, pcie_get_mps(vdev->pdev));
|
|
|
|
pcie_set_readrq(vdev->pdev, readrq);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Permissions for PCI Express capability */
|
|
static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
|
|
{
|
|
/* Alloc largest of possible sizes */
|
|
if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
|
|
return -ENOMEM;
|
|
|
|
perm->writefn = vfio_exp_config_write;
|
|
|
|
p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
|
|
|
|
/*
|
|
* Allow writes to device control fields, except devctl_phantom,
|
|
* which could confuse IOMMU, MPS, which can break communication
|
|
* with other physical devices, and the ARI bit in devctl2, which
|
|
* is set at probe time. FLR and MRRS get virtualized via our
|
|
* writefn.
|
|
*/
|
|
p_setw(perm, PCI_EXP_DEVCTL,
|
|
PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
|
|
PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
|
|
p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
|
|
return 0;
|
|
}
|
|
|
|
static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos,
|
|
int count, struct perm_bits *perm,
|
|
int offset, __le32 val)
|
|
{
|
|
u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
|
|
|
|
count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
|
|
if (count < 0)
|
|
return count;
|
|
|
|
/*
|
|
* The FLR bit is virtualized, if set and the device supports AF
|
|
* FLR, issue a reset_function. Regardless, clear the bit, the spec
|
|
* requires it to be always read as zero. NB, reset_function might
|
|
* not use an AF FLR, we don't have that level of granularity.
|
|
*/
|
|
if (*ctrl & PCI_AF_CTRL_FLR) {
|
|
u8 cap;
|
|
int ret;
|
|
|
|
*ctrl &= ~PCI_AF_CTRL_FLR;
|
|
|
|
ret = pci_user_read_config_byte(vdev->pdev,
|
|
pos - offset + PCI_AF_CAP,
|
|
&cap);
|
|
|
|
if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) {
|
|
vfio_pci_zap_and_down_write_memory_lock(vdev);
|
|
pci_try_reset_function(vdev->pdev);
|
|
up_write(&vdev->memory_lock);
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Permissions for Advanced Function capability */
|
|
static int __init init_pci_cap_af_perm(struct perm_bits *perm)
|
|
{
|
|
if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
|
|
return -ENOMEM;
|
|
|
|
perm->writefn = vfio_af_config_write;
|
|
|
|
p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
|
|
p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
|
|
return 0;
|
|
}
|
|
|
|
/* Permissions for Advanced Error Reporting extended capability */
|
|
static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
|
|
{
|
|
u32 mask;
|
|
|
|
if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Virtualize the first dword of all express capabilities
|
|
* because it includes the next pointer. This lets us later
|
|
* remove capabilities from the chain if we need to.
|
|
*/
|
|
p_setd(perm, 0, ALL_VIRT, NO_WRITE);
|
|
|
|
/* Writable bits mask */
|
|
mask = PCI_ERR_UNC_UND | /* Undefined */
|
|
PCI_ERR_UNC_DLP | /* Data Link Protocol */
|
|
PCI_ERR_UNC_SURPDN | /* Surprise Down */
|
|
PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */
|
|
PCI_ERR_UNC_FCP | /* Flow Control Protocol */
|
|
PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */
|
|
PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */
|
|
PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */
|
|
PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */
|
|
PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */
|
|
PCI_ERR_UNC_ECRC | /* ECRC Error Status */
|
|
PCI_ERR_UNC_UNSUP | /* Unsupported Request */
|
|
PCI_ERR_UNC_ACSV | /* ACS Violation */
|
|
PCI_ERR_UNC_INTN | /* internal error */
|
|
PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */
|
|
PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */
|
|
PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */
|
|
p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
|
|
p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
|
|
p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
|
|
|
|
mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */
|
|
PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */
|
|
PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */
|
|
PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */
|
|
PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */
|
|
PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */
|
|
PCI_ERR_COR_INTERNAL | /* Corrected Internal */
|
|
PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */
|
|
p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
|
|
p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
|
|
|
|
mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */
|
|
PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */
|
|
p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
|
|
return 0;
|
|
}
|
|
|
|
/* Permissions for Power Budgeting extended capability */
|
|
static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
|
|
{
|
|
if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
|
|
return -ENOMEM;
|
|
|
|
p_setd(perm, 0, ALL_VIRT, NO_WRITE);
|
|
|
|
/* Writing the data selector is OK, the info is still read-only */
|
|
p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize the shared permission tables
|
|
*/
|
|
void vfio_pci_uninit_perm_bits(void)
|
|
{
|
|
free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
|
|
|
|
free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
|
|
free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
|
|
free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
|
|
free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
|
|
free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
|
|
|
|
free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
|
|
free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
|
|
}
|
|
|
|
int __init vfio_pci_init_perm_bits(void)
|
|
{
|
|
int ret;
|
|
|
|
/* Basic config space */
|
|
ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
|
|
|
|
/* Capabilities */
|
|
ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
|
|
ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
|
|
ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
|
|
cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
|
|
ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
|
|
ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
|
|
|
|
/* Extended capabilities */
|
|
ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
|
|
ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
|
|
ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
|
|
|
|
if (ret)
|
|
vfio_pci_uninit_perm_bits();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
|
|
{
|
|
u8 cap;
|
|
int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
|
|
PCI_STD_HEADER_SIZEOF;
|
|
cap = vdev->pci_config_map[pos];
|
|
|
|
if (cap == PCI_CAP_ID_BASIC)
|
|
return 0;
|
|
|
|
/* XXX Can we have to abutting capabilities of the same type? */
|
|
while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
|
|
pos--;
|
|
|
|
return pos;
|
|
}
|
|
|
|
static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
|
|
int count, struct perm_bits *perm,
|
|
int offset, __le32 *val)
|
|
{
|
|
/* Update max available queue size from msi_qmax */
|
|
if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
|
|
__le16 *flags;
|
|
int start;
|
|
|
|
start = vfio_find_cap_start(vdev, pos);
|
|
|
|
flags = (__le16 *)&vdev->vconfig[start];
|
|
|
|
*flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
|
|
*flags |= cpu_to_le16(vdev->msi_qmax << 1);
|
|
}
|
|
|
|
return vfio_default_config_read(vdev, pos, count, perm, offset, val);
|
|
}
|
|
|
|
static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
|
|
int count, struct perm_bits *perm,
|
|
int offset, __le32 val)
|
|
{
|
|
count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
|
|
if (count < 0)
|
|
return count;
|
|
|
|
/* Fixup and write configured queue size and enable to hardware */
|
|
if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
|
|
__le16 *pflags;
|
|
u16 flags;
|
|
int start, ret;
|
|
|
|
start = vfio_find_cap_start(vdev, pos);
|
|
|
|
pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
|
|
|
|
flags = le16_to_cpu(*pflags);
|
|
|
|
/* MSI is enabled via ioctl */
|
|
if (!is_msi(vdev))
|
|
flags &= ~PCI_MSI_FLAGS_ENABLE;
|
|
|
|
/* Check queue size */
|
|
if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
|
|
flags &= ~PCI_MSI_FLAGS_QSIZE;
|
|
flags |= vdev->msi_qmax << 4;
|
|
}
|
|
|
|
/* Write back to virt and to hardware */
|
|
*pflags = cpu_to_le16(flags);
|
|
ret = pci_user_write_config_word(vdev->pdev,
|
|
start + PCI_MSI_FLAGS,
|
|
flags);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* MSI determination is per-device, so this routine gets used beyond
|
|
* initialization time. Don't add __init
|
|
*/
|
|
static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
|
|
{
|
|
if (alloc_perm_bits(perm, len))
|
|
return -ENOMEM;
|
|
|
|
perm->readfn = vfio_msi_config_read;
|
|
perm->writefn = vfio_msi_config_write;
|
|
|
|
p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
|
|
|
|
/*
|
|
* The upper byte of the control register is reserved,
|
|
* just setup the lower byte.
|
|
*/
|
|
p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
|
|
p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
|
|
if (flags & PCI_MSI_FLAGS_64BIT) {
|
|
p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
|
|
p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
|
|
if (flags & PCI_MSI_FLAGS_MASKBIT) {
|
|
p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
|
|
p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
|
|
}
|
|
} else {
|
|
p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
|
|
if (flags & PCI_MSI_FLAGS_MASKBIT) {
|
|
p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
|
|
p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
|
|
static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
int len, ret;
|
|
u16 flags;
|
|
|
|
ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
|
|
if (ret)
|
|
return pcibios_err_to_errno(ret);
|
|
|
|
len = 10; /* Minimum size */
|
|
if (flags & PCI_MSI_FLAGS_64BIT)
|
|
len += 4;
|
|
if (flags & PCI_MSI_FLAGS_MASKBIT)
|
|
len += 10;
|
|
|
|
if (vdev->msi_perm)
|
|
return len;
|
|
|
|
vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
|
|
if (!vdev->msi_perm)
|
|
return -ENOMEM;
|
|
|
|
ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
|
|
if (ret) {
|
|
kfree(vdev->msi_perm);
|
|
return ret;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/* Determine extended capability length for VC (2 & 9) and MFVC */
|
|
static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
u32 tmp;
|
|
int ret, evcc, phases, vc_arb;
|
|
int len = PCI_CAP_VC_BASE_SIZEOF;
|
|
|
|
ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
|
|
if (ret)
|
|
return pcibios_err_to_errno(ret);
|
|
|
|
evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
|
|
ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
|
|
if (ret)
|
|
return pcibios_err_to_errno(ret);
|
|
|
|
if (tmp & PCI_VC_CAP2_128_PHASE)
|
|
phases = 128;
|
|
else if (tmp & PCI_VC_CAP2_64_PHASE)
|
|
phases = 64;
|
|
else if (tmp & PCI_VC_CAP2_32_PHASE)
|
|
phases = 32;
|
|
else
|
|
phases = 0;
|
|
|
|
vc_arb = phases * 4;
|
|
|
|
/*
|
|
* Port arbitration tables are root & switch only;
|
|
* function arbitration tables are function 0 only.
|
|
* In either case, we'll never let user write them so
|
|
* we don't care how big they are
|
|
*/
|
|
len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
|
|
if (vc_arb) {
|
|
len = round_up(len, 16);
|
|
len += vc_arb / 8;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
u32 dword;
|
|
u16 word;
|
|
u8 byte;
|
|
int ret;
|
|
|
|
switch (cap) {
|
|
case PCI_CAP_ID_MSI:
|
|
return vfio_msi_cap_len(vdev, pos);
|
|
case PCI_CAP_ID_PCIX:
|
|
ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
|
|
if (ret)
|
|
return pcibios_err_to_errno(ret);
|
|
|
|
if (PCI_X_CMD_VERSION(word)) {
|
|
if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
|
|
/* Test for extended capabilities */
|
|
pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
|
|
&dword);
|
|
vdev->extended_caps = (dword != 0);
|
|
}
|
|
return PCI_CAP_PCIX_SIZEOF_V2;
|
|
} else
|
|
return PCI_CAP_PCIX_SIZEOF_V0;
|
|
case PCI_CAP_ID_VNDR:
|
|
/* length follows next field */
|
|
ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
|
|
if (ret)
|
|
return pcibios_err_to_errno(ret);
|
|
|
|
return byte;
|
|
case PCI_CAP_ID_EXP:
|
|
if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
|
|
/* Test for extended capabilities */
|
|
pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
|
|
vdev->extended_caps = (dword != 0);
|
|
}
|
|
|
|
/* length based on version and type */
|
|
if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
|
|
if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
|
|
return 0xc; /* "All Devices" only, no link */
|
|
return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
|
|
} else {
|
|
if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
|
|
return 0x2c; /* No link */
|
|
return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
|
|
}
|
|
case PCI_CAP_ID_HT:
|
|
ret = pci_read_config_byte(pdev, pos + 3, &byte);
|
|
if (ret)
|
|
return pcibios_err_to_errno(ret);
|
|
|
|
return (byte & HT_3BIT_CAP_MASK) ?
|
|
HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
|
|
case PCI_CAP_ID_SATA:
|
|
ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
|
|
if (ret)
|
|
return pcibios_err_to_errno(ret);
|
|
|
|
byte &= PCI_SATA_REGS_MASK;
|
|
if (byte == PCI_SATA_REGS_INLINE)
|
|
return PCI_SATA_SIZEOF_LONG;
|
|
else
|
|
return PCI_SATA_SIZEOF_SHORT;
|
|
default:
|
|
pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n",
|
|
__func__, cap, pos);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
u8 byte;
|
|
u32 dword;
|
|
int ret;
|
|
|
|
switch (ecap) {
|
|
case PCI_EXT_CAP_ID_VNDR:
|
|
ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
|
|
if (ret)
|
|
return pcibios_err_to_errno(ret);
|
|
|
|
return dword >> PCI_VSEC_HDR_LEN_SHIFT;
|
|
case PCI_EXT_CAP_ID_VC:
|
|
case PCI_EXT_CAP_ID_VC9:
|
|
case PCI_EXT_CAP_ID_MFVC:
|
|
return vfio_vc_cap_len(vdev, epos);
|
|
case PCI_EXT_CAP_ID_ACS:
|
|
ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
|
|
if (ret)
|
|
return pcibios_err_to_errno(ret);
|
|
|
|
if (byte & PCI_ACS_EC) {
|
|
int bits;
|
|
|
|
ret = pci_read_config_byte(pdev,
|
|
epos + PCI_ACS_EGRESS_BITS,
|
|
&byte);
|
|
if (ret)
|
|
return pcibios_err_to_errno(ret);
|
|
|
|
bits = byte ? round_up(byte, 32) : 256;
|
|
return 8 + (bits / 8);
|
|
}
|
|
return 8;
|
|
|
|
case PCI_EXT_CAP_ID_REBAR:
|
|
ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
|
|
if (ret)
|
|
return pcibios_err_to_errno(ret);
|
|
|
|
byte &= PCI_REBAR_CTRL_NBAR_MASK;
|
|
byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
|
|
|
|
return 4 + (byte * 8);
|
|
case PCI_EXT_CAP_ID_DPA:
|
|
ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
|
|
if (ret)
|
|
return pcibios_err_to_errno(ret);
|
|
|
|
byte &= PCI_DPA_CAP_SUBSTATE_MASK;
|
|
return PCI_DPA_BASE_SIZEOF + byte + 1;
|
|
case PCI_EXT_CAP_ID_TPH:
|
|
ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
|
|
if (ret)
|
|
return pcibios_err_to_errno(ret);
|
|
|
|
if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
|
|
int sts;
|
|
|
|
sts = dword & PCI_TPH_CAP_ST_MASK;
|
|
sts >>= PCI_TPH_CAP_ST_SHIFT;
|
|
return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
|
|
}
|
|
return PCI_TPH_BASE_SIZEOF;
|
|
default:
|
|
pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n",
|
|
__func__, ecap, epos);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
|
|
int offset, int size)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* We try to read physical config space in the largest chunks
|
|
* we can, assuming that all of the fields support dword access.
|
|
* pci_save_state() makes this same assumption and seems to do ok.
|
|
*/
|
|
while (size) {
|
|
int filled;
|
|
|
|
if (size >= 4 && !(offset % 4)) {
|
|
__le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
|
|
u32 dword;
|
|
|
|
ret = pci_read_config_dword(pdev, offset, &dword);
|
|
if (ret)
|
|
return ret;
|
|
*dwordp = cpu_to_le32(dword);
|
|
filled = 4;
|
|
} else if (size >= 2 && !(offset % 2)) {
|
|
__le16 *wordp = (__le16 *)&vdev->vconfig[offset];
|
|
u16 word;
|
|
|
|
ret = pci_read_config_word(pdev, offset, &word);
|
|
if (ret)
|
|
return ret;
|
|
*wordp = cpu_to_le16(word);
|
|
filled = 2;
|
|
} else {
|
|
u8 *byte = &vdev->vconfig[offset];
|
|
ret = pci_read_config_byte(pdev, offset, byte);
|
|
if (ret)
|
|
return ret;
|
|
filled = 1;
|
|
}
|
|
|
|
offset += filled;
|
|
size -= filled;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vfio_cap_init(struct vfio_pci_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
u8 *map = vdev->pci_config_map;
|
|
u16 status;
|
|
u8 pos, *prev, cap;
|
|
int loops, ret, caps = 0;
|
|
|
|
/* Any capabilities? */
|
|
ret = pci_read_config_word(pdev, PCI_STATUS, &status);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!(status & PCI_STATUS_CAP_LIST))
|
|
return 0; /* Done */
|
|
|
|
ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Mark the previous position in case we want to skip a capability */
|
|
prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
|
|
|
|
/* We can bound our loop, capabilities are dword aligned */
|
|
loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
|
|
while (pos && loops--) {
|
|
u8 next;
|
|
int i, len = 0;
|
|
|
|
ret = pci_read_config_byte(pdev, pos, &cap);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = pci_read_config_byte(pdev,
|
|
pos + PCI_CAP_LIST_NEXT, &next);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* ID 0 is a NULL capability, conflicting with our fake
|
|
* PCI_CAP_ID_BASIC. As it has no content, consider it
|
|
* hidden for now.
|
|
*/
|
|
if (cap && cap <= PCI_CAP_ID_MAX) {
|
|
len = pci_cap_length[cap];
|
|
if (len == 0xFF) { /* Variable length */
|
|
len = vfio_cap_len(vdev, cap, pos);
|
|
if (len < 0)
|
|
return len;
|
|
}
|
|
}
|
|
|
|
if (!len) {
|
|
pci_info(pdev, "%s: hiding cap %#x@%#x\n", __func__,
|
|
cap, pos);
|
|
*prev = next;
|
|
pos = next;
|
|
continue;
|
|
}
|
|
|
|
/* Sanity check, do we overlap other capabilities? */
|
|
for (i = 0; i < len; i++) {
|
|
if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
|
|
continue;
|
|
|
|
pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n",
|
|
__func__, pos + i, map[pos + i], cap);
|
|
}
|
|
|
|
BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
|
|
|
|
memset(map + pos, cap, len);
|
|
ret = vfio_fill_vconfig_bytes(vdev, pos, len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
|
|
pos = next;
|
|
caps++;
|
|
}
|
|
|
|
/* If we didn't fill any capabilities, clear the status flag */
|
|
if (!caps) {
|
|
__le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
|
|
*vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vfio_ecap_init(struct vfio_pci_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
u8 *map = vdev->pci_config_map;
|
|
u16 epos;
|
|
__le32 *prev = NULL;
|
|
int loops, ret, ecaps = 0;
|
|
|
|
if (!vdev->extended_caps)
|
|
return 0;
|
|
|
|
epos = PCI_CFG_SPACE_SIZE;
|
|
|
|
loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
|
|
|
|
while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
|
|
u32 header;
|
|
u16 ecap;
|
|
int i, len = 0;
|
|
bool hidden = false;
|
|
|
|
ret = pci_read_config_dword(pdev, epos, &header);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ecap = PCI_EXT_CAP_ID(header);
|
|
|
|
if (ecap <= PCI_EXT_CAP_ID_MAX) {
|
|
len = pci_ext_cap_length[ecap];
|
|
if (len == 0xFF) {
|
|
len = vfio_ext_cap_len(vdev, ecap, epos);
|
|
if (len < 0)
|
|
return len;
|
|
}
|
|
}
|
|
|
|
if (!len) {
|
|
pci_info(pdev, "%s: hiding ecap %#x@%#x\n",
|
|
__func__, ecap, epos);
|
|
|
|
/* If not the first in the chain, we can skip over it */
|
|
if (prev) {
|
|
u32 val = epos = PCI_EXT_CAP_NEXT(header);
|
|
*prev &= cpu_to_le32(~(0xffcU << 20));
|
|
*prev |= cpu_to_le32(val << 20);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, fill in a placeholder, the direct
|
|
* readfn will virtualize this automatically
|
|
*/
|
|
len = PCI_CAP_SIZEOF;
|
|
hidden = true;
|
|
}
|
|
|
|
for (i = 0; i < len; i++) {
|
|
if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
|
|
continue;
|
|
|
|
pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n",
|
|
__func__, epos + i, map[epos + i], ecap);
|
|
}
|
|
|
|
/*
|
|
* Even though ecap is 2 bytes, we're currently a long way
|
|
* from exceeding 1 byte capabilities. If we ever make it
|
|
* up to 0xFE we'll need to up this to a two-byte, byte map.
|
|
*/
|
|
BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
|
|
|
|
memset(map + epos, ecap, len);
|
|
ret = vfio_fill_vconfig_bytes(vdev, epos, len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* If we're just using this capability to anchor the list,
|
|
* hide the real ID. Only count real ecaps. XXX PCI spec
|
|
* indicates to use cap id = 0, version = 0, next = 0 if
|
|
* ecaps are absent, hope users check all the way to next.
|
|
*/
|
|
if (hidden)
|
|
*(__le32 *)&vdev->vconfig[epos] &=
|
|
cpu_to_le32((0xffcU << 20));
|
|
else
|
|
ecaps++;
|
|
|
|
prev = (__le32 *)&vdev->vconfig[epos];
|
|
epos = PCI_EXT_CAP_NEXT(header);
|
|
}
|
|
|
|
if (!ecaps)
|
|
*(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Nag about hardware bugs, hopefully to have vendors fix them, but at least
|
|
* to collect a list of dependencies for the VF INTx pin quirk below.
|
|
*/
|
|
static const struct pci_device_id known_bogus_vf_intx_pin[] = {
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
|
|
{}
|
|
};
|
|
|
|
/*
|
|
* For each device we allocate a pci_config_map that indicates the
|
|
* capability occupying each dword and thus the struct perm_bits we
|
|
* use for read and write. We also allocate a virtualized config
|
|
* space which tracks reads and writes to bits that we emulate for
|
|
* the user. Initial values filled from device.
|
|
*
|
|
* Using shared struct perm_bits between all vfio-pci devices saves
|
|
* us from allocating cfg_size buffers for virt and write for every
|
|
* device. We could remove vconfig and allocate individual buffers
|
|
* for each area requiring emulated bits, but the array of pointers
|
|
* would be comparable in size (at least for standard config space).
|
|
*/
|
|
int vfio_config_init(struct vfio_pci_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
u8 *map, *vconfig;
|
|
int ret;
|
|
|
|
/*
|
|
* Config space, caps and ecaps are all dword aligned, so we could
|
|
* use one byte per dword to record the type. However, there are
|
|
* no requiremenst on the length of a capability, so the gap between
|
|
* capabilities needs byte granularity.
|
|
*/
|
|
map = kmalloc(pdev->cfg_size, GFP_KERNEL);
|
|
if (!map)
|
|
return -ENOMEM;
|
|
|
|
vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
|
|
if (!vconfig) {
|
|
kfree(map);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
vdev->pci_config_map = map;
|
|
vdev->vconfig = vconfig;
|
|
|
|
memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
|
|
memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
|
|
pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
|
|
|
|
ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
|
|
if (ret)
|
|
goto out;
|
|
|
|
vdev->bardirty = true;
|
|
|
|
/*
|
|
* XXX can we just pci_load_saved_state/pci_restore_state?
|
|
* may need to rebuild vconfig after that
|
|
*/
|
|
|
|
/* For restore after reset */
|
|
vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
|
|
vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
|
|
vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
|
|
vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
|
|
vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
|
|
vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
|
|
vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
|
|
|
|
if (pdev->is_virtfn) {
|
|
*(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
|
|
*(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
|
|
|
|
/*
|
|
* Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
|
|
* does not apply to VFs and VFs must implement this register
|
|
* as read-only with value zero. Userspace is not readily able
|
|
* to identify whether a device is a VF and thus that the pin
|
|
* definition on the device is bogus should it violate this
|
|
* requirement. We already virtualize the pin register for
|
|
* other purposes, so we simply need to replace the bogus value
|
|
* and consider VFs when we determine INTx IRQ count.
|
|
*/
|
|
if (vconfig[PCI_INTERRUPT_PIN] &&
|
|
!pci_match_id(known_bogus_vf_intx_pin, pdev))
|
|
pci_warn(pdev,
|
|
"Hardware bug: VF reports bogus INTx pin %d\n",
|
|
vconfig[PCI_INTERRUPT_PIN]);
|
|
|
|
vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
|
|
}
|
|
if (pdev->no_command_memory) {
|
|
/*
|
|
* VFs and devices that set pdev->no_command_memory do not
|
|
* implement the memory enable bit of the COMMAND register
|
|
* therefore we'll not have it set in our initial copy of
|
|
* config space after pci_enable_device(). For consistency
|
|
* with PFs, set the virtual enable bit here.
|
|
*/
|
|
*(__le16 *)&vconfig[PCI_COMMAND] |=
|
|
cpu_to_le16(PCI_COMMAND_MEMORY);
|
|
}
|
|
|
|
if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
|
|
vconfig[PCI_INTERRUPT_PIN] = 0;
|
|
|
|
ret = vfio_cap_init(vdev);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = vfio_ecap_init(vdev);
|
|
if (ret)
|
|
goto out;
|
|
|
|
return 0;
|
|
|
|
out:
|
|
kfree(map);
|
|
vdev->pci_config_map = NULL;
|
|
kfree(vconfig);
|
|
vdev->vconfig = NULL;
|
|
return pcibios_err_to_errno(ret);
|
|
}
|
|
|
|
void vfio_config_free(struct vfio_pci_device *vdev)
|
|
{
|
|
kfree(vdev->vconfig);
|
|
vdev->vconfig = NULL;
|
|
kfree(vdev->pci_config_map);
|
|
vdev->pci_config_map = NULL;
|
|
if (vdev->msi_perm) {
|
|
free_perm_bits(vdev->msi_perm);
|
|
kfree(vdev->msi_perm);
|
|
vdev->msi_perm = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find the remaining number of bytes in a dword that match the given
|
|
* position. Stop at either the end of the capability or the dword boundary.
|
|
*/
|
|
static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
|
|
loff_t pos)
|
|
{
|
|
u8 cap = vdev->pci_config_map[pos];
|
|
size_t i;
|
|
|
|
for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
|
|
/* nop */;
|
|
|
|
return i;
|
|
}
|
|
|
|
static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
|
|
size_t count, loff_t *ppos, bool iswrite)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
struct perm_bits *perm;
|
|
__le32 val = 0;
|
|
int cap_start = 0, offset;
|
|
u8 cap_id;
|
|
ssize_t ret;
|
|
|
|
if (*ppos < 0 || *ppos >= pdev->cfg_size ||
|
|
*ppos + count > pdev->cfg_size)
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* Chop accesses into aligned chunks containing no more than a
|
|
* single capability. Caller increments to the next chunk.
|
|
*/
|
|
count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
|
|
if (count >= 4 && !(*ppos % 4))
|
|
count = 4;
|
|
else if (count >= 2 && !(*ppos % 2))
|
|
count = 2;
|
|
else
|
|
count = 1;
|
|
|
|
ret = count;
|
|
|
|
cap_id = vdev->pci_config_map[*ppos];
|
|
|
|
if (cap_id == PCI_CAP_ID_INVALID) {
|
|
perm = &unassigned_perms;
|
|
cap_start = *ppos;
|
|
} else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
|
|
perm = &virt_perms;
|
|
cap_start = *ppos;
|
|
} else {
|
|
if (*ppos >= PCI_CFG_SPACE_SIZE) {
|
|
WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
|
|
|
|
perm = &ecap_perms[cap_id];
|
|
cap_start = vfio_find_cap_start(vdev, *ppos);
|
|
} else {
|
|
WARN_ON(cap_id > PCI_CAP_ID_MAX);
|
|
|
|
perm = &cap_perms[cap_id];
|
|
|
|
if (cap_id == PCI_CAP_ID_MSI)
|
|
perm = vdev->msi_perm;
|
|
|
|
if (cap_id > PCI_CAP_ID_BASIC)
|
|
cap_start = vfio_find_cap_start(vdev, *ppos);
|
|
}
|
|
}
|
|
|
|
WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
|
|
WARN_ON(cap_start > *ppos);
|
|
|
|
offset = *ppos - cap_start;
|
|
|
|
if (iswrite) {
|
|
if (!perm->writefn)
|
|
return ret;
|
|
|
|
if (copy_from_user(&val, buf, count))
|
|
return -EFAULT;
|
|
|
|
ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
|
|
} else {
|
|
if (perm->readfn) {
|
|
ret = perm->readfn(vdev, *ppos, count,
|
|
perm, offset, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
if (copy_to_user(buf, &val, count))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
|
|
size_t count, loff_t *ppos, bool iswrite)
|
|
{
|
|
size_t done = 0;
|
|
int ret = 0;
|
|
loff_t pos = *ppos;
|
|
|
|
pos &= VFIO_PCI_OFFSET_MASK;
|
|
|
|
while (count) {
|
|
ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
count -= ret;
|
|
done += ret;
|
|
buf += ret;
|
|
pos += ret;
|
|
}
|
|
|
|
*ppos += done;
|
|
|
|
return done;
|
|
}
|