OpenCloudOS-Kernel/drivers/thirdparty/mpt3sas/mpt3sas_ctl.c

4925 lines
143 KiB
C
Executable File

/*
* Management Module Support for MPT (Message Passing Technology) based
* controllers
*
* This code is based on drivers/scsi/mpt3sas/mpt3sas_ctl.c
* Copyright (C) 2013-2021 LSI Corporation
* Copyright (C) 2013-2021 Avago Technologies
* Copyright (C) 2013-2021 Broadcom Inc.
* (mailto:MPT-FusionLinux.pdl@broadcom.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* NO WARRANTY
* THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
* LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
* solely responsible for determining the appropriateness of using and
* distributing the Program and assumes all risks associated with its
* exercise of rights under this Agreement, including but not limited to
* the risks and costs of program errors, damage to or loss of data,
* programs or equipment, and unavailability or interruption of operations.
* DISCLAIMER OF LIABILITY
* NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
* HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
* USA.
*/
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/compat.h>
#include <linux/poll.h>
#include <linux/io.h>
#include <asm/uaccess.h>
#include "mpt3sas_base.h"
#include "mpt3sas_ctl.h"
static struct fasync_struct *async_queue;
static DECLARE_WAIT_QUEUE_HEAD(ctl_poll_wait);
#ifdef MPT2SAS_WD_DDIOCOUNT
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,25))
ssize_t
_ctl_ioc_ddio_count_show(struct device *cdev, struct device_attribute *attr,
char *buf);
static DEVICE_ATTR(ddio_count, S_IRUGO,
_ctl_ioc_ddio_count_show, NULL);
#else
ssize_t
_ctl_ioc_ddio_count_show(struct class_device *cdev, char *buf);
static CLASS_DEVICE_ATTR(ddio_count, S_IRUGO,
_ctl_ioc_ddio_count_show, NULL);
#endif
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,25))
ssize_t
_ctl_ioc_ddio_err_count_show(struct device *cdev, struct device_attribute *attr,
char *buf);
static DEVICE_ATTR(ddio_err_count, S_IRUGO,
_ctl_ioc_ddio_err_count_show, NULL);
#else
ssize_t
_ctl_ioc_ddio_err_count_show(struct class_device *cdev, char *buf);
static CLASS_DEVICE_ATTR(ddio_err_count, S_IRUGO,
_ctl_ioc_ddio_err_count_show, NULL);
#endif
#endif /* End of MPT2SAS_WD_DDIOCOUNT */
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,25))
ssize_t
_ctl_BRM_status_show(struct device *cdev, struct device_attribute *attr,
char *buf);
static DEVICE_ATTR(BRM_status, S_IRUGO, _ctl_BRM_status_show, NULL);
#else
ssize_t
_ctl_BRM_status_show(struct class_device *cdev, char *buf);
static CLASS_DEVICE_ATTR(BRM_status, S_IRUGO, _ctl_BRM_status_show, NULL);
#endif
/**
* enum block_state - blocking state
* @NON_BLOCKING: non blocking
* @BLOCKING: blocking
*
* These states are for ioctls that need to wait for a response
* from firmware, so they probably require sleep.
*/
enum block_state {
NON_BLOCKING,
BLOCKING,
};
/**
* _ctl_display_some_debug - debug routine
* @ioc: per adapter object
* @smid: system request message index
* @calling_function_name: string pass from calling function
* @mpi_reply: reply message frame
* Context: none.
*
* Function for displaying debug info helpful when debugging issues
* in this module.
*/
static void
_ctl_display_some_debug(struct MPT3SAS_ADAPTER *ioc, u16 smid,
char *calling_function_name, MPI2DefaultReply_t *mpi_reply)
{
Mpi2ConfigRequest_t *mpi_request;
char *desc = NULL;
if (!(ioc->logging_level & MPT_DEBUG_IOCTL))
return;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
switch (mpi_request->Function) {
case MPI2_FUNCTION_SCSI_IO_REQUEST:
{
Mpi2SCSIIORequest_t *scsi_request =
(Mpi2SCSIIORequest_t *)mpi_request;
snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
"scsi_io, cmd(0x%02x), cdb_len(%d)",
scsi_request->CDB.CDB32[0],
le16_to_cpu(scsi_request->IoFlags) & 0xF);
desc = ioc->tmp_string;
break;
}
case MPI2_FUNCTION_SCSI_TASK_MGMT:
desc = "task_mgmt";
break;
case MPI2_FUNCTION_IOC_INIT:
desc = "ioc_init";
break;
case MPI2_FUNCTION_IOC_FACTS:
desc = "ioc_facts";
break;
case MPI2_FUNCTION_CONFIG:
{
Mpi2ConfigRequest_t *config_request =
(Mpi2ConfigRequest_t *)mpi_request;
snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
"config, type(0x%02x), ext_type(0x%02x), number(%d)",
(config_request->Header.PageType &
MPI2_CONFIG_PAGETYPE_MASK), config_request->ExtPageType,
config_request->Header.PageNumber);
desc = ioc->tmp_string;
break;
}
case MPI2_FUNCTION_PORT_FACTS:
desc = "port_facts";
break;
case MPI2_FUNCTION_PORT_ENABLE:
desc = "port_enable";
break;
case MPI2_FUNCTION_EVENT_NOTIFICATION:
desc = "event_notification";
break;
case MPI2_FUNCTION_FW_DOWNLOAD:
desc = "fw_download";
break;
case MPI2_FUNCTION_FW_UPLOAD:
desc = "fw_upload";
break;
case MPI2_FUNCTION_RAID_ACTION:
desc = "raid_action";
break;
case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
{
Mpi2SCSIIORequest_t *scsi_request =
(Mpi2SCSIIORequest_t *)mpi_request;
snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
"raid_pass, cmd(0x%02x), cdb_len(%d)",
scsi_request->CDB.CDB32[0],
le16_to_cpu(scsi_request->IoFlags) & 0xF);
desc = ioc->tmp_string;
break;
}
case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
desc = "sas_iounit_cntl";
break;
case MPI2_FUNCTION_SATA_PASSTHROUGH:
desc = "sata_pass";
break;
case MPI2_FUNCTION_DIAG_BUFFER_POST:
desc = "diag_buffer_post";
break;
case MPI2_FUNCTION_DIAG_RELEASE:
desc = "diag_release";
break;
case MPI2_FUNCTION_SMP_PASSTHROUGH:
desc = "smp_passthrough";
break;
case MPI2_FUNCTION_TOOLBOX:
desc = "toolbox";
break;
case MPI2_FUNCTION_NVME_ENCAPSULATED:
desc = "nvme_encapsulated";
break;
}
if (!desc)
return;
printk(MPT3SAS_INFO_FMT "%s: %s, smid(%d)\n",
ioc->name, calling_function_name, desc, smid);
if (!mpi_reply)
return;
if (mpi_reply->IOCStatus || mpi_reply->IOCLogInfo)
printk(MPT3SAS_INFO_FMT
"\tiocstatus(0x%04x), loginfo(0x%08x)\n",
ioc->name, le16_to_cpu(mpi_reply->IOCStatus),
le32_to_cpu(mpi_reply->IOCLogInfo));
if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
mpi_request->Function ==
MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
Mpi2SCSIIOReply_t *scsi_reply =
(Mpi2SCSIIOReply_t *)mpi_reply;
struct _sas_device *sas_device = NULL;
struct _pcie_device *pcie_device = NULL;
sas_device = mpt3sas_get_sdev_by_handle(ioc,
le16_to_cpu(scsi_reply->DevHandle));
if (sas_device) {
printk(MPT3SAS_WARN_FMT "\tsas_address(0x%016llx), "
"phy(%d)\n", ioc->name, (unsigned long long)
sas_device->sas_address, sas_device->phy);
if(sas_device->enclosure_handle != 0)
printk(MPT3SAS_WARN_FMT
"\tenclosure_logical_id(0x%016llx), slot(%d)\n",
ioc->name, (unsigned long long)
sas_device->enclosure_logical_id, sas_device->slot);
sas_device_put(sas_device);
}
if (!sas_device) {
pcie_device = mpt3sas_get_pdev_by_handle(ioc,
le16_to_cpu(scsi_reply->DevHandle));
if (pcie_device) {
printk(MPT3SAS_WARN_FMT "\tWWID(0x%016llx), "
"port(%d)\n", ioc->name, (unsigned long long)
pcie_device->wwid, pcie_device->port_num);
if(pcie_device->enclosure_handle != 0)
printk(MPT3SAS_WARN_FMT
"\tenclosure_logical_id(0x%016llx), slot(%d)\n",
ioc->name, (unsigned long long)
pcie_device->enclosure_logical_id,pcie_device->slot);
pcie_device_put(pcie_device);
}
}
if (scsi_reply->SCSIState || scsi_reply->SCSIStatus)
printk(MPT3SAS_INFO_FMT
"\tscsi_state(0x%02x), scsi_status"
"(0x%02x)\n", ioc->name,
scsi_reply->SCSIState,
scsi_reply->SCSIStatus);
}
}
/**
* mpt3sas_ctl_done - ctl module completion routine
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
* Context: none.
*
* The callback handler when using ioc->ctl_cb_idx.
*
* Return 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
u8
mpt3sas_ctl_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
Mpi2SCSIIOReply_t *scsiio_reply;
Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply;
const void *sense_data;
u32 sz;
if (ioc->ctl_cmds.status == MPT3_CMD_NOT_USED)
return 1;
if (ioc->ctl_cmds.smid != smid)
return 1;
ioc->ctl_cmds.status |= MPT3_CMD_COMPLETE;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (mpi_reply) {
memcpy(ioc->ctl_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
ioc->ctl_cmds.status |= MPT3_CMD_REPLY_VALID;
/* get sense data */
if (mpi_reply->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
mpi_reply->Function ==
MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
scsiio_reply = (Mpi2SCSIIOReply_t *)mpi_reply;
if (scsiio_reply->SCSIState &
MPI2_SCSI_STATE_AUTOSENSE_VALID) {
sz = min_t(u32, SCSI_SENSE_BUFFERSIZE,
le32_to_cpu(scsiio_reply->SenseCount));
sense_data = mpt3sas_base_get_sense_buffer(ioc,
smid);
memcpy(ioc->ctl_cmds.sense, sense_data, sz);
}
}
/*
* Get Error Response data for NVMe device. The ctl_cmds.sense
* buffer is used to store the Error Response data.
*/
if (mpi_reply->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
nvme_error_reply =
(Mpi26NVMeEncapsulatedErrorReply_t *)mpi_reply;
sz = min_t(u32, NVME_ERROR_RESPONSE_SIZE,
le16_to_cpu(nvme_error_reply->ErrorResponseCount));
sense_data = mpt3sas_base_get_sense_buffer(ioc, smid);
memcpy(ioc->ctl_cmds.sense, sense_data, sz);
}
}
_ctl_display_some_debug(ioc, smid, "ctl_done", mpi_reply);
ioc->ctl_cmds.status &= ~MPT3_CMD_PENDING;
complete(&ioc->ctl_cmds.done);
return 1;
}
/**
* _ctl_check_event_type - determines when an event needs logging
* @ioc: per adapter object
* @event: firmware event
*
* The bitmask in ioc->event_type[] indicates which events should be
* be saved in the driver event_log. This bitmask is set by application.
*
* Returns 1 when event should be captured, or zero means no match.
*/
static int
_ctl_check_event_type(struct MPT3SAS_ADAPTER *ioc, u16 event)
{
u16 i;
u32 desired_event;
if (event >= 128 || !event || !ioc->event_log)
return 0;
desired_event = (1 << (event % 32));
if (!desired_event)
desired_event = 1;
i = event / 32;
return desired_event & ioc->event_type[i];
}
/**
* mpt3sas_ctl_add_to_event_log - add event
* @ioc: per adapter object
* @mpi_reply: reply message frame
*
* Return nothing.
*/
void
mpt3sas_ctl_add_to_event_log(struct MPT3SAS_ADAPTER *ioc,
Mpi2EventNotificationReply_t *mpi_reply)
{
struct MPT3_IOCTL_EVENTS *event_log;
u16 event;
int i;
u32 sz, event_data_sz;
u8 send_aen = 0;
if (!ioc->event_log)
return;
event = le16_to_cpu(mpi_reply->Event);
if (_ctl_check_event_type(ioc, event)) {
/* insert entry into circular event_log */
i = ioc->event_context % MPT3SAS_CTL_EVENT_LOG_SIZE;
event_log = ioc->event_log;
event_log[i].event = event;
event_log[i].context = ioc->event_context++;
event_data_sz = le16_to_cpu(mpi_reply->EventDataLength)*4;
sz = min_t(u32, event_data_sz, MPT3_EVENT_DATA_SIZE);
memset(event_log[i].data, 0, MPT3_EVENT_DATA_SIZE);
memcpy(event_log[i].data, mpi_reply->EventData, sz);
send_aen = 1;
}
/* This aen_event_read_flag flag is set until the
* application has read the event log.
* For MPI2_EVENT_LOG_ENTRY_ADDED, we always notify.
*/
if (event == MPI2_EVENT_LOG_ENTRY_ADDED ||
(send_aen && !ioc->aen_event_read_flag)) {
ioc->aen_event_read_flag = 1;
wake_up_interruptible(&ctl_poll_wait);
if (async_queue)
kill_fasync(&async_queue, SIGIO, POLL_IN);
}
}
/**
* mpt3sas_ctl_event_callback - firmware event handler (called at ISR time)
* @ioc: per adapter object
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
* Context: interrupt.
*
* This function merely adds a new work task into ioc->firmware_event_thread.
* The tasks are worked from _firmware_event_work in user context.
*
* Return 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
u8
mpt3sas_ctl_event_callback(struct MPT3SAS_ADAPTER *ioc, u8 msix_index,
u32 reply)
{
Mpi2EventNotificationReply_t *mpi_reply;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (mpi_reply)
mpt3sas_ctl_add_to_event_log(ioc, mpi_reply);
return 1;
}
/**
* _ctl_verify_adapter - validates ioc_number passed from application
* @ioc: per adapter object
* @iocpp: The ioc pointer is returned in this.
* @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device &
* MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device.
*
* Return (-1) means error, else ioc_number.
*/
static int
_ctl_verify_adapter(int ioc_number, struct MPT3SAS_ADAPTER **iocpp,
int mpi_version)
{
struct MPT3SAS_ADAPTER *ioc;
int version = 0;
spin_lock(&gioc_lock);
list_for_each_entry(ioc, &mpt3sas_ioc_list, list) {
if (ioc->id != ioc_number)
continue;
/* Check whether this ioctl command is from right
* ioctl device or not, if not continue the search.
*/
version = ioc->hba_mpi_version_belonged;
if (mpi_version == (MPI25_VERSION | MPI26_VERSION)){
if ((version == MPI25_VERSION) || (version == MPI26_VERSION))
goto out;
else
continue;
}
else
if (version != mpi_version)
continue;
out:
spin_unlock(&gioc_lock);
*iocpp = ioc;
return ioc_number;
}
spin_unlock(&gioc_lock);
*iocpp = NULL;
return -1;
}
void
mpt3sas_ctl_clear_outstanding_ioctls(struct MPT3SAS_ADAPTER *ioc)
{
if (ioc->ctl_cmds.status & MPT3_CMD_PENDING) {
ioc->ctl_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->ctl_cmds.smid);
complete(&ioc->ctl_cmds.done);
}
if (ioc->ctl_diag_cmds.status & MPT3_CMD_PENDING) {
ioc->ctl_diag_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->ctl_diag_cmds.smid);
complete(&ioc->ctl_diag_cmds.done);
}
}
/**
* mpt3sas_ctl_reset_handler - reset callback handler (for ctl)
* @ioc: per adapter object
* @reset_phase: phase
*
* The handler for doing any required cleanup or initialization.
*
* The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
* MPT3_IOC_DONE_RESET
*/
void
mpt3sas_ctl_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
{
int i;
u8 issue_reset;
switch (reset_phase) {
case MPT3_IOC_PRE_RESET:
dtmprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: "
"MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
if (!(ioc->diag_buffer_status[i] &
MPT3_DIAG_BUFFER_IS_REGISTERED))
continue;
if ((ioc->diag_buffer_status[i] &
MPT3_DIAG_BUFFER_IS_RELEASED))
continue;
/* add a log message to indicate the release */
printk(MPT3SAS_INFO_FMT "%s: Releasing the trace buffer "
"due to adapter reset.", ioc->name, __func__);
ioc->htb_rel.buffer_rel_condition =
MPT3_DIAG_BUFFER_REL_TRIGGER;
mpt3sas_send_diag_release(ioc, i, &issue_reset);
}
break;
case MPT3_IOC_AFTER_RESET:
dtmprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: "
"MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
mpt3sas_ctl_clear_outstanding_ioctls(ioc);
break;
case MPT3_IOC_DONE_RESET:
dtmprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: "
"MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
if (!(ioc->diag_buffer_status[i] &
MPT3_DIAG_BUFFER_IS_REGISTERED))
continue;
if ((ioc->diag_buffer_status[i] &
MPT3_DIAG_BUFFER_IS_RELEASED))
continue;
ioc->diag_buffer_status[i] |=
MPT3_DIAG_BUFFER_IS_DIAG_RESET;
}
break;
}
}
/**
* _ctl_fasync -
* @fd -
* @filep -
* @mode -
*
* Called when application request fasyn callback handler.
*/
static int
_ctl_fasync(int fd, struct file *filep, int mode)
{
return fasync_helper(fd, filep, mode, &async_queue);
}
/**
* ctl_release -
* @inode -
* @filep -
*
* Called when application releases the fasyn callback handler.
*/
int
ctl_release(struct inode *inode, struct file *filep)
{
return fasync_helper(-1, filep, 0, &async_queue);
}
/**
* _ctl_poll -
* @file -
* @wait -
*
*/
static unsigned int
_ctl_poll(struct file *filep, poll_table *wait)
{
struct MPT3SAS_ADAPTER *ioc;
poll_wait(filep, &ctl_poll_wait, wait);
spin_lock(&gioc_lock);
list_for_each_entry(ioc, &mpt3sas_ioc_list, list) {
if (ioc->aen_event_read_flag) {
spin_unlock(&gioc_lock);
return POLLIN | POLLRDNORM;
}
}
spin_unlock(&gioc_lock);
return 0;
}
/**
* _ctl_set_task_mid - assign an active smid to tm request
* @ioc: per adapter object
* @karg - (struct mpt3_ioctl_command)
* @tm_request - pointer to mf from user space
*
* Returns 0 when an smid if found, else fail.
* during failure, the reply frame is filled.
*/
static int
_ctl_set_task_mid(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command *karg,
Mpi2SCSITaskManagementRequest_t *tm_request)
{
u8 found = 0;
u16 smid;
u16 handle;
struct scsi_cmnd *scmd;
struct MPT3SAS_DEVICE *priv_data;
Mpi2SCSITaskManagementReply_t *tm_reply;
u32 sz;
u32 lun;
char *desc = NULL;
struct scsiio_tracker *st = NULL;
if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK)
desc = "abort_task";
else if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK)
desc = "query_task";
else
return 0;
lun = mpt_scsilun_to_int((struct scsi_lun *)tm_request->LUN);
handle = le16_to_cpu(tm_request->DevHandle);
for (smid = ioc->shost->can_queue; smid && !found; smid--) {
scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
if (scmd == NULL || scmd->device == NULL ||
scmd->device->hostdata == NULL)
continue;
if (lun != scmd->device->lun)
continue;
priv_data = scmd->device->hostdata;
if (priv_data->sas_target == NULL)
continue;
if (priv_data->sas_target->handle != handle)
continue;
st = mpt3sas_base_scsi_cmd_priv(scmd);
if ((!st) || (st->smid == 0))
continue;
/*
* If the given TaskMID from the user space is zero, then the
* first outstanding smid will be picked up. Otherwise,
* targeted smid will be the one.
*/
if (!tm_request->TaskMID || tm_request->TaskMID == st->smid) {
tm_request->TaskMID = cpu_to_le16(st->smid);
found = 1;
}
}
if (!found) {
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: "
"handle(0x%04x), lun(%d), no active mid!!\n", ioc->name,
desc, le16_to_cpu(tm_request->DevHandle), lun));
tm_reply = ioc->ctl_cmds.reply;
tm_reply->DevHandle = tm_request->DevHandle;
tm_reply->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
tm_reply->TaskType = tm_request->TaskType;
tm_reply->MsgLength = sizeof(Mpi2SCSITaskManagementReply_t)/4;
tm_reply->VP_ID = tm_request->VP_ID;
tm_reply->VF_ID = tm_request->VF_ID;
sz = min_t(u32, karg->max_reply_bytes, ioc->reply_sz);
if (copy_to_user(karg->reply_frame_buf_ptr, ioc->ctl_cmds.reply,
sz))
printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
__LINE__, __func__);
return 1;
}
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: "
"handle(0x%04x), lun(%d), task_mid(%d)\n", ioc->name,
desc, le16_to_cpu(tm_request->DevHandle), lun,
le16_to_cpu(tm_request->TaskMID)));
return 0;
}
/**
* _ctl_do_mpt_command - main handler for MPT3COMMAND opcode
* @ioc: per adapter object
* @karg - (struct mpt3_ioctl_command)
* @mf - pointer to mf in user space
*/
static long
_ctl_do_mpt_command(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command karg,
void __user *mf)
{
MPI2RequestHeader_t *mpi_request = NULL, *request;
MPI2DefaultReply_t *mpi_reply;
Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL;
struct _pcie_device *pcie_device = NULL;
u16 smid;
unsigned long timeout;
u8 issue_reset;
u32 sz, sz_arg;
void *psge;
void *data_out = NULL;
dma_addr_t data_out_dma = 0;
size_t data_out_sz = 0;
void *data_in = NULL;
dma_addr_t data_in_dma = 0;
size_t data_in_sz = 0;
long ret;
u16 device_handle = MPT3SAS_INVALID_DEVICE_HANDLE;
issue_reset = 0;
if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
printk(MPT3SAS_ERR_FMT "%s: ctl_cmd in use\n",
ioc->name, __func__);
ret = -EAGAIN;
goto out;
}
ret = mpt3sas_wait_for_ioc_to_operational(ioc, 10);
if (ret)
goto out;
mpi_request = kzalloc(ioc->request_sz, GFP_KERNEL);
if (!mpi_request) {
printk(MPT3SAS_ERR_FMT "%s: failed obtaining a memory for "
"mpi_request\n", ioc->name, __func__);
ret = -ENOMEM;
goto out;
}
/* Check for overflow and wraparound */
if (karg.data_sge_offset * 4 > ioc->request_sz ||
karg.data_sge_offset > (UINT_MAX / 4)) {
ret = -EINVAL;
goto out;
}
/* copy in request message frame from user */
if (copy_from_user(mpi_request, mf, karg.data_sge_offset*4)) {
printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__, __LINE__,
__func__);
ret = -EFAULT;
goto out;
}
if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
smid = mpt3sas_base_get_smid_hpr(ioc, ioc->ctl_cb_idx);
if (!smid) {
printk(MPT3SAS_ERR_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
ret = -EAGAIN;
goto out;
}
} else {
/* Use first reserved smid for passthrough ioctls */
smid = ioc->shost->can_queue + INTERNAL_SCSIIO_FOR_IOCTL;
}
ret = 0;
ioc->ctl_cmds.status = MPT3_CMD_PENDING;
memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
request = mpt3sas_base_get_msg_frame(ioc, smid);
memset(request, 0, ioc->request_sz);
memcpy(request, mpi_request, karg.data_sge_offset*4);
ioc->ctl_cmds.smid = smid;
data_out_sz = karg.data_out_size;
data_in_sz = karg.data_in_size;
if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT ||
mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH ||
mpi_request->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
device_handle = le16_to_cpu(mpi_request->FunctionDependent1);
if (!device_handle || (device_handle > ioc->facts.MaxDevHandle)) {
ret = -EINVAL;
mpt3sas_base_free_smid(ioc, smid);
goto out;
}
}
/* obtain dma-able memory for data transfer */
if (data_out_sz) /* WRITE */ {
data_out = pci_alloc_consistent(ioc->pdev, data_out_sz,
&data_out_dma);
if (!data_out) {
printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
__LINE__, __func__);
ret = -ENOMEM;
mpt3sas_base_free_smid(ioc, smid);
goto out;
}
if (copy_from_user(data_out, karg.data_out_buf_ptr,
data_out_sz)) {
printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
__LINE__, __func__);
ret = -EFAULT;
mpt3sas_base_free_smid(ioc, smid);
goto out;
}
}
if (data_in_sz) /* READ */ {
data_in = pci_alloc_consistent(ioc->pdev, data_in_sz,
&data_in_dma);
if (!data_in) {
printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
__LINE__, __func__);
ret = -ENOMEM;
mpt3sas_base_free_smid(ioc, smid);
goto out;
}
}
psge = (void *)request + (karg.data_sge_offset*4);
/* send command to firmware */
_ctl_display_some_debug(ioc, smid, "ctl_request", NULL);
init_completion(&ioc->ctl_cmds.done);
switch (mpi_request->Function) {
case MPI2_FUNCTION_NVME_ENCAPSULATED:
{
nvme_encap_request = (Mpi26NVMeEncapsulatedRequest_t *)request;
if (!ioc->pcie_sg_lookup) {
dtmprintk(ioc, printk(MPT3SAS_INFO_FMT
"HBA doesn't supports NVMe."
" Hence rejecting NVMe Encapsulated request.\n",
ioc->name));
if (ioc->logging_level & MPT_DEBUG_TM)
_debug_dump_mf(nvme_encap_request, ioc->request_sz/4);
mpt3sas_base_free_smid(ioc, smid);
ret = -EINVAL;
goto out;
}
/*
* Get the Physical Address of the sense buffer.
* Use Error Response buffer address field to hold the sense
* buffer address.
* Clear the internal sense buffer, which will potentially hold
* the Completion Queue Entry on return, or 0 if no Entry.
* Build the PRPs and set direction bits.
* Send the request.
*/
nvme_encap_request->ErrorResponseBaseAddress =
cpu_to_le64(ioc->sense_dma & 0xFFFFFFFF00000000UL);
nvme_encap_request->ErrorResponseBaseAddress |=
cpu_to_le64(le32_to_cpu(
mpt3sas_base_get_sense_buffer_dma(ioc, smid)));
nvme_encap_request->ErrorResponseAllocationLength =
cpu_to_le16(NVME_ERROR_RESPONSE_SIZE);
memset(ioc->ctl_cmds.sense, 0, NVME_ERROR_RESPONSE_SIZE);
ioc->build_nvme_prp(ioc, smid, nvme_encap_request,
data_out_dma, data_out_sz, data_in_dma, data_in_sz);
if (test_bit(device_handle, ioc->device_remove_in_progress)) {
dtmprintk(ioc, printk(MPT3SAS_INFO_FMT "handle(0x%04x) :"
"ioctl failed due to device removal in progress\n",
ioc->name, device_handle));
mpt3sas_base_free_smid(ioc, smid);
ret = -EINVAL;
goto out;
}
ioc->put_smid_nvme_encap(ioc, smid);
break;
}
case MPI2_FUNCTION_SCSI_IO_REQUEST:
case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
{
Mpi2SCSIIORequest_t *scsiio_request =
(Mpi2SCSIIORequest_t *)request;
scsiio_request->SenseBufferLength = SCSI_SENSE_BUFFERSIZE;
scsiio_request->SenseBufferLowAddress =
mpt3sas_base_get_sense_buffer_dma(ioc, smid);
memset(ioc->ctl_cmds.sense, 0, SCSI_SENSE_BUFFERSIZE);
ioc->build_sg(ioc, psge, data_out_dma, data_out_sz,
data_in_dma, data_in_sz);
if (test_bit(device_handle, ioc->device_remove_in_progress)) {
dtmprintk(ioc, printk(MPT3SAS_INFO_FMT "handle(0x%04x) :"
"ioctl failed due to device removal in progress\n",
ioc->name, device_handle));
mpt3sas_base_free_smid(ioc, smid);
ret = -EINVAL;
goto out;
}
if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST)
ioc->put_smid_scsi_io(ioc, smid, device_handle);
else
ioc->put_smid_default(ioc, smid);
break;
}
case MPI2_FUNCTION_SCSI_TASK_MGMT:
{
Mpi2SCSITaskManagementRequest_t *tm_request =
(Mpi2SCSITaskManagementRequest_t *)request;
dtmprintk(ioc, printk(MPT3SAS_INFO_FMT "TASK_MGMT: "
"handle(0x%04x), task_type(0x%02x)\n", ioc->name,
le16_to_cpu(tm_request->DevHandle), tm_request->TaskType));
ioc->got_task_abort_from_ioctl = 1;
if (tm_request->TaskType ==
MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK ||
tm_request->TaskType ==
MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) {
if (_ctl_set_task_mid(ioc, &karg, tm_request)) {
mpt3sas_base_free_smid(ioc, smid);
ioc->got_task_abort_from_ioctl = 0;
goto out;
}
}
ioc->got_task_abort_from_ioctl = 0;
if (test_bit(device_handle, ioc->device_remove_in_progress)) {
dtmprintk(ioc, printk(MPT3SAS_INFO_FMT "handle(0x%04x) :"
"ioctl failed due to device removal in progress\n",
ioc->name, device_handle));
mpt3sas_base_free_smid(ioc, smid);
ret = -EINVAL;
goto out;
}
mpt3sas_scsih_set_tm_flag(ioc, le16_to_cpu(
tm_request->DevHandle));
ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz,
data_in_dma, data_in_sz);
ioc->put_smid_hi_priority(ioc, smid, 0);
break;
}
case MPI2_FUNCTION_SMP_PASSTHROUGH:
{
Mpi2SmpPassthroughRequest_t *smp_request =
(Mpi2SmpPassthroughRequest_t *)mpi_request;
u8 *data;
/* ioc determines which port to use */
if (!ioc->multipath_on_hba)
smp_request->PhysicalPort = 0xFF;
if (smp_request->PassthroughFlags &
MPI2_SMP_PT_REQ_PT_FLAGS_IMMEDIATE)
data = (u8 *)&smp_request->SGL;
else {
if (unlikely(data_out == NULL)) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
mpt3sas_base_free_smid(ioc, smid);
ret = -EINVAL;
goto out;
}
data = data_out;
}
if (data[1] == 0x91 && (data[10] == 1 || data[10] == 2)) {
ioc->ioc_link_reset_in_progress = 1;
ioc->ignore_loginfos = 1;
}
ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma,
data_in_sz);
ioc->put_smid_default(ioc, smid);
break;
}
case MPI2_FUNCTION_SATA_PASSTHROUGH:
{
ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma,
data_in_sz);
if (test_bit(device_handle, ioc->device_remove_in_progress)) {
dtmprintk(ioc, printk(MPT3SAS_INFO_FMT "handle(0x%04x) :"
"ioctl failed due to device removal in progress\n",
ioc->name, device_handle));
mpt3sas_base_free_smid(ioc, smid);
ret = -EINVAL;
goto out;
}
ioc->put_smid_default(ioc, smid);
break;
}
case MPI2_FUNCTION_FW_DOWNLOAD:
case MPI2_FUNCTION_FW_UPLOAD:
{
ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma,
data_in_sz);
ioc->put_smid_default(ioc, smid);
break;
}
case MPI2_FUNCTION_TOOLBOX:
{
Mpi2ToolboxCleanRequest_t *toolbox_request =
(Mpi2ToolboxCleanRequest_t*)mpi_request;
if (toolbox_request->Tool == MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL
|| toolbox_request->Tool ==
MPI26_TOOLBOX_BACKEND_PCIE_LANE_MARGIN)
{
ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma,
data_in_sz);
} else if (toolbox_request->Tool == MPI2_TOOLBOX_MEMORY_MOVE_TOOL) {
Mpi2ToolboxMemMoveRequest_t *mem_move_request =
(Mpi2ToolboxMemMoveRequest_t*)request;
Mpi2SGESimple64_t tmp, *src = NULL, *dst = NULL;
ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz,
data_in_dma, data_in_sz);
if (data_out_sz && !data_in_sz) {
dst = (Mpi2SGESimple64_t *)&mem_move_request->SGL;
src = (void *)dst + ioc->sge_size;
memcpy(&tmp, src, ioc->sge_size);
memcpy(src, dst, ioc->sge_size);
memcpy(dst, &tmp, ioc->sge_size);
}
if (ioc->logging_level & MPT_DEBUG_TM) {
printk(MPT3SAS_INFO_FMT
"Mpi2ToolboxMemMoveRequest_t request msg\n",
ioc->name);
_debug_dump_mf(mem_move_request, ioc->request_sz/4);
}
} else {
ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz,
data_in_dma, data_in_sz);
}
ioc->put_smid_default(ioc, smid);
break;
}
case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
{
Mpi2SasIoUnitControlRequest_t *sasiounit_request =
(Mpi2SasIoUnitControlRequest_t *)mpi_request;
if (sasiounit_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET
|| sasiounit_request->Operation ==
MPI2_SAS_OP_PHY_LINK_RESET) {
ioc->ioc_link_reset_in_progress = 1;
ioc->ignore_loginfos = 1;
}
/* drop to default case for posting the request */
}
/* fall through */
fallthrough;
default:
ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz,
data_in_dma, data_in_sz);
ioc->put_smid_default(ioc, smid);
break;
}
timeout = karg.timeout;
if (timeout < MPT3_IOCTL_DEFAULT_TIMEOUT)
timeout = MPT3_IOCTL_DEFAULT_TIMEOUT;
wait_for_completion_timeout(&ioc->ctl_cmds.done, timeout*HZ);
if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
Mpi2SCSITaskManagementRequest_t *tm_request =
(Mpi2SCSITaskManagementRequest_t *)mpi_request;
mpt3sas_scsih_clear_tm_flag(ioc, le16_to_cpu(
tm_request->DevHandle));
mpt3sas_trigger_master(ioc, MASTER_TRIGGER_TASK_MANAGMENT);
} else if ((mpi_request->Function == MPI2_FUNCTION_SMP_PASSTHROUGH ||
mpi_request->Function == MPI2_FUNCTION_SAS_IO_UNIT_CONTROL) &&
ioc->ioc_link_reset_in_progress) {
ioc->ioc_link_reset_in_progress = 0;
ioc->ignore_loginfos = 0;
}
if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
mpt3sas_check_cmd_timeout(ioc,
ioc->ctl_cmds.status, mpi_request,
karg.data_sge_offset, issue_reset);
goto issue_host_reset;
}
mpi_reply = ioc->ctl_cmds.reply;
if (mpi_reply->Function == MPI2_FUNCTION_SCSI_TASK_MGMT &&
(ioc->logging_level & MPT_DEBUG_TM)) {
Mpi2SCSITaskManagementReply_t *tm_reply =
(Mpi2SCSITaskManagementReply_t *)mpi_reply;
printk(MPT3SAS_INFO_FMT "TASK_MGMT: "
"IOCStatus(0x%04x), IOCLogInfo(0x%08x), "
"TerminationCount(0x%08x)\n", ioc->name,
le16_to_cpu(tm_reply->IOCStatus),
le32_to_cpu(tm_reply->IOCLogInfo),
le32_to_cpu(tm_reply->TerminationCount));
}
/* copy out xdata to user */
if (data_in_sz) {
if (copy_to_user(karg.data_in_buf_ptr, data_in,
data_in_sz)) {
printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
__LINE__, __func__);
ret = -ENODATA;
goto out;
}
}
/* copy out reply message frame to user */
if (karg.max_reply_bytes) {
sz = min_t(u32, karg.max_reply_bytes, ioc->reply_sz);
if (copy_to_user(karg.reply_frame_buf_ptr, ioc->ctl_cmds.reply,
sz)) {
printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
__LINE__, __func__);
ret = -ENODATA;
goto out;
}
}
/* copy out sense/NVMe Error Response to user */
if (karg.max_sense_bytes && (mpi_request->Function ==
MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function ==
MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || mpi_request->Function ==
MPI2_FUNCTION_NVME_ENCAPSULATED)) {
if (karg.sense_data_ptr == NULL) {
printk(MPT3SAS_ERR_FMT "Response buffer provided"
" by application is NULL; Response data will"
" not be returned.\n", ioc->name);
goto out;
}
sz_arg = (mpi_request->Function ==
MPI2_FUNCTION_NVME_ENCAPSULATED) ? NVME_ERROR_RESPONSE_SIZE :
SCSI_SENSE_BUFFERSIZE;
sz = min_t(u32, karg.max_sense_bytes, sz_arg);
if (copy_to_user(karg.sense_data_ptr, ioc->ctl_cmds.sense,
sz)) {
printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
__LINE__, __func__);
ret = -ENODATA;
goto out;
}
}
issue_host_reset:
if (issue_reset) {
ret = -ENODATA;
if ((mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
mpi_request->Function ==
MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH)) {
printk(MPT3SAS_INFO_FMT "issue target reset: handle "
"= (0x%04x)\n", ioc->name,
le16_to_cpu(mpi_request->FunctionDependent1));
mpt3sas_halt_firmware(ioc, 0);
pcie_device = mpt3sas_get_pdev_by_handle(ioc,
le16_to_cpu(mpi_request->FunctionDependent1));
if (pcie_device && (!ioc->tm_custom_handling) &&
(!(mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))))
mpt3sas_scsih_issue_locked_tm(ioc,
le16_to_cpu(mpi_request->FunctionDependent1), 0, 0,
0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, smid,
pcie_device->reset_timeout,
MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE);
else
mpt3sas_scsih_issue_locked_tm(ioc,
le16_to_cpu(mpi_request->FunctionDependent1), 0, 0,
0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, smid, 30,
MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET);
} else
mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
}
out:
if (pcie_device)
pcie_device_put(pcie_device);
/* free memory associated with sg buffers */
if (data_in)
pci_free_consistent(ioc->pdev, data_in_sz, data_in,
data_in_dma);
if (data_out)
pci_free_consistent(ioc->pdev, data_out_sz, data_out,
data_out_dma);
kfree(mpi_request);
ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
return ret;
}
/**
* _ctl_getiocinfo - main handler for MPT3IOCINFO opcode
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*/
static long
_ctl_getiocinfo(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt3_ioctl_iocinfo karg;
u8 revision;
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: enter\n", ioc->name,
__func__));
memset(&karg, 0 , sizeof(karg));
if (ioc->pfacts)
karg.port_number = ioc->pfacts[0].PortNumber;
pci_read_config_byte(ioc->pdev, PCI_CLASS_REVISION, &revision);
karg.hw_rev = revision;
karg.pci_id = ioc->pdev->device;
karg.subsystem_device = ioc->pdev->subsystem_device;
karg.subsystem_vendor = ioc->pdev->subsystem_vendor;
karg.pci_information.u.bits.bus = ioc->pdev->bus->number;
karg.pci_information.u.bits.device = PCI_SLOT(ioc->pdev->devfn);
karg.pci_information.u.bits.function = PCI_FUNC(ioc->pdev->devfn);
karg.pci_information.segment_id = pci_domain_nr(ioc->pdev->bus);
karg.firmware_version = ioc->facts.FWVersion.Word;
strcpy(karg.driver_version, ioc->driver_name);
strcat(karg.driver_version, "-");
switch (ioc->hba_mpi_version_belonged) {
case MPI2_VERSION:
if (ioc->is_warpdrive)
karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2_SSS6200;
else
karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2;
strcat(karg.driver_version, MPT2SAS_DRIVER_VERSION);
break;
case MPI25_VERSION:
karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS3;
strcat(karg.driver_version, MPT3SAS_DRIVER_VERSION);
break;
case MPI26_VERSION:
karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS3;
strcat(karg.driver_version, MPT3SAS_DRIVER_VERSION);
if (ioc->is_gen35_ioc)
karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS35;
break;
}
karg.bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
if (copy_to_user(arg, &karg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
return 0;
}
/**
* _ctl_eventquery - main handler for MPT3EVENTQUERY opcode
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*/
static long
_ctl_eventquery(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt3_ioctl_eventquery karg;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: enter\n", ioc->name,
__func__));
karg.event_entries = MPT3SAS_CTL_EVENT_LOG_SIZE;
memcpy(karg.event_types, ioc->event_type,
MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32));
if (copy_to_user(arg, &karg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
return 0;
}
/**
* _ctl_eventenable - main handler for MPT3EVENTENABLE opcode
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*/
static long
_ctl_eventenable(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt3_ioctl_eventenable karg;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: enter\n", ioc->name,
__func__));
memcpy(ioc->event_type, karg.event_types,
MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32));
mpt3sas_base_validate_event_type(ioc, ioc->event_type);
if (ioc->event_log)
return 0;
/* initialize event_log */
ioc->event_context = 0;
ioc->aen_event_read_flag = 0;
ioc->event_log = kcalloc(MPT3SAS_CTL_EVENT_LOG_SIZE,
sizeof(struct MPT3_IOCTL_EVENTS), GFP_KERNEL);
if (!ioc->event_log) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -ENOMEM;
}
return 0;
}
/**
* _ctl_eventreport - main handler for MPT3EVENTREPORT opcode
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*/
static long
_ctl_eventreport(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt3_ioctl_eventreport karg;
u32 number_bytes, max_events, max;
struct mpt3_ioctl_eventreport __user *uarg = arg;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: enter\n", ioc->name,
__func__));
number_bytes = karg.hdr.max_data_size -
sizeof(struct mpt3_ioctl_header);
max_events = number_bytes/sizeof(struct MPT3_IOCTL_EVENTS);
max = min_t(u32, MPT3SAS_CTL_EVENT_LOG_SIZE, max_events);
/* If fewer than 1 event is requested, there must have
* been some type of error.
*/
if (!max || !ioc->event_log)
return -ENODATA;
number_bytes = max * sizeof(struct MPT3_IOCTL_EVENTS);
if (copy_to_user(uarg->event_data, ioc->event_log, number_bytes)) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
/* reset flag so SIGIO can restart */
ioc->aen_event_read_flag = 0;
return 0;
}
/**
* _ctl_do_reset - main handler for MPT3HARDRESET opcode
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*/
static long
_ctl_do_reset(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt3_ioctl_diag_reset karg;
int retval;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
if (ioc->shost_recovery ||
ioc->pci_error_recovery || ioc->is_driver_loading ||
ioc->remove_host)
return -EAGAIN;
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: enter\n", ioc->name,
__func__));
ioc->reset_from_user = 1;
scsi_block_requests(ioc->shost);
retval = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
scsi_unblock_requests(ioc->shost);
printk(MPT3SAS_INFO_FMT "ioctl: host reset: %s\n",
ioc->name, ((!retval) ? "SUCCESS" : "FAILED"));
return 0;
}
/**
* _ctl_btdh_search_sas_device - searching for sas device
* @ioc: per adapter object
* @btdh: btdh ioctl payload
*/
static int
_ctl_btdh_search_sas_device(struct MPT3SAS_ADAPTER *ioc,
struct mpt3_ioctl_btdh_mapping *btdh)
{
struct _sas_device *sas_device;
unsigned long flags;
int rc = 0;
if (list_empty(&ioc->sas_device_list))
return rc;
spin_lock_irqsave(&ioc->sas_device_lock, flags);
list_for_each_entry(sas_device, &ioc->sas_device_list, list) {
if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
btdh->handle == sas_device->handle) {
btdh->bus = sas_device->channel;
btdh->id = sas_device->id;
rc = 1;
goto out;
} else if (btdh->bus == sas_device->channel && btdh->id ==
sas_device->id && btdh->handle == 0xFFFF) {
btdh->handle = sas_device->handle;
rc = 1;
goto out;
}
}
out:
spin_unlock_irqrestore(&ioc->sas_device_lock, flags);
return rc;
}
/**
* _ctl_btdh_search_pcie_device - searching for pcie device
* @ioc: per adapter object
* @btdh: btdh ioctl payload
*/
static int
_ctl_btdh_search_pcie_device(struct MPT3SAS_ADAPTER *ioc,
struct mpt3_ioctl_btdh_mapping *btdh)
{
struct _pcie_device *pcie_device;
unsigned long flags;
int rc = 0;
if (list_empty(&ioc->pcie_device_list))
return rc;
spin_lock_irqsave(&ioc->pcie_device_lock, flags);
list_for_each_entry(pcie_device, &ioc->pcie_device_list, list) {
if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
btdh->handle == pcie_device->handle) {
btdh->bus = pcie_device->channel;
btdh->id = pcie_device->id;
rc = 1;
goto out;
} else if (btdh->bus == pcie_device->channel && btdh->id ==
pcie_device->id && btdh->handle == 0xFFFF) {
btdh->handle = pcie_device->handle;
rc = 1;
goto out;
}
}
out:
spin_unlock_irqrestore(&ioc->pcie_device_lock, flags);
return rc;
}
/**
* _ctl_btdh_search_raid_device - searching for raid device
* @ioc: per adapter object
* @btdh: btdh ioctl payload
*/
static int
_ctl_btdh_search_raid_device(struct MPT3SAS_ADAPTER *ioc,
struct mpt3_ioctl_btdh_mapping *btdh)
{
struct _raid_device *raid_device;
unsigned long flags;
int rc = 0;
if (list_empty(&ioc->raid_device_list))
return rc;
spin_lock_irqsave(&ioc->raid_device_lock, flags);
list_for_each_entry(raid_device, &ioc->raid_device_list, list) {
if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
btdh->handle == raid_device->handle) {
btdh->bus = raid_device->channel;
btdh->id = raid_device->id;
rc = 1;
goto out;
} else if (btdh->bus == raid_device->channel && btdh->id ==
raid_device->id && btdh->handle == 0xFFFF) {
btdh->handle = raid_device->handle;
rc = 1;
goto out;
}
}
out:
spin_unlock_irqrestore(&ioc->raid_device_lock, flags);
return rc;
}
/**
* _ctl_btdh_mapping - main handler for MPT3BTDHMAPPING opcode
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*/
static long
_ctl_btdh_mapping(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt3_ioctl_btdh_mapping karg;
int rc;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
rc = _ctl_btdh_search_sas_device(ioc, &karg);
if (!rc)
rc = _ctl_btdh_search_pcie_device(ioc, &karg);
if (!rc)
_ctl_btdh_search_raid_device(ioc, &karg);
if (copy_to_user(arg, &karg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
return 0;
}
/**
* _ctl_diag_capability - return diag buffer capability
* @ioc: per adapter object
* @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED
*
* returns 1 when diag buffer support is enabled in firmware
*/
static u8
_ctl_diag_capability(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type)
{
u8 rc = 0;
switch (buffer_type) {
case MPI2_DIAG_BUF_TYPE_TRACE:
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
rc = 1;
break;
case MPI2_DIAG_BUF_TYPE_SNAPSHOT:
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
rc = 1;
break;
case MPI2_DIAG_BUF_TYPE_EXTENDED:
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
rc = 1;
}
return rc;
}
/**
* _ctl_diag_get_bufftype - return diag buffer type
* either TRACE, SNAPSHOT, or EXTENDED
* @ioc: per adapter object
* @unique_id: specifies the unique_id for the buffer
*
* returns MPT3_DIAG_UID_NOT_FOUND if the id not found
*/
static u8
_ctl_diag_get_bufftype(struct MPT3SAS_ADAPTER *ioc, u32 unique_id)
{
u8 index;
for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++)
{
if (ioc->unique_id[index] == unique_id)
return index;
}
return MPT3_DIAG_UID_NOT_FOUND;
}
/**
* mpt3sas_ctl_diag_done - ctl diag_buffer completion routine
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
* Context: none.
*
* The callback handler when using ioc->ctl_diag_cb_idx.
*
* Return 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
u8
mpt3sas_ctl_diag_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (ioc->ctl_diag_cmds.status == MPT3_CMD_NOT_USED)
return 1;
if (ioc->ctl_diag_cmds.smid != smid)
return 1;
ioc->ctl_diag_cmds.status |= MPT3_CMD_COMPLETE;
if (mpi_reply) {
memcpy(ioc->ctl_diag_cmds.reply, mpi_reply,
mpi_reply->MsgLength*4);
ioc->ctl_diag_cmds.status |= MPT3_CMD_REPLY_VALID;
}
ioc->ctl_diag_cmds.status &= ~MPT3_CMD_PENDING;
complete(&ioc->ctl_diag_cmds.done);
return 1;
}
/**
* _ctl_diag_register_2 - wrapper for registering diag buffer support
* @ioc: per adapter object
* @diag_register: the diag_register struct passed in from user space
*
*/
static long
_ctl_diag_register_2(struct MPT3SAS_ADAPTER *ioc,
struct mpt3_diag_register *diag_register)
{
int rc, i;
void *request_data = NULL;
dma_addr_t request_data_dma;
u32 request_data_sz = 0;
Mpi2DiagBufferPostRequest_t *mpi_request;
Mpi2DiagBufferPostReply_t *mpi_reply;
u8 buffer_type;
u16 smid;
u16 ioc_status;
u32 ioc_state;
u8 issue_reset = 0;
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
printk(MPT3SAS_ERR_FMT
"%s: failed due to ioc not operational\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
if (ioc->ctl_diag_cmds.status != MPT3_CMD_NOT_USED) {
printk(MPT3SAS_ERR_FMT "%s: ctl_cmd in use\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
buffer_type = diag_register->buffer_type;
if (!_ctl_diag_capability(ioc, buffer_type)) {
printk(MPT3SAS_ERR_FMT "%s: doesn't have capability for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -EPERM;
}
if( diag_register->unique_id == 0 ) {
printk(MPT3SAS_ERR_FMT "%s: Invalid UID(0x%08x), "
"buffer_type(0x%02x)\n", ioc->name, __func__,
diag_register->unique_id, buffer_type);
return -EINVAL;
}
if ((ioc->diag_buffer_status[buffer_type] &
MPT3_DIAG_BUFFER_IS_APP_OWNED) &&
!(ioc->diag_buffer_status[buffer_type] &
MPT3_DIAG_BUFFER_IS_RELEASED)) {
printk(MPT3SAS_ERR_FMT "%s: buffer_type(0x%02x) is already "
"registered by application with UID(0x%08x)\n", ioc->name,
__func__, buffer_type, ioc->unique_id[buffer_type]);
return -EINVAL;
}
if (ioc->diag_buffer_status[buffer_type] &
MPT3_DIAG_BUFFER_IS_REGISTERED) {
/*
* If driver posts buffer initially, then an application wants to Register
* that buffer (own it) without Releasing first, the application Register
* command MUST have the same buffer type and size in the Register
* command (obtained from the Query command).
* Otherwise that Register command will be failed.
* If the application has released the buffer but wants to re-register it,
* it should be allowed as long as the Unique-Id/Size match.
*/
if (ioc->unique_id[buffer_type] == MPT3DIAGBUFFUNIQUEID &&
ioc->diag_buffer_sz[buffer_type] == diag_register->requested_buffer_size) {
if (!(ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_RELEASED)) {
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: diag_buffer (%d) ownership changed. "
"old-ID(0x%08x), new-ID(0x%08x)\n", ioc->name, __func__, buffer_type,
ioc->unique_id[buffer_type],diag_register->unique_id));
/* application wants to own the buffer with the same size */
ioc->unique_id[buffer_type] = diag_register->unique_id;
rc = 0; /* success */
goto out;
}
}
else if (ioc->unique_id[buffer_type] != MPT3DIAGBUFFUNIQUEID) {
if (ioc->unique_id[buffer_type] != diag_register->unique_id ||
ioc->diag_buffer_sz[buffer_type] != diag_register->requested_buffer_size ||
!(ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_RELEASED)) {
printk(MPT3SAS_ERR_FMT "%s: already has a registered "
"buffer for buffer_type(0x%02x)\n", ioc->name, __func__,
buffer_type);
return -EINVAL;
}
}
else {
printk(MPT3SAS_ERR_FMT "%s: already has a registered "
"buffer for buffer_type(0x%02x)\n", ioc->name, __func__,
buffer_type);
return -EINVAL;
}
} else if (ioc->diag_buffer_status[buffer_type] &
MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) {
if (ioc->unique_id[buffer_type] != MPT3DIAGBUFFUNIQUEID ||
ioc->diag_buffer_sz[buffer_type] !=
diag_register->requested_buffer_size) {
printk(MPT3SAS_ERR_FMT "%s: already a buffer is "
"allocated for buffer_type(0x%02x) of "
"size %d bytes, so please try registering again"
"with same size\n", ioc->name, __func__,
buffer_type, ioc->diag_buffer_sz[buffer_type]);
return -EINVAL;
}
}
if (diag_register->requested_buffer_size % 4) {
printk(MPT3SAS_ERR_FMT "%s: the requested_buffer_size "
"is not 4 byte aligned\n", ioc->name, __func__);
return -EINVAL;
}
smid = mpt3sas_base_get_smid(ioc, ioc->ctl_diag_cb_idx);
if (!smid) {
printk(MPT3SAS_ERR_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
rc = 0;
ioc->ctl_diag_cmds.status = MPT3_CMD_PENDING;
memset(ioc->ctl_diag_cmds.reply, 0, ioc->reply_sz);
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
memset(mpi_request, 0, ioc->request_sz);
ioc->ctl_diag_cmds.smid = smid;
request_data = ioc->diag_buffer[buffer_type];
request_data_sz = diag_register->requested_buffer_size;
ioc->unique_id[buffer_type] = diag_register->unique_id;
/* Reset ioc variables used for additional query commands */
ioc->reset_from_user = 0;
memset(&ioc->htb_rel, 0, sizeof(struct htb_rel_query));
ioc->diag_buffer_status[buffer_type] &= MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED;
memcpy(ioc->product_specific[buffer_type],
diag_register->product_specific, MPT3_PRODUCT_SPECIFIC_DWORDS);
ioc->diagnostic_flags[buffer_type] = diag_register->diagnostic_flags;
if (request_data) {
request_data_dma = ioc->diag_buffer_dma[buffer_type];
if (request_data_sz != ioc->diag_buffer_sz[buffer_type]) {
pci_free_consistent(ioc->pdev,
ioc->diag_buffer_sz[buffer_type],
request_data, request_data_dma);
request_data = NULL;
}
}
if (request_data == NULL) {
ioc->diag_buffer_sz[buffer_type] = 0;
ioc->diag_buffer_dma[buffer_type] = 0;
request_data = pci_alloc_consistent(
ioc->pdev, request_data_sz, &request_data_dma);
if (request_data == NULL) {
printk(MPT3SAS_ERR_FMT "%s: failed allocating memory"
" for diag buffers, requested size(%d)\n",
ioc->name, __func__, request_data_sz);
mpt3sas_base_free_smid(ioc, smid);
rc = -ENOMEM;
goto out;
}
ioc->diag_buffer[buffer_type] = request_data;
ioc->diag_buffer_sz[buffer_type] = request_data_sz;
ioc->diag_buffer_dma[buffer_type] = request_data_dma;
}
mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
mpi_request->BufferType = diag_register->buffer_type;
mpi_request->Flags = cpu_to_le32(diag_register->diagnostic_flags);
mpi_request->BufferAddress = cpu_to_le64(request_data_dma);
mpi_request->BufferLength = cpu_to_le32(request_data_sz);
mpi_request->VF_ID = 0; /* TODO */
mpi_request->VP_ID = 0;
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: diag_buffer(0x%p), "
"dma(0x%llx), sz(%d)\n", ioc->name, __func__, request_data,
(unsigned long long)request_data_dma,
le32_to_cpu(mpi_request->BufferLength)));
for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++)
mpi_request->ProductSpecific[i] =
cpu_to_le32(ioc->product_specific[buffer_type][i]);
init_completion(&ioc->ctl_diag_cmds.done);
ioc->put_smid_default(ioc, smid);
wait_for_completion_timeout(&ioc->ctl_diag_cmds.done,
MPT3_IOCTL_DEFAULT_TIMEOUT*HZ);
if (!(ioc->ctl_diag_cmds.status & MPT3_CMD_COMPLETE)) {
mpt3sas_check_cmd_timeout(ioc,
ioc->ctl_diag_cmds.status, mpi_request,
sizeof(Mpi2DiagBufferPostRequest_t)/4, issue_reset);
goto issue_host_reset;
}
/* process the completed Reply Message Frame */
if ((ioc->ctl_diag_cmds.status & MPT3_CMD_REPLY_VALID) == 0) {
printk(MPT3SAS_ERR_FMT "%s: no reply message\n",
ioc->name, __func__);
rc = -EFAULT;
goto out;
}
mpi_reply = ioc->ctl_diag_cmds.reply;
ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
ioc->diag_buffer_status[buffer_type] |=
MPT3_DIAG_BUFFER_IS_REGISTERED;
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: success\n",
ioc->name, __func__));
} else {
printk(MPT3SAS_INFO_FMT "%s: ioc_status(0x%04x) "
"log_info(0x%08x)\n", ioc->name, __func__,
ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
rc = -EFAULT;
}
issue_host_reset:
if (issue_reset)
mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
out:
if (rc && request_data)
{
pci_free_consistent(ioc->pdev, request_data_sz,
request_data, request_data_dma);
ioc->diag_buffer[buffer_type] = NULL;
ioc->diag_buffer_status[buffer_type] &=
~MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED;
}
ioc->ctl_diag_cmds.status = MPT3_CMD_NOT_USED;
return rc;
}
/**
* mpt3sas_enable_diag_buffer - enabling diag_buffers support driver load time
* @ioc: per adapter object
* @bits_to_register: bitwise field where trace is bit 0, and snapshot is bit 1
*
* This is called when command line option diag_buffer_enable is enabled
* at driver load time.
*/
void
mpt3sas_enable_diag_buffer(struct MPT3SAS_ADAPTER *ioc, u8 bits_to_register)
{
struct mpt3_diag_register diag_register;
u32 ret_val;
u32 trace_buff_size = ioc->manu_pg11.HostTraceBufferMaxSizeKB<<10;
u32 min_trace_buff_size = 0;
u32 decr_trace_buff_size = 0;
memset(&diag_register, 0, sizeof(struct mpt3_diag_register));
if (bits_to_register & 1) {
printk(MPT3SAS_INFO_FMT "registering trace buffer support\n",
ioc->name);
diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE;
diag_register.unique_id =
(ioc->hba_mpi_version_belonged == MPI2_VERSION)?
MPT2DIAGBUFFUNIQUEID:MPT3DIAGBUFFUNIQUEID;
if (trace_buff_size != 0)
{
diag_register.requested_buffer_size = trace_buff_size;
min_trace_buff_size = ioc->manu_pg11.HostTraceBufferMinSizeKB<<10;
decr_trace_buff_size = ioc->manu_pg11.HostTraceBufferDecrementSizeKB<<10;
if (min_trace_buff_size > trace_buff_size)
{
/* The buff size is not set correctly */
printk(MPT3SAS_ERR_FMT
"Min Trace Buff size (%d KB) greater than Max Trace Buff size (%d KB)\n",
ioc->name, min_trace_buff_size>>10, trace_buff_size>>10);
printk(MPT3SAS_ERR_FMT
"Using zero Min Trace Buff Size\n", ioc->name);
min_trace_buff_size = 0;
}
if (decr_trace_buff_size == 0)
{
/* retry the min size if decrement is not available */
decr_trace_buff_size = trace_buff_size - min_trace_buff_size;
}
}
else
{
/* register for 2MB buffers */
diag_register.requested_buffer_size = 2 * (1024 * 1024);
}
do
{
ret_val = _ctl_diag_register_2(ioc, &diag_register);
if (ret_val == -ENOMEM && min_trace_buff_size &&
(trace_buff_size - decr_trace_buff_size) >= min_trace_buff_size)
{
/* adjust the buffer size */
trace_buff_size -= decr_trace_buff_size;
diag_register.requested_buffer_size = trace_buff_size;
}
else
{
break;
}
} while(true);
if (ret_val == -ENOMEM)
{
printk(MPT3SAS_ERR_FMT
"Cannot allocate trace buffer memory. Last memory tried = %d KB\n",
ioc->name, diag_register.requested_buffer_size>>10);
}
else if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE]
& MPT3_DIAG_BUFFER_IS_REGISTERED)
{
printk(MPT3SAS_INFO_FMT "Trace buffer memory %d KB allocated\n",
ioc->name, diag_register.requested_buffer_size>>10);
if (ioc->hba_mpi_version_belonged != MPI2_VERSION)
ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] |=
MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED;
}
}
if (bits_to_register & 2) {
printk(MPT3SAS_INFO_FMT "registering snapshot buffer support\n",
ioc->name);
diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_SNAPSHOT;
/* register for 2MB buffers */
diag_register.requested_buffer_size = 2 * (1024 * 1024);
diag_register.unique_id = 0x7075901;
_ctl_diag_register_2(ioc, &diag_register);
}
if (bits_to_register & 4) {
printk(MPT3SAS_INFO_FMT "registering extended buffer support\n",
ioc->name);
diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_EXTENDED;
/* register for 2MB buffers */
diag_register.requested_buffer_size = 2 * (1024 * 1024);
diag_register.unique_id = 0x7075901;
_ctl_diag_register_2(ioc, &diag_register);
}
}
/**
* _ctl_diag_register - application register with driver
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*
* This will allow the driver to setup any required buffers that will be
* needed by firmware to communicate with the driver.
*/
static long
_ctl_diag_register(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt3_diag_register karg;
long rc;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
rc = _ctl_diag_register_2(ioc, &karg);
if (!rc && (ioc->diag_buffer_status[karg.buffer_type] &
MPT3_DIAG_BUFFER_IS_REGISTERED))
ioc->diag_buffer_status[karg.buffer_type] |=
MPT3_DIAG_BUFFER_IS_APP_OWNED;
return rc;
}
/**
* _ctl_diag_unregister - application unregister with driver
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*
* This will allow the driver to cleanup any memory allocated for diag
* messages and to free up any resources.
*/
static long
_ctl_diag_unregister(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt3_diag_unregister karg;
void *request_data;
dma_addr_t request_data_dma;
u32 request_data_sz;
u8 buffer_type;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id);
if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) {
printk(MPT3SAS_ERR_FMT "%s: buffer with unique_id(0x%08x)"
"not found\n", ioc->name, __func__, karg.unique_id);
return -EINVAL;
}
if (!_ctl_diag_capability(ioc, buffer_type)) {
printk(MPT3SAS_ERR_FMT "%s: doesn't have capability for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -EPERM;
}
if ((ioc->diag_buffer_status[buffer_type] &
MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
printk(MPT3SAS_ERR_FMT "%s: buffer_type(0x%02x) is not "
"registered\n", ioc->name, __func__, buffer_type);
return -EINVAL;
}
if ((ioc->diag_buffer_status[buffer_type] &
MPT3_DIAG_BUFFER_IS_RELEASED) == 0) {
printk(MPT3SAS_ERR_FMT "%s: buffer_type(0x%02x) has not been "
"released\n", ioc->name, __func__, buffer_type);
return -EINVAL;
}
if (karg.unique_id != ioc->unique_id[buffer_type]) {
printk(MPT3SAS_ERR_FMT "%s: unique_id(0x%08x) is not "
"registered\n", ioc->name, __func__, karg.unique_id);
return -EINVAL;
}
request_data = ioc->diag_buffer[buffer_type];
if (!request_data) {
printk(MPT3SAS_ERR_FMT "%s: doesn't have memory allocated for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -ENOMEM;
}
if (ioc->diag_buffer_status[buffer_type] &
MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED)
{
ioc->unique_id[buffer_type] = MPT3DIAGBUFFUNIQUEID;
ioc->diag_buffer_status[buffer_type] &=
~MPT3_DIAG_BUFFER_IS_APP_OWNED;
ioc->diag_buffer_status[buffer_type] &=
~MPT3_DIAG_BUFFER_IS_REGISTERED;
}
else
{
request_data_sz = ioc->diag_buffer_sz[buffer_type];
request_data_dma = ioc->diag_buffer_dma[buffer_type];
pci_free_consistent(ioc->pdev, request_data_sz,
request_data, request_data_dma);
ioc->diag_buffer[buffer_type] = NULL;
ioc->diag_buffer_status[buffer_type] = 0;
}
return 0;
}
/**
* _ctl_diag_query - query relevant info associated with diag buffers
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*
* The application will send only buffer_type and unique_id. Driver will
* inspect unique_id first, if valid, fill in all the info. If unique_id is
* 0x00, the driver will return info specified by Buffer Type.
*/
static long
_ctl_diag_query(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt3_diag_query karg;
void *request_data;
int i;
u8 buffer_type;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
karg.application_flags = 0;
buffer_type = karg.buffer_type;
if (!_ctl_diag_capability(ioc, buffer_type)) {
printk(MPT3SAS_ERR_FMT "%s: doesn't have capability for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -EPERM;
}
if (!(ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED)) {
if ((ioc->diag_buffer_status[buffer_type] &
MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
printk(MPT3SAS_ERR_FMT "%s: buffer_type(0x%02x) is not "
"registered\n", ioc->name, __func__, buffer_type);
return -EINVAL;
}
}
if (karg.unique_id) {
if (karg.unique_id != ioc->unique_id[buffer_type]) {
printk(MPT3SAS_ERR_FMT "%s: unique_id(0x%08x) is not "
"registered\n", ioc->name, __func__,
karg.unique_id);
return -EINVAL;
}
}
request_data = ioc->diag_buffer[buffer_type];
if (!request_data) {
printk(MPT3SAS_ERR_FMT "%s: doesn't have buffer for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -ENOMEM;
}
karg.application_flags = 0;
if ((ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_REGISTERED))
karg.application_flags |= MPT3_APP_FLAGS_BUFFER_VALID;
if (!((ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_RELEASED) ||
(ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_DIAG_RESET)))
karg.application_flags |= MPT3_APP_FLAGS_FW_BUFFER_ACCESS;
if (!(ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED))
karg.application_flags |= MPT3_APP_FLAGS_DYNAMIC_BUFFER_ALLOC;
if ((ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_APP_OWNED))
karg.application_flags |= MPT3_APP_FLAGS_APP_OWNED;
for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++)
karg.product_specific[i] =
ioc->product_specific[buffer_type][i];
karg.total_buffer_size = ioc->diag_buffer_sz[buffer_type];
karg.driver_added_buffer_size = 0;
karg.unique_id = ioc->unique_id[buffer_type];
karg.diagnostic_flags = ioc->diagnostic_flags[buffer_type];
if (copy_to_user(arg, &karg, sizeof(struct mpt3_diag_query))) {
printk(MPT3SAS_ERR_FMT "%s: unable to write mpt3_diag_query "
"data @ %p\n", ioc->name, __func__, arg);
return -EFAULT;
}
return 0;
}
/**
* mpt3sas_send_diag_release - Diag Release Message
* @ioc: per adapter object
* @buffer_type - specifies either TRACE, SNAPSHOT, or EXTENDED
* @issue_reset - specifies whether host reset is required.
*
*/
int
mpt3sas_send_diag_release(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type,
u8 *issue_reset)
{
Mpi2DiagReleaseRequest_t *mpi_request;
Mpi2DiagReleaseReply_t *mpi_reply;
u16 smid;
u16 ioc_status;
u32 ioc_state;
int rc;
u8 reset_needed = 0;
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
rc = 0;
*issue_reset = 0;
ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
if (ioc->diag_buffer_status[buffer_type] &
MPT3_DIAG_BUFFER_IS_REGISTERED)
ioc->diag_buffer_status[buffer_type] |=
MPT3_DIAG_BUFFER_IS_RELEASED;
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: "
"skipping due to FAULT state\n", ioc->name,
__func__));
rc = -EAGAIN;
goto out;
}
if (ioc->ctl_diag_cmds.status != MPT3_CMD_NOT_USED) {
printk(MPT3SAS_ERR_FMT "%s: ctl_cmd in use\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
smid = mpt3sas_base_get_smid(ioc, ioc->ctl_diag_cb_idx);
if (!smid) {
printk(MPT3SAS_ERR_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
ioc->ctl_diag_cmds.status = MPT3_CMD_PENDING;
memset(ioc->ctl_diag_cmds.reply, 0, ioc->reply_sz);
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
memset(mpi_request, 0, ioc->request_sz);
ioc->ctl_diag_cmds.smid = smid;
mpi_request->Function = MPI2_FUNCTION_DIAG_RELEASE;
mpi_request->BufferType = buffer_type;
mpi_request->VF_ID = 0; /* TODO */
mpi_request->VP_ID = 0;
init_completion(&ioc->ctl_diag_cmds.done);
ioc->put_smid_default(ioc, smid);
wait_for_completion_timeout(&ioc->ctl_diag_cmds.done,
MPT3_IOCTL_DEFAULT_TIMEOUT*HZ);
if (!(ioc->ctl_diag_cmds.status & MPT3_CMD_COMPLETE)) {
mpt3sas_check_cmd_timeout(ioc,
ioc->ctl_diag_cmds.status, mpi_request,
sizeof(Mpi2DiagReleaseRequest_t)/4, reset_needed);
*issue_reset = reset_needed;
ioc->diag_buffer_status[buffer_type] |=
MPT3_DIAG_BUFFER_IS_RELEASED;
rc = -EFAULT;
goto out;
}
/* process the completed Reply Message Frame */
if ((ioc->ctl_diag_cmds.status & MPT3_CMD_REPLY_VALID) == 0) {
printk(MPT3SAS_ERR_FMT "%s: no reply message\n",
ioc->name, __func__);
rc = -EFAULT;
goto out;
}
mpi_reply = ioc->ctl_diag_cmds.reply;
ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
ioc->diag_buffer_status[buffer_type] |=
MPT3_DIAG_BUFFER_IS_RELEASED;
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: success\n",
ioc->name, __func__));
} else {
printk(MPT3SAS_INFO_FMT "%s: ioc_status(0x%04x) "
"log_info(0x%08x)\n", ioc->name, __func__,
ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
rc = -EFAULT;
}
out:
ioc->ctl_diag_cmds.status = MPT3_CMD_NOT_USED;
return rc;
}
/**
* _ctl_diag_release - request to send Diag Release Message to firmware
* @arg - user space buffer containing ioctl content
*
* This allows ownership of the specified buffer to returned to the driver,
* allowing an application to read the buffer without fear that firmware is
* overwritting information in the buffer.
*/
static long
_ctl_diag_release(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt3_diag_release karg;
void *request_data;
int rc;
u8 buffer_type;
u8 issue_reset = 0;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id);
if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) {
printk(MPT3SAS_ERR_FMT "%s: buffer with unique_id(0x%08x)"
"not found\n", ioc->name, __func__, karg.unique_id);
return -EINVAL;
}
if (!_ctl_diag_capability(ioc, buffer_type)) {
printk(MPT3SAS_ERR_FMT "%s: doesn't have capability for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -EPERM;
}
if ((ioc->diag_buffer_status[buffer_type] &
MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
printk(MPT3SAS_ERR_FMT "%s: buffer_type(0x%02x) is not "
"registered\n", ioc->name, __func__, buffer_type);
return -EINVAL;
}
if (karg.unique_id != ioc->unique_id[buffer_type]) {
printk(MPT3SAS_ERR_FMT "%s: unique_id(0x%08x) is not "
"registered\n", ioc->name, __func__, karg.unique_id);
return -EINVAL;
}
if (ioc->diag_buffer_status[buffer_type] &
MPT3_DIAG_BUFFER_IS_RELEASED) {
printk(MPT3SAS_ERR_FMT "%s: buffer_type(0x%02x) "
"is already released\n", ioc->name, __func__,
buffer_type);
return -EINVAL;
}
request_data = ioc->diag_buffer[buffer_type];
if (!request_data) {
printk(MPT3SAS_ERR_FMT "%s: doesn't have memory allocated for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -ENOMEM;
}
/* buffers were released by due to host reset */
if ((ioc->diag_buffer_status[buffer_type] &
MPT3_DIAG_BUFFER_IS_DIAG_RESET)) {
ioc->diag_buffer_status[buffer_type] |=
MPT3_DIAG_BUFFER_IS_RELEASED;
ioc->diag_buffer_status[buffer_type] &=
~MPT3_DIAG_BUFFER_IS_DIAG_RESET;
printk(MPT3SAS_ERR_FMT "%s: buffer_type(0x%02x) "
"was released due to host reset\n", ioc->name, __func__,
buffer_type);
return 0;
}
ioc->htb_rel.buffer_rel_condition = MPT3_DIAG_BUFFER_REL_IOCTL;
rc = mpt3sas_send_diag_release(ioc, buffer_type, &issue_reset);
if (issue_reset)
mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
return rc;
}
/**
* _ctl_diag_read_buffer - request for copy of the diag buffer
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*/
static long
_ctl_diag_read_buffer(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt3_diag_read_buffer karg;
struct mpt3_diag_read_buffer __user *uarg = arg;
void *request_data, *diag_data;
Mpi2DiagBufferPostRequest_t *mpi_request;
Mpi2DiagBufferPostReply_t *mpi_reply;
int rc, i;
u8 buffer_type;
unsigned long request_size, copy_size;
u16 smid;
u16 ioc_status;
u8 issue_reset = 0;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id);
if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) {
printk(MPT3SAS_ERR_FMT "%s: buffer with unique_id(0x%08x)"
"not found\n", ioc->name, __func__, karg.unique_id);
return -EINVAL;
}
if (!_ctl_diag_capability(ioc, buffer_type)) {
printk(MPT3SAS_ERR_FMT "%s: doesn't have capability for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -EPERM;
}
if ((ioc->diag_buffer_status[buffer_type] &
MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
printk(MPT3SAS_ERR_FMT "%s: buffer_type(0x%02x) is not "
"registered\n", ioc->name, __func__, buffer_type);
return -EINVAL;
}
if (karg.unique_id != ioc->unique_id[buffer_type]) {
printk(MPT3SAS_ERR_FMT "%s: unique_id(0x%08x) is not "
"registered\n", ioc->name, __func__, karg.unique_id);
return -EINVAL;
}
request_data = ioc->diag_buffer[buffer_type];
if (!request_data) {
printk(MPT3SAS_ERR_FMT "%s: doesn't have buffer for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -ENOMEM;
}
request_size = ioc->diag_buffer_sz[buffer_type];
if ((karg.starting_offset % 4) || (karg.bytes_to_read % 4)) {
printk(MPT3SAS_ERR_FMT "%s: either the starting_offset "
"or bytes_to_read are not 4 byte aligned\n", ioc->name,
__func__);
return -EINVAL;
}
if (karg.starting_offset > request_size)
return -EINVAL;
diag_data = (void *)(request_data + karg.starting_offset);
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: diag_buffer(%p), "
"offset(%d), sz(%d)\n", ioc->name, __func__,
diag_data, karg.starting_offset, karg.bytes_to_read));
/* Truncate data on requests that are too large */
if ((diag_data + karg.bytes_to_read < diag_data) ||
(diag_data + karg.bytes_to_read > request_data + request_size))
copy_size = request_size - karg.starting_offset;
else
copy_size = karg.bytes_to_read;
if (copy_to_user((void __user *)uarg->diagnostic_data,
diag_data, copy_size)) {
printk(MPT3SAS_ERR_FMT "%s: Unable to write "
"mpt_diag_read_buffer_t data @ %p\n", ioc->name,
__func__, diag_data);
return -EFAULT;
}
if ((karg.flags & MPT3_FLAGS_REREGISTER) == 0)
return 0;
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: Reregister "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type));
if ((ioc->diag_buffer_status[buffer_type] &
MPT3_DIAG_BUFFER_IS_RELEASED) == 0) {
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: "
"buffer_type(0x%02x) is still registered\n", ioc->name,
__func__, buffer_type));
return 0;
}
/* Get a free request frame and save the message context.
*/
if (ioc->ctl_diag_cmds.status != MPT3_CMD_NOT_USED) {
printk(MPT3SAS_ERR_FMT "%s: ctl_cmd in use\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
smid = mpt3sas_base_get_smid(ioc, ioc->ctl_diag_cb_idx);
if (!smid) {
printk(MPT3SAS_ERR_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
rc = 0;
ioc->ctl_diag_cmds.status = MPT3_CMD_PENDING;
memset(ioc->ctl_diag_cmds.reply, 0, ioc->reply_sz);
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
memset(mpi_request, 0, ioc->request_sz);
ioc->ctl_diag_cmds.smid = smid;
mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
mpi_request->BufferType = buffer_type;
mpi_request->BufferLength =
cpu_to_le32(ioc->diag_buffer_sz[buffer_type]);
mpi_request->BufferAddress =
cpu_to_le64(ioc->diag_buffer_dma[buffer_type]);
for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++)
mpi_request->ProductSpecific[i] =
cpu_to_le32(ioc->product_specific[buffer_type][i]);
mpi_request->VF_ID = 0; /* TODO */
mpi_request->VP_ID = 0;
init_completion(&ioc->ctl_diag_cmds.done);
ioc->put_smid_default(ioc, smid);
wait_for_completion_timeout(&ioc->ctl_diag_cmds.done,
MPT3_IOCTL_DEFAULT_TIMEOUT*HZ);
if (!(ioc->ctl_diag_cmds.status & MPT3_CMD_COMPLETE)) {
mpt3sas_check_cmd_timeout(ioc,
ioc->ctl_diag_cmds.status, mpi_request,
sizeof(Mpi2DiagBufferPostRequest_t)/4, issue_reset);
goto issue_host_reset;
}
/* process the completed Reply Message Frame */
if ((ioc->ctl_diag_cmds.status & MPT3_CMD_REPLY_VALID) == 0) {
printk(MPT3SAS_ERR_FMT "%s: no reply message\n",
ioc->name, __func__);
rc = -EFAULT;
goto out;
}
mpi_reply = ioc->ctl_diag_cmds.reply;
ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
ioc->diag_buffer_status[buffer_type] |=
MPT3_DIAG_BUFFER_IS_REGISTERED;
ioc->diag_buffer_status[buffer_type] &=
~MPT3_DIAG_BUFFER_IS_RELEASED;
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: success\n",
ioc->name, __func__));
} else {
printk(MPT3SAS_INFO_FMT "%s: ioc_status(0x%04x) "
"log_info(0x%08x)\n", ioc->name, __func__,
ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
rc = -EFAULT;
}
issue_host_reset:
if (issue_reset)
mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
out:
ioc->ctl_diag_cmds.status = MPT3_CMD_NOT_USED;
return rc;
}
/**
* _ctl_addnl_diag_query - query relevant info associated with diag buffers
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*
* The application will send only unique_id. Driver will
* inspect unique_id first, if valid, fill the details related to cause
* for diag buffer release.
*/
static long
_ctl_addnl_diag_query(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt3_addnl_diag_query karg;
u32 buffer_type = 0;
if (copy_from_user(&karg, arg, sizeof(karg))) {
pr_err("%s: failure at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
if (karg.unique_id == 0) {
pr_err("%s: %s: unique_id is(0x%08x) \n",
ioc->name, __func__, karg.unique_id);
return -EPERM;
}
buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id);
if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) {
pr_err("%s: %s: buffer with unique_id(0x%08x) not found\n",
ioc->name, __func__, karg.unique_id);
return -EPERM;
}
memset(&karg.rel_query, 0, sizeof(karg.rel_query));
if ((ioc->diag_buffer_status[buffer_type] &
MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
pr_info("%s: %s: buffer_type(0x%02x) is not registered\n",
ioc->name, __func__, buffer_type);
goto out;
}
if ((ioc->diag_buffer_status[buffer_type] &
MPT3_DIAG_BUFFER_IS_RELEASED) == 0) {
pr_err("%s: %s: buffer_type(0x%02x) is not released\n",
ioc->name, __func__, buffer_type);
return -EPERM;
}
memcpy(&karg.rel_query, &ioc->htb_rel, sizeof(karg.rel_query));
out:
if (copy_to_user(arg, &karg, sizeof(struct mpt3_addnl_diag_query))) {
pr_err("%s: %s: unable to write mpt3_addnl_diag_query data @ %p\n",
ioc->name, __func__, arg);
return -EFAULT;
}
return 0;
}
#ifdef CONFIG_COMPAT
/**
* _ctl_compat_mpt_command - convert 32bit pointers to 64bit.
* @ioc: per adapter object
* @cmd - ioctl opcode
* @arg - (struct mpt3_ioctl_command32)
*
* MPT3COMMAND32 - Handle 32bit applications running on 64bit os.
*/
static long
_ctl_compat_mpt_command(struct MPT3SAS_ADAPTER *ioc, unsigned cmd,
void __user *arg)
{
struct mpt3_ioctl_command32 karg32;
struct mpt3_ioctl_command32 __user *uarg;
struct mpt3_ioctl_command karg;
if (_IOC_SIZE(cmd) != sizeof(struct mpt3_ioctl_command32))
return -EINVAL;
uarg = (struct mpt3_ioctl_command32 __user *) arg;
if (copy_from_user(&karg32, (char __user *)arg, sizeof(karg32))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
memset(&karg, 0, sizeof(struct mpt3_ioctl_command));
karg.hdr.ioc_number = karg32.hdr.ioc_number;
karg.hdr.port_number = karg32.hdr.port_number;
karg.hdr.max_data_size = karg32.hdr.max_data_size;
karg.timeout = karg32.timeout;
karg.max_reply_bytes = karg32.max_reply_bytes;
karg.data_in_size = karg32.data_in_size;
karg.data_out_size = karg32.data_out_size;
karg.max_sense_bytes = karg32.max_sense_bytes;
karg.data_sge_offset = karg32.data_sge_offset;
karg.reply_frame_buf_ptr = compat_ptr(karg32.reply_frame_buf_ptr);
karg.data_in_buf_ptr = compat_ptr(karg32.data_in_buf_ptr);
karg.data_out_buf_ptr = compat_ptr(karg32.data_out_buf_ptr);
karg.sense_data_ptr = compat_ptr(karg32.sense_data_ptr);
return _ctl_do_mpt_command(ioc, karg, &uarg->mf);
}
#endif
/**
* _ctl_ioctl_main - main ioctl entry point
* @file - (struct file)
* @cmd - ioctl opcode
* @arg - user space data buffer
* @compat - handles 32 bit applications in 64bit os
* @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device &
* MPI25_VERSION for mpt3ctl ioctl device.
*/
static long
_ctl_ioctl_main(struct file *file, unsigned int cmd, void __user *arg,
u8 compat, u16 mpi_version)
{
struct MPT3SAS_ADAPTER *ioc;
struct mpt3_ioctl_header ioctl_header;
enum block_state state;
long ret = -ENOIOCTLCMD;
/* get IOCTL header */
if (copy_from_user(&ioctl_header, (char __user *)arg,
sizeof(struct mpt3_ioctl_header))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
if (_ctl_verify_adapter(ioctl_header.ioc_number,
&ioc, mpi_version) == -1 || !ioc)
return -ENODEV;
mutex_lock(&ioc->pci_access_mutex);
if (ioc->shost_recovery ||
ioc->pci_error_recovery || ioc->is_driver_loading ||
ioc->remove_host) {
ret = -EAGAIN;
goto unlock_pci_access;
}
state = (file->f_flags & O_NONBLOCK) ? NON_BLOCKING : BLOCKING;
if (state == NON_BLOCKING) {
if (!mutex_trylock(&ioc->ctl_cmds.mutex)) {
ret = -EAGAIN;
goto unlock_pci_access;
}
} else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex)) {
ret = -ERESTARTSYS;
goto unlock_pci_access;
}
#if defined(CPQ_CIM)
if ((cmd > 0xCC770000) && (cmd < 0xCC77003D)) {
ret = _ctl_ioctl_csmi(ioc, cmd, arg);
goto out;
}
#endif
switch (cmd) {
case MPT3IOCINFO:
if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_iocinfo))
ret = _ctl_getiocinfo(ioc, arg);
break;
#ifdef CONFIG_COMPAT
case MPT3COMMAND32:
#endif
case MPT3COMMAND:
{
struct mpt3_ioctl_command __user *uarg;
struct mpt3_ioctl_command karg;
#ifdef CONFIG_COMPAT
if (compat) {
ret = _ctl_compat_mpt_command(ioc, cmd, arg);
break;
}
#endif
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
ret = -EFAULT;
break;
}
if (karg.hdr.ioc_number != ioctl_header.ioc_number) {
ret = -EINVAL;
break;
}
if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_command)) {
uarg = arg;
ret = _ctl_do_mpt_command(ioc, karg, &uarg->mf);
}
break;
}
case MPT3EVENTQUERY:
if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventquery))
ret = _ctl_eventquery(ioc, arg);
break;
case MPT3EVENTENABLE:
if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventenable))
ret = _ctl_eventenable(ioc, arg);
break;
case MPT3EVENTREPORT:
ret = _ctl_eventreport(ioc, arg);
break;
case MPT3HARDRESET:
if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_diag_reset))
ret = _ctl_do_reset(ioc, arg);
break;
case MPT3BTDHMAPPING:
if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_btdh_mapping))
ret = _ctl_btdh_mapping(ioc, arg);
break;
case MPT3DIAGREGISTER:
if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_register))
ret = _ctl_diag_register(ioc, arg);
break;
case MPT3DIAGUNREGISTER:
if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_unregister))
ret = _ctl_diag_unregister(ioc, arg);
break;
case MPT3DIAGQUERY:
if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_query))
ret = _ctl_diag_query(ioc, arg);
break;
case MPT3DIAGRELEASE:
if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_release))
ret = _ctl_diag_release(ioc, arg);
break;
case MPT3DIAGREADBUFFER:
if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_read_buffer))
ret = _ctl_diag_read_buffer(ioc, arg);
break;
case MPT3ADDNLDIAGQUERY:
if (_IOC_SIZE(cmd) == sizeof(struct mpt3_addnl_diag_query))
ret = _ctl_addnl_diag_query(ioc, arg);
break;
default:
dctlprintk(ioc, printk(MPT3SAS_INFO_FMT
"unsupported ioctl opcode(0x%08x)\n", ioc->name, cmd));
break;
}
#if defined(CPQ_CIM)
out:
#endif
mutex_unlock(&ioc->ctl_cmds.mutex);
unlock_pci_access:
mutex_unlock(&ioc->pci_access_mutex);
return ret;
}
/**
* _ctl_ioctl - main ioctl entry point (unlocked)
* @file - (struct file)
* @cmd - ioctl opcode
* @arg -
*/
static long
_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
long ret;
/* pass MPI25_VERSION value, to indicate that this ioctl cmd
* came from mpt3ctl ioctl device.
*/
ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0,
MPI25_VERSION | MPI26_VERSION);
return ret;
}
/**
* _ctl_mpt2_ioctl - mpt2ctl main ioctl entry point (unlocked)
* @file - (struct file)
* @cmd - ioctl opcode
* @arg -
*/
long
_ctl_mpt2_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
long ret;
/* pass MPI2_VERSION value, to indicate that this ioctl cmd
* came from mpt2ctl ioctl device.
*/
ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, MPI2_VERSION);
return ret;
}
#ifdef CONFIG_COMPAT
/**
* _ctl_ioctl_compat - main ioctl entry point (compat)
* @file -
* @cmd -
* @arg -
*
* This routine handles 32 bit applications in 64bit os.
*/
static long
_ctl_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg)
{
long ret;
ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1,
MPI25_VERSION | MPI26_VERSION);
return ret;
}
/**
*_ ctl_mpt2_ioctl_compat - main ioctl entry point (compat)
* @file -
* @cmd -
* @arg -
*
* This routine handles 32 bit applications in 64bit os.
*/
long
_ctl_mpt2_ioctl_compat(struct file *file, unsigned cmd, unsigned long
arg) {
long ret;
ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, MPI2_VERSION);
return ret;
}
#endif
/* scsi host attributes */
/**
* _ctl_version_fw_show - firmware version
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,25))
static ssize_t
_ctl_version_fw_show(struct device *cdev, struct device_attribute *attr,
char *buf)
#else
static ssize_t
_ctl_version_fw_show(struct class_device *cdev, char *buf)
#endif
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n",
(ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
(ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
(ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
ioc->facts.FWVersion.Word & 0x000000FF);
}
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,25))
static DEVICE_ATTR(version_fw, S_IRUGO, _ctl_version_fw_show, NULL);
#else
static CLASS_DEVICE_ATTR(version_fw, S_IRUGO, _ctl_version_fw_show, NULL);
#endif
/**
* _ctl_version_bios_show - bios version
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,25))
static ssize_t
_ctl_version_bios_show(struct device *cdev, struct device_attribute *attr,
char *buf)
#else
static ssize_t
_ctl_version_bios_show(struct class_device *cdev, char *buf)
#endif
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
u32 version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n",
(version & 0xFF000000) >> 24,
(version & 0x00FF0000) >> 16,
(version & 0x0000FF00) >> 8,
version & 0x000000FF);
}
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,25))
static DEVICE_ATTR(version_bios, S_IRUGO, _ctl_version_bios_show, NULL);
#else
static CLASS_DEVICE_ATTR(version_bios, S_IRUGO, _ctl_version_bios_show, NULL);
#endif
/**
* _ctl_version_mpi_show - MPI (message passing interface) version
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,25))
static ssize_t
_ctl_version_mpi_show(struct device *cdev, struct device_attribute *attr,
char *buf)
#else
static ssize_t
_ctl_version_mpi_show(struct class_device *cdev, char *buf)
#endif
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, PAGE_SIZE, "%03x.%02x\n",
ioc->facts.MsgVersion, ioc->facts.HeaderVersion >> 8);
}
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,25))
static DEVICE_ATTR(version_mpi, S_IRUGO, _ctl_version_mpi_show, NULL);
#else
static CLASS_DEVICE_ATTR(version_mpi, S_IRUGO, _ctl_version_mpi_show, NULL);
#endif
/**
* _ctl_version_product_show - product name
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_version_product_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, 16, "%s\n", ioc->manu_pg0.ChipName);
}
static DEVICE_ATTR(version_product, S_IRUGO, _ctl_version_product_show, NULL);
/**
* _ctl_version_nvdata_persistent_show - ndvata persistent version
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_version_nvdata_persistent_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, PAGE_SIZE, "%08xh\n",
le32_to_cpu(ioc->iounit_pg0.NvdataVersionPersistent.Word));
}
static DEVICE_ATTR(version_nvdata_persistent, S_IRUGO,
_ctl_version_nvdata_persistent_show, NULL);
/**
* _ctl_version_nvdata_default_show - nvdata default version
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_version_nvdata_default_show(struct device *cdev, struct device_attribute
*attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, PAGE_SIZE, "%08xh\n",
le32_to_cpu(ioc->iounit_pg0.NvdataVersionDefault.Word));
}
static DEVICE_ATTR(version_nvdata_default, S_IRUGO,
_ctl_version_nvdata_default_show, NULL);
/**
* _ctl_board_name_show - board name
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_board_name_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardName);
}
static DEVICE_ATTR(board_name, S_IRUGO, _ctl_board_name_show, NULL);
/**
* _ctl_board_assembly_show - board assembly name
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_board_assembly_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardAssembly);
}
static DEVICE_ATTR(board_assembly, S_IRUGO, _ctl_board_assembly_show, NULL);
/**
* _ctl_board_tracer_show - board tracer number
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_board_tracer_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardTracerNumber);
}
static DEVICE_ATTR(board_tracer, S_IRUGO, _ctl_board_tracer_show, NULL);
/**
* _ctl_io_delay_show - io missing delay
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is for firmware implemention for deboucing device
* removal events.
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_io_delay_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->io_missing_delay);
}
static DEVICE_ATTR(io_delay, S_IRUGO, _ctl_io_delay_show, NULL);
/**
* _ctl_device_delay_show - device missing delay
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is for firmware implemention for deboucing device
* removal events.
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_device_delay_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->device_missing_delay);
}
static DEVICE_ATTR(device_delay, S_IRUGO, _ctl_device_delay_show, NULL);
/**
* _ctl_fw_queue_depth_show - global credits
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is firmware queue depth limit
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_fw_queue_depth_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->facts.RequestCredit);
}
static DEVICE_ATTR(fw_queue_depth, S_IRUGO, _ctl_fw_queue_depth_show, NULL);
/**
* _ctl_sas_address_show - sas address
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is the controller sas address
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_host_sas_address_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
(unsigned long long)ioc->sas_hba.sas_address);
}
static DEVICE_ATTR(host_sas_address, S_IRUGO,
_ctl_host_sas_address_show, NULL);
/**
* _ctl_logging_level_show - logging level
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read/write' shost attribute.
*/
static ssize_t
_ctl_logging_level_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, PAGE_SIZE, "%08xh\n", ioc->logging_level);
}
static ssize_t
_ctl_logging_level_store(struct device *cdev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
int val = 0;
if (sscanf(buf, "%x", &val) != 1)
return -EINVAL;
ioc->logging_level = val;
printk(MPT3SAS_INFO_FMT "logging_level=%08xh\n", ioc->name,
ioc->logging_level);
return strlen(buf);
}
static DEVICE_ATTR(logging_level, S_IRUGO | S_IWUSR, _ctl_logging_level_show,
_ctl_logging_level_store);
/**
* _ctl_fwfault_debug_show - show/store fwfault_debug
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* mpt3sas_fwfault_debug is command line option
* A sysfs 'read/write' shost attribute.
*/
static ssize_t
_ctl_fwfault_debug_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, PAGE_SIZE, "%d\n", ioc->fwfault_debug);
}
static ssize_t
_ctl_fwfault_debug_store(struct device *cdev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
int val = 0;
if (sscanf(buf, "%d", &val) != 1)
return -EINVAL;
ioc->fwfault_debug = val;
printk(MPT3SAS_INFO_FMT "fwfault_debug=%d\n", ioc->name,
ioc->fwfault_debug);
return strlen(buf);
}
static DEVICE_ATTR(fwfault_debug, S_IRUGO | S_IWUSR,
_ctl_fwfault_debug_show, _ctl_fwfault_debug_store);
/**
* _ctl_raid_device_find_by_handle - raid device search
* @ioc: per adapter object
* @handle: sas device handle (assigned by firmware)
* Context: Calling function should acquire ioc->raid_device_lock
*
* This searches for raid_device based on handle, then return raid_device
* object.
*/
static struct _raid_device *
_ctl_raid_device_find_by_handle(struct MPT3SAS_ADAPTER *ioc, u16 handle)
{
struct _raid_device *raid_device, *r;
r = NULL;
list_for_each_entry(raid_device, &ioc->raid_device_list, list) {
if (raid_device->handle != handle)
continue;
r = raid_device;
goto out;
}
out:
return r;
}
/**
* mpt3sas_ctl_tm_done - ctl task management request callback
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Callback handler when using ioc->ctl_tm_cb_idx
*
* Return 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
u8
mpt3sas_ctl_tm_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
u8 rc;
unsigned long flags;
struct _sas_device *sas_device;
struct _pcie_device *pcie_device;
struct _raid_device *raid_device;
u16 smid_task_abort;
u16 handle;
Mpi2SCSITaskManagementRequest_t *mpi_request;
Mpi2SCSITaskManagementReply_t *mpi_reply =
mpt3sas_base_get_reply_virt_addr(ioc, reply);
rc = 1;
if (unlikely(!mpi_reply)) {
printk(MPT3SAS_ERR_FMT "mpi_reply not valid at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
return rc;
}
handle = le16_to_cpu(mpi_reply->DevHandle);
/* search for sas device */
sas_device = mpt3sas_get_sdev_by_handle(ioc, handle);
if (sas_device) {
smid_task_abort = 0;
if (mpi_reply->TaskType ==
MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK) {
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
smid_task_abort = le16_to_cpu(mpi_request->TaskMID);
}
printk(KERN_INFO "\tcomplete: sas_addr(0x%016llx), "
"handle(0x%04x), smid(%d), term(%d)\n",
(unsigned long long)sas_device->sas_address, handle,
(smid_task_abort ? smid_task_abort : smid),
le32_to_cpu(mpi_reply->TerminationCount));
sas_device_put(sas_device);
}
if (!sas_device) {
/* search for pcie device */
pcie_device = mpt3sas_get_pdev_by_handle(ioc, handle);
if (pcie_device) {
smid_task_abort = 0;
if (mpi_reply->TaskType ==
MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK) {
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
smid_task_abort = le16_to_cpu(mpi_request->TaskMID);
}
printk(KERN_INFO "\tcomplete: wwid(0x%016llx), "
"handle(0x%04x), smid(%d), term(%d)\n",
(unsigned long long)pcie_device->wwid, handle,
(smid_task_abort ? smid_task_abort : smid),
le32_to_cpu(mpi_reply->TerminationCount));
pcie_device_put(pcie_device);
}
}
/* search for IR volume */
spin_lock_irqsave(&ioc->raid_device_lock, flags);
raid_device = _ctl_raid_device_find_by_handle(ioc, handle);
if (raid_device)
printk(KERN_INFO "\tcomplete: wwid(0x%016llx), "
"handle(0x%04x), smid(%d), term(%d)\n",
(unsigned long long)raid_device->wwid, handle,
smid, le32_to_cpu(mpi_reply->TerminationCount));
spin_unlock_irqrestore(&ioc->raid_device_lock, flags);
/* handle pending TM request */
ioc->terminated_tm_count += le32_to_cpu(mpi_reply->TerminationCount);
if (ioc->out_of_frames) {
rc = 0;
mpt3sas_base_free_smid(ioc, smid);
ioc->out_of_frames = 0;
wake_up(&ioc->no_frames_tm_wq);
}
ioc->pending_tm_count--;
if (!ioc->pending_tm_count)
wake_up(&ioc->pending_tm_wq);
return rc;
}
/**
* mpt3sas_ctl_tm_sysfs - issue task management request
* @ioc: per adapter object
* @task_type - task management type ~ MPI2_SCSITASKMGMT_TASKTYPE_XXX
*
* This code was added to help debug firmware task management issues.
* It will send overlapping task mangement request using hi-priority
* request queue to every device/lun/task (depending on the task type).
*
* This will freeze all scsi host IO queue while sending the TM's.
*
* This will wait for all pending request to complete before returning.
* If you run out of free hi-priority message frames, we will wait for pending
* request to complete, then issue the next. You should never see the
* "out of hi-priority requests" message.
*/
static void
mpt3sas_ctl_tm_sysfs(struct MPT3SAS_ADAPTER *ioc, u8 task_type)
{
struct _sas_device *sas_device;
struct _pcie_device *pcie_device;
struct _raid_device *raid_device;
Mpi2SCSITaskManagementRequest_t *mpi_request;
u16 smid, handle, hpr_smid;
struct MPT3SAS_DEVICE *device_priv_data;
struct MPT3SAS_TARGET *target_priv_data;
struct scsi_cmnd *scmd;
struct scsi_device *sdev;
unsigned long flags;
int tm_count;
int lun;
u32 doorbell;
struct scsiio_tracker *st;
u8 tr_method = MPI26_SCSITASKMGMT_MSGFLAGS_HOT_RESET_PCIE;
if (list_empty(&ioc->sas_device_list) && list_empty(&ioc->pcie_device_list))
return;
/* turn off incoming commands to shost during task management */
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
if (ioc->shost_recovery || ioc->remove_host) {
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
printk(MPT3SAS_ERR_FMT "%s: busy : host reset in progress, try"
" later\n", ioc->name, __func__);
return;
}
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
scsi_block_requests(ioc->shost);
init_waitqueue_head(&ioc->pending_tm_wq);
ioc->ignore_loginfos = 1;
ioc->pending_tm_count = 0;
ioc->terminated_tm_count = 0;
ioc->out_of_frames = 0;
tm_count = 0;
switch (task_type) {
case MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK:
for (smid = 1;
smid <= ioc->shost->can_queue;
smid++) {
/* wait for free hpr message frames */
if (list_empty(&ioc->hpr_free_list)) {
ioc->out_of_frames = 1;
init_waitqueue_head(&ioc->no_frames_tm_wq);
wait_event_timeout(ioc->no_frames_tm_wq,
!ioc->out_of_frames, HZ);
}
scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
if (!scmd)
continue;
st = mpt3sas_base_scsi_cmd_priv(scmd);
if ((!st) || (st->cb_idx == 0xFF) || (st->smid == 0))
continue;
lun = scmd->device->lun;
device_priv_data = scmd->device->hostdata;
if (!device_priv_data || !device_priv_data->sas_target)
continue;
target_priv_data = device_priv_data->sas_target;
if (!target_priv_data)
continue;
/* not supported by IR volumes & physical components */
if (target_priv_data->flags &
MPT_TARGET_FLAGS_RAID_COMPONENT ||
target_priv_data->flags & MPT_TARGET_FLAGS_VOLUME)
continue;
handle = device_priv_data->sas_target->handle;
hpr_smid = mpt3sas_base_get_smid_hpr(ioc,
ioc->ctl_tm_cb_idx);
if (!hpr_smid) {
printk(MPT3SAS_ERR_FMT "%s: out of hi-priority"
" requests!!\n", ioc->name, __func__);
goto out_of_frames;
}
mpi_request = mpt3sas_base_get_msg_frame(ioc, hpr_smid);
memset(mpi_request, 0,
sizeof(Mpi2SCSITaskManagementRequest_t));
mpi_request->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
mpi_request->DevHandle = cpu_to_le16(handle);
mpi_request->TaskType =
MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK;
mpi_request->TaskMID =
cpu_to_le16(st->smid);
int_to_scsilun(lun,
(struct scsi_lun *)mpi_request->LUN);
starget_printk(KERN_INFO,
device_priv_data->sas_target->starget,
"sending tm: sas_addr(0x%016llx), handle(0x%04x), "
"smid(%d)\n", (unsigned long long)
device_priv_data->sas_target->sas_address, handle,
st->smid);
ioc->pending_tm_count++;
tm_count++;
doorbell = mpt3sas_base_get_iocstate(ioc, 0);
if ((doorbell &
MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
(doorbell &
MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP )
goto fault_in_progress;
ioc->put_smid_hi_priority(ioc, hpr_smid, 0);
}
break;
case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET:
/* sas/sata devices */
spin_lock_irqsave(&ioc->sas_device_lock, flags);
list_for_each_entry(sas_device, &ioc->sas_device_list, list) {
/* wait for free hpr message frames */
if (list_empty(&ioc->hpr_free_list)) {
spin_unlock_irqrestore(&ioc->sas_device_lock,
flags);
ioc->out_of_frames = 1;
init_waitqueue_head(&ioc->no_frames_tm_wq);
wait_event_timeout(ioc->no_frames_tm_wq,
!ioc->out_of_frames, HZ);
spin_lock_irqsave(&ioc->sas_device_lock, flags);
}
if (!sas_device->starget)
continue;
/* skip IR physical components */
if (test_bit(sas_device->handle, ioc->pd_handles))
continue;
hpr_smid = mpt3sas_base_get_smid_hpr(ioc,
ioc->ctl_tm_cb_idx);
if (!hpr_smid) {
printk(MPT3SAS_ERR_FMT "%s: out of hi-priority"
" requests!!\n", ioc->name, __func__);
spin_unlock_irqrestore(&ioc->sas_device_lock,
flags);
goto out_of_frames;
}
mpi_request = mpt3sas_base_get_msg_frame(ioc, hpr_smid);
memset(mpi_request, 0,
sizeof(Mpi2SCSITaskManagementRequest_t));
mpi_request->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
mpi_request->DevHandle =
cpu_to_le16(sas_device->handle);
mpi_request->TaskType =
MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
starget_printk(KERN_INFO, sas_device->starget,
"sending tm: sas_addr(0x%016llx), handle(0x%04x),"
" smid(%d)\n",
(unsigned long long)sas_device->sas_address,
sas_device->handle, hpr_smid);
ioc->pending_tm_count++;
tm_count++;
doorbell = mpt3sas_base_get_iocstate(ioc, 0);
if ((doorbell &
MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
(doorbell &
MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
spin_unlock_irqrestore(&ioc->sas_device_lock,
flags);
goto fault_in_progress;
}
ioc->put_smid_hi_priority(ioc, hpr_smid, 0);
}
spin_unlock_irqrestore(&ioc->sas_device_lock, flags);
/* pcie devices */
spin_lock_irqsave(&ioc->pcie_device_lock, flags);
list_for_each_entry(pcie_device, &ioc->pcie_device_list, list) {
/* wait for free hpr message frames */
if (list_empty(&ioc->hpr_free_list)) {
spin_unlock_irqrestore(&ioc->pcie_device_lock,
flags);
ioc->out_of_frames = 1;
init_waitqueue_head(&ioc->no_frames_tm_wq);
wait_event_timeout(ioc->no_frames_tm_wq,
!ioc->out_of_frames, HZ);
spin_lock_irqsave(&ioc->pcie_device_lock, flags);
}
if (!pcie_device->starget)
continue;
hpr_smid = mpt3sas_base_get_smid_hpr(ioc,
ioc->ctl_tm_cb_idx);
if (!hpr_smid) {
printk(MPT3SAS_ERR_FMT "%s: out of hi-priority"
" requests!!\n", ioc->name, __func__);
spin_unlock_irqrestore(&ioc->pcie_device_lock,
flags);
goto out_of_frames;
}
if (pcie_device && (!ioc->tm_custom_handling) &&
(!(mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))))
tr_method = MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE;
mpi_request = mpt3sas_base_get_msg_frame(ioc, hpr_smid);
memset(mpi_request, 0,
sizeof(Mpi2SCSITaskManagementRequest_t));
mpi_request->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
mpi_request->DevHandle =
cpu_to_le16(pcie_device->handle);
mpi_request->TaskType =
MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
mpi_request->MsgFlags = tr_method;
starget_printk(KERN_INFO, pcie_device->starget,
"sending tm: wwid(0x%016llx), handle(0x%04x),"
" smid(%d)\n",
(unsigned long long)pcie_device->wwid,
pcie_device->handle, hpr_smid);
ioc->pending_tm_count++;
tm_count++;
doorbell = mpt3sas_base_get_iocstate(ioc, 0);
if ((doorbell &
MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
(doorbell &
MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
spin_unlock_irqrestore(&ioc->pcie_device_lock,
flags);
goto fault_in_progress;
}
ioc->put_smid_hi_priority(ioc, hpr_smid, 0);
}
spin_unlock_irqrestore(&ioc->pcie_device_lock, flags);
/* IR volumes */
spin_lock_irqsave(&ioc->raid_device_lock, flags);
list_for_each_entry(raid_device, &ioc->raid_device_list, list) {
/* wait for free hpr message frames */
if (list_empty(&ioc->hpr_free_list)) {
spin_unlock_irqrestore(&ioc->raid_device_lock,
flags);
ioc->out_of_frames = 1;
init_waitqueue_head(&ioc->no_frames_tm_wq);
wait_event_timeout(ioc->no_frames_tm_wq,
!ioc->out_of_frames, HZ);
spin_lock_irqsave(&ioc->raid_device_lock,
flags);
}
if (!raid_device->starget)
continue;
hpr_smid = mpt3sas_base_get_smid_hpr(ioc,
ioc->ctl_tm_cb_idx);
if (!hpr_smid) {
printk(MPT3SAS_ERR_FMT "%s: out of hi-priority"
" requests!!\n", ioc->name, __func__);
spin_unlock_irqrestore(&ioc->raid_device_lock,
flags);
goto out_of_frames;
}
mpi_request = mpt3sas_base_get_msg_frame(ioc, hpr_smid);
memset(mpi_request, 0,
sizeof(Mpi2SCSITaskManagementRequest_t));
mpi_request->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
mpi_request->DevHandle =
cpu_to_le16(raid_device->handle);
mpi_request->TaskType =
MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
starget_printk(KERN_INFO, raid_device->starget,
"sending tm: wwid(0x%016llx), handle(0x%04x),"
" smid(%d)\n",
(unsigned long long)raid_device->wwid,
raid_device->handle, hpr_smid);
ioc->pending_tm_count++;
tm_count++;
doorbell = mpt3sas_base_get_iocstate(ioc, 0);
if ((doorbell &
MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
(doorbell &
MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
spin_unlock_irqrestore(&ioc->raid_device_lock,
flags);
goto fault_in_progress;
}
ioc->put_smid_hi_priority(ioc, hpr_smid, 0);
}
spin_unlock_irqrestore(&ioc->raid_device_lock, flags);
break;
case MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET:
case MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET:
shost_for_each_device(sdev, ioc->shost) {
/* wait for free hpr message frames */
if (list_empty(&ioc->hpr_free_list)) {
ioc->out_of_frames = 1;
init_waitqueue_head(&ioc->no_frames_tm_wq);
wait_event_timeout(ioc->no_frames_tm_wq,
!ioc->out_of_frames, HZ);
}
device_priv_data = sdev->hostdata;
if (!device_priv_data || !device_priv_data->sas_target)
continue;
target_priv_data = device_priv_data->sas_target;
if (!target_priv_data)
continue;
/* skip IR physical components */
if (target_priv_data->flags &
MPT_TARGET_FLAGS_RAID_COMPONENT)
continue;
/* ABRT_TASK_SET not supported by IR volumes */
if ((target_priv_data->flags & MPT_TARGET_FLAGS_VOLUME)
&& (task_type ==
MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET))
continue;
handle = device_priv_data->sas_target->handle;
if (target_priv_data->flags &
MPT_TARGET_FLAGS_PCIE_DEVICE) {
pcie_device =
mpt3sas_get_pdev_by_handle(ioc, handle);
if (pcie_device && (!ioc->tm_custom_handling) &&
(!(mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))))
tr_method = MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE;
}
hpr_smid = mpt3sas_base_get_smid_hpr(ioc,
ioc->ctl_tm_cb_idx);
if (!hpr_smid) {
printk(MPT3SAS_ERR_FMT "%s: out of hi-priority"
" requests!!\n", ioc->name, __func__);
scsi_device_put(sdev);
goto out_of_frames;
}
mpi_request = mpt3sas_base_get_msg_frame(ioc, hpr_smid);
memset(mpi_request, 0,
sizeof(Mpi2SCSITaskManagementRequest_t));
mpi_request->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
mpi_request->DevHandle = cpu_to_le16(handle);
mpi_request->TaskType = task_type;
mpi_request->MsgFlags = tr_method;
int_to_scsilun(sdev->lun, (struct scsi_lun *)
mpi_request->LUN);
sdev_printk(KERN_INFO, sdev, "sending tm: "
"sas_addr(0x%016llx), handle(0x%04x), smid(%d)\n",
(unsigned long long)target_priv_data->sas_address,
handle, hpr_smid);
ioc->pending_tm_count++;
tm_count++;
doorbell = mpt3sas_base_get_iocstate(ioc, 0);
if ((doorbell &
MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
(doorbell &
MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
scsi_device_put(sdev);
goto fault_in_progress;
}
ioc->put_smid_hi_priority(ioc, hpr_smid, 0);
}
break;
}
out_of_frames:
/* waiting up to 30 seconds for all the task management request to
* complete before returning
*/
if (ioc->pending_tm_count)
wait_event_timeout(ioc->pending_tm_wq,
!ioc->pending_tm_count, 30*HZ);
printk(MPT3SAS_INFO_FMT "task management requests issued(%d)\n",
ioc->name, tm_count);
printk(MPT3SAS_INFO_FMT "number IO terminated(%d)\n",
ioc->name, ioc->terminated_tm_count);
fault_in_progress:
scsi_unblock_requests(ioc->shost);
ioc->ignore_loginfos = 0;
}
/**
* _ctl_task_management_store - issue task management request
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'write' shost attribute.
*/
static ssize_t
_ctl_task_management_store(struct device *cdev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
int opcode = 0;
if (sscanf(buf, "%d", &opcode) != 1)
return -EINVAL;
switch (opcode) {
case 1:
ioc->reset_from_user = 1;
scsi_block_requests(ioc->shost);
printk(MPT3SAS_INFO_FMT
"sysfs: diag reset issued: %s\n", ioc->name,
((!mpt3sas_base_hard_reset_handler(ioc,
FORCE_BIG_HAMMER)) ? "SUCCESS" : "FAILED"));
scsi_unblock_requests(ioc->shost);
break;
case 2:
ioc->reset_from_user = 1;
scsi_block_requests(ioc->shost);
printk(MPT3SAS_INFO_FMT
"sysfs: message unit reset issued: %s\n", ioc->name,
((!mpt3sas_base_hard_reset_handler(ioc,
SOFT_RESET)) ? "SUCCESS" : "FAILED"));
scsi_unblock_requests(ioc->shost);
break;
case 3:
printk(MPT3SAS_INFO_FMT
"sysfs: TASKTYPE_ABORT_TASK :\n", ioc->name);
ioc->got_task_abort_from_sysfs = 1;
mpt3sas_ctl_tm_sysfs(ioc,
MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK);
ioc->got_task_abort_from_sysfs = 0;
break;
case 4:
printk(MPT3SAS_INFO_FMT
"sysfs: TASKTYPE_TARGET_RESET:\n", ioc->name);
mpt3sas_ctl_tm_sysfs(ioc,
MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET);
break;
case 5:
printk(MPT3SAS_INFO_FMT
"sysfs: TASKTYPE_LOGICAL_UNIT_RESET:\n", ioc->name);
mpt3sas_ctl_tm_sysfs(ioc,
MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET);
break;
case 6:
printk(MPT3SAS_INFO_FMT "sysfs: TASKTYPE_ABRT_TASK_SET\n",
ioc->name);
mpt3sas_ctl_tm_sysfs(ioc,
MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET);
break;
default:
printk(MPT3SAS_INFO_FMT "unsupported opcode(%d)\n", ioc->name,
opcode);
break;
};
return strlen(buf);
}
static DEVICE_ATTR(task_management, S_IWUSR, NULL, _ctl_task_management_store);
#if defined(TARGET_MODE) && defined(STM_RING_BUFFER)
/* ring buffer support - for debugging target mode issues */
static ssize_t
_ctl_stm_store(struct device *cdev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
struct MPT_STM_PRIV *priv = ioc->priv;
int opcode = 0;
if (sscanf(buf, "%d", &opcode) != 1)
return -EINVAL;
switch (opcode) {
case 1:
sysfs_dump_kernel_thread_state(priv);
break;
case 2:
sysfs_dump_ring_buffer(priv);
break;
default:
break;
}
return strlen(buf);
}
static DEVICE_ATTR(stm, S_IWUSR, NULL, _ctl_stm_store);
#endif /* STM_RING_BUFFER */
/**
* _ctl_ioc_reset_count_show - ioc reset count
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is firmware queue depth limit
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_ioc_reset_count_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, PAGE_SIZE, "%d\n", ioc->ioc_reset_count);
}
static DEVICE_ATTR(ioc_reset_count, S_IRUGO, _ctl_ioc_reset_count_show, NULL);
/**
* _ctl_ioc_reply_queue_count_show - number of reply queues
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is number of reply queues
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_ioc_reply_queue_count_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
u8 reply_queue_count;
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
if ((ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable)
reply_queue_count = ioc->reply_queue_count;
else
reply_queue_count = 1;
return snprintf(buf, PAGE_SIZE, "%d\n", reply_queue_count);
}
static DEVICE_ATTR(reply_queue_count, S_IRUGO, _ctl_ioc_reply_queue_count_show,
NULL);
struct DIAG_BUFFER_START {
__le32 Size;
__le32 DiagVersion;
u8 BufferType;
u8 Reserved[3];
__le32 Reserved1;
__le32 Reserved2;
__le32 Reserved3;
};
/**
* _ctl_host_trace_buffer_size_show - host buffer size (trace only)
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_host_trace_buffer_size_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
u32 size = 0;
struct DIAG_BUFFER_START *request_data;
if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) {
printk(MPT3SAS_ERR_FMT "%s: host_trace_buffer is not "
"registered\n", ioc->name, __func__);
return 0;
}
if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
printk(MPT3SAS_ERR_FMT "%s: host_trace_buffer is not "
"registered\n", ioc->name, __func__);
return 0;
}
request_data = (struct DIAG_BUFFER_START *)
ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE];
if ((le32_to_cpu(request_data->DiagVersion) == 0x00000000 ||
le32_to_cpu(request_data->DiagVersion) == 0x01000000 ||
le32_to_cpu(request_data->DiagVersion) == 0x01010000) &&
le32_to_cpu(request_data->Reserved3) == 0x4742444c)
size = le32_to_cpu(request_data->Size);
ioc->ring_buffer_sz = size;
return snprintf(buf, PAGE_SIZE, "%d\n", size);
}
static DEVICE_ATTR(host_trace_buffer_size, S_IRUGO,
_ctl_host_trace_buffer_size_show, NULL);
/**
* _ctl_host_trace_buffer_show - firmware ring buffer (trace only)
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read/write' shost attribute.
*
* You will only be able to read 4k bytes of ring buffer at a time.
* In order to read beyond 4k bytes, you will have to write out the
* offset to the same attribute, it will move the pointer.
*/
static ssize_t
_ctl_host_trace_buffer_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
void *request_data;
u32 size;
if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) {
printk(MPT3SAS_ERR_FMT "%s: host_trace_buffer is not "
"registered\n", ioc->name, __func__);
return 0;
}
if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
printk(MPT3SAS_ERR_FMT "%s: host_trace_buffer is not "
"registered\n", ioc->name, __func__);
return 0;
}
if (ioc->ring_buffer_offset > ioc->ring_buffer_sz)
return 0;
size = ioc->ring_buffer_sz - ioc->ring_buffer_offset;
size = (size >= PAGE_SIZE) ? (PAGE_SIZE - 1) : size;
request_data = ioc->diag_buffer[0] + ioc->ring_buffer_offset;
memcpy(buf, request_data, size);
return size;
}
static ssize_t
_ctl_host_trace_buffer_store(struct device *cdev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
int val = 0;
if (sscanf(buf, "%d", &val) != 1)
return -EINVAL;
ioc->ring_buffer_offset = val;
return strlen(buf);
}
static DEVICE_ATTR(host_trace_buffer, S_IRUGO | S_IWUSR,
_ctl_host_trace_buffer_show, _ctl_host_trace_buffer_store);
/*****************************************/
/**
* _ctl_host_trace_buffer_enable_show - firmware ring buffer (trace only)
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read/write' shost attribute.
*
* This is a mechnism to post/release host_trace_buffers
*/
static ssize_t
_ctl_host_trace_buffer_enable_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
if ((!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) ||
((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_REGISTERED) == 0))
return snprintf(buf, PAGE_SIZE, "off\n");
else if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_RELEASED))
return snprintf(buf, PAGE_SIZE, "release\n");
else
return snprintf(buf, PAGE_SIZE, "post\n");
}
static ssize_t
_ctl_host_trace_buffer_enable_store(struct device *cdev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
char str[10] = "";
struct mpt3_diag_register diag_register;
u8 issue_reset = 0;
/* don't allow post/release occurr while recovery is active */
if (ioc->shost_recovery || ioc->remove_host
|| ioc->pci_error_recovery || ioc->is_driver_loading)
return -EBUSY;
if (sscanf(buf, "%9s", str) != 1)
return -EINVAL;
if (!strcmp(str, "post")) {
/* exit out if host buffers are already posted */
if ((ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) &&
(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_REGISTERED) &&
((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_RELEASED) == 0))
goto out;
memset(&diag_register, 0, sizeof(struct mpt3_diag_register));
printk(MPT3SAS_INFO_FMT "posting host trace buffers\n",
ioc->name);
diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE;
if (ioc->manu_pg11.HostTraceBufferMaxSizeKB != 0 &&
ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0)
{
/* post the same buffer allocated previously */
diag_register.requested_buffer_size =
ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE];
}
else
{
/*
* Free the diag buffer memory which was previously
* allocated by an application.
*/
if ((ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0) &&
(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_APP_OWNED)) {
pci_free_consistent(ioc->pdev,
ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE],
ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE],
ioc->diag_buffer_dma[MPI2_DIAG_BUF_TYPE_TRACE]);
ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE] = NULL;
}
diag_register.requested_buffer_size = (1024 * 1024);
}
diag_register.unique_id =
(ioc->hba_mpi_version_belonged == MPI2_VERSION)?
MPT2DIAGBUFFUNIQUEID:MPT3DIAGBUFFUNIQUEID;
ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] = 0;
_ctl_diag_register_2(ioc, &diag_register);
if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE]
& MPT3_DIAG_BUFFER_IS_REGISTERED)
{
printk(MPT3SAS_INFO_FMT "Trace buffer %d KB allocated through sysfs\n",
ioc->name, diag_register.requested_buffer_size>>10);
if (ioc->hba_mpi_version_belonged != MPI2_VERSION)
ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] |=
MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED;
}
} else if (!strcmp(str, "release")) {
/* exit out if host buffers are already released */
if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE])
goto out;
if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_REGISTERED) == 0)
goto out;
if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_RELEASED))
goto out;
printk(MPT3SAS_INFO_FMT "releasing host trace buffer\n",
ioc->name);
ioc->htb_rel.buffer_rel_condition = MPT3_DIAG_BUFFER_REL_SYSFS;
mpt3sas_send_diag_release(ioc, MPI2_DIAG_BUF_TYPE_TRACE,
&issue_reset);
}
out:
return strlen(buf);
}
static DEVICE_ATTR(host_trace_buffer_enable, S_IRUGO | S_IWUSR,
_ctl_host_trace_buffer_enable_show,
_ctl_host_trace_buffer_enable_store);
/*********** diagnostic trigger suppport *********************************/
/**
* _ctl_diag_trigger_master_show - show the diag_trigger_master attribute
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read/write' shost attribute.
*/
static ssize_t
_ctl_diag_trigger_master_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
unsigned long flags;
ssize_t rc;
spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
rc = sizeof(struct SL_WH_MASTER_TRIGGER_T);
memcpy(buf, &ioc->diag_trigger_master, rc);
spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
return rc;
}
/**
* _ctl_diag_trigger_master_store - store the diag_trigger_master attribute
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read/write' shost attribute.
*/
static ssize_t
_ctl_diag_trigger_master_store(struct device *cdev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
struct SL_WH_MASTER_TRIGGER_T *master_tg;
unsigned long flags;
ssize_t rc;
bool set = 1;
rc = min(sizeof(struct SL_WH_MASTER_TRIGGER_T), count);
if (ioc->supports_trigger_pages) {
master_tg = kzalloc(sizeof(struct SL_WH_MASTER_TRIGGER_T),
GFP_KERNEL);
if (!master_tg)
return -ENOMEM;
memcpy(master_tg, buf, rc);
if (!master_tg->MasterData)
set = 0;
if (mpt3sas_config_update_driver_trigger_pg1(ioc, master_tg,
set)) {
kfree(master_tg);
return -EFAULT;
}
kfree(master_tg);
}
spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
memset(&ioc->diag_trigger_master, 0,
sizeof(struct SL_WH_MASTER_TRIGGER_T));
memcpy(&ioc->diag_trigger_master, buf, rc);
ioc->diag_trigger_master.MasterData |=
(MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
return rc;
}
static DEVICE_ATTR(diag_trigger_master, S_IRUGO | S_IWUSR,
_ctl_diag_trigger_master_show, _ctl_diag_trigger_master_store);
/**
* _ctl_diag_trigger_event_show - show the diag_trigger_event attribute
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read/write' shost attribute.
*/
static ssize_t
_ctl_diag_trigger_event_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
unsigned long flags;
ssize_t rc;
spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
rc = sizeof(struct SL_WH_EVENT_TRIGGERS_T);
memcpy(buf, &ioc->diag_trigger_event, rc);
spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
return rc;
}
/**
* _ctl_diag_trigger_event_store - store the diag_trigger_event attribute
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read/write' shost attribute.
*/
static ssize_t
_ctl_diag_trigger_event_store(struct device *cdev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
struct SL_WH_EVENT_TRIGGERS_T *event_tg;
unsigned long flags;
ssize_t sz;
bool set = 1;
sz = min(sizeof(struct SL_WH_EVENT_TRIGGERS_T), count);
if (ioc->supports_trigger_pages) {
event_tg = kzalloc(sizeof(struct SL_WH_EVENT_TRIGGERS_T),
GFP_KERNEL);
if (!event_tg)
return -ENOMEM;
memcpy(event_tg, buf, sz);
if (!event_tg->ValidEntries)
set = 0;
if (mpt3sas_config_update_driver_trigger_pg2(ioc, event_tg,
set)) {
kfree(event_tg);
return -EFAULT;
}
kfree(event_tg);
}
spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
memset(&ioc->diag_trigger_event, 0,
sizeof(struct SL_WH_EVENT_TRIGGERS_T));
memcpy(&ioc->diag_trigger_event, buf, sz);
if (ioc->diag_trigger_event.ValidEntries > NUM_VALID_ENTRIES)
ioc->diag_trigger_event.ValidEntries = NUM_VALID_ENTRIES;
spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
return sz;
}
static DEVICE_ATTR(diag_trigger_event, S_IRUGO | S_IWUSR,
_ctl_diag_trigger_event_show, _ctl_diag_trigger_event_store);
/**
* _ctl_diag_trigger_scsi_show - show the diag_trigger_scsi attribute
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read/write' shost attribute.
*/
static ssize_t
_ctl_diag_trigger_scsi_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
unsigned long flags;
ssize_t rc;
spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
rc = sizeof(struct SL_WH_SCSI_TRIGGERS_T);
memcpy(buf, &ioc->diag_trigger_scsi, rc);
spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
return rc;
}
/**
* _ctl_diag_trigger_scsi_store - store the diag_trigger_scsi attribute
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read/write' shost attribute.
*/
static ssize_t
_ctl_diag_trigger_scsi_store(struct device *cdev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
struct SL_WH_SCSI_TRIGGERS_T *scsi_tg;
unsigned long flags;
ssize_t sz;
bool set = 1;
sz = min(sizeof(struct SL_WH_SCSI_TRIGGERS_T), count);
if (ioc->supports_trigger_pages) {
scsi_tg = kzalloc(sizeof(struct SL_WH_SCSI_TRIGGERS_T),
GFP_KERNEL);
if (!scsi_tg)
return -ENOMEM;
memcpy(scsi_tg, buf, sz);
if (!scsi_tg->ValidEntries)
set = 0;
if (mpt3sas_config_update_driver_trigger_pg3(ioc, scsi_tg,
set)) {
kfree(scsi_tg);
return -EFAULT;
}
kfree(scsi_tg);
}
spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
memset(&ioc->diag_trigger_scsi, 0, sizeof(ioc->diag_trigger_scsi));
memcpy(&ioc->diag_trigger_scsi, buf, sz);
if (ioc->diag_trigger_scsi.ValidEntries > NUM_VALID_ENTRIES)
ioc->diag_trigger_scsi.ValidEntries = NUM_VALID_ENTRIES;
spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
return sz;
}
static DEVICE_ATTR(diag_trigger_scsi, S_IRUGO | S_IWUSR,
_ctl_diag_trigger_scsi_show, _ctl_diag_trigger_scsi_store);
/**
* _ctl_diag_trigger_scsi_show - show the diag_trigger_mpi attribute
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read/write' shost attribute.
*/
static ssize_t
_ctl_diag_trigger_mpi_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
unsigned long flags;
ssize_t rc;
spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
rc = sizeof(struct SL_WH_MPI_TRIGGERS_T);
memcpy(buf, &ioc->diag_trigger_mpi, rc);
spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
return rc;
}
/**
* _ctl_diag_trigger_mpi_store - store the diag_trigger_mpi attribute
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read/write' shost attribute.
*/
static ssize_t
_ctl_diag_trigger_mpi_store(struct device *cdev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
struct SL_WH_MPI_TRIGGERS_T *mpi_tg;
unsigned long flags;
ssize_t sz;
bool set = 1;
sz = min(sizeof(struct SL_WH_MPI_TRIGGERS_T), count);
if (ioc->supports_trigger_pages) {
mpi_tg = kzalloc(sizeof(struct SL_WH_MPI_TRIGGERS_T),
GFP_KERNEL);
if (!mpi_tg)
return -ENOMEM;
memcpy(mpi_tg, buf, sz);
if (!mpi_tg->ValidEntries)
set = 0;
if (mpt3sas_config_update_driver_trigger_pg4(ioc, mpi_tg,
set)) {
kfree(mpi_tg);
return -EFAULT;
}
kfree(mpi_tg);
}
spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
memset(&ioc->diag_trigger_mpi, 0,
sizeof(struct SL_WH_EVENT_TRIGGERS_T));
memcpy(&ioc->diag_trigger_mpi, buf, sz);
if (ioc->diag_trigger_mpi.ValidEntries > NUM_VALID_ENTRIES)
ioc->diag_trigger_mpi.ValidEntries = NUM_VALID_ENTRIES;
spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
return sz;
}
static DEVICE_ATTR(diag_trigger_mpi, S_IRUGO | S_IWUSR,
_ctl_diag_trigger_mpi_show, _ctl_diag_trigger_mpi_store);
/*********** diagnostic trigger suppport *** END ****************************/
/**
* _ctl_drv_support_bitmap_show - driver supported feature bitmap
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_drv_support_bitmap_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, PAGE_SIZE, "0x%08x\n", ioc->drv_support_bitmap);
}
static DEVICE_ATTR(drv_support_bitmap, S_IRUGO,
_ctl_drv_support_bitmap_show, NULL);
/**
* _ctl_enable_sdev_max_qd_show - display whether enable_sdev_max_qd is
* enabled/disabled
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs read/write shost attribute. This attribute is used to set the
* targets queue depth to HBA IO queue depth if this attribute is enabled.
*/
static ssize_t
_ctl_enable_sdev_max_qd_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
return snprintf(buf, PAGE_SIZE, "%d\n", ioc->enable_sdev_max_qd);
}
/**
* _ctl_enable_sdev_max_qd_store - Enable/disable enable_sdev_max_qd
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs read/write shost attribute. This attribute is used to set the
* targets queue depth to HBA IO queue depth if this attribute is enabled.
* If this attribute is disabled then targets will have default
* queue depth.
*/
static ssize_t
_ctl_enable_sdev_max_qd_store(struct device *cdev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT3SAS_ADAPTER *ioc = shost_private(shost);
struct MPT3SAS_DEVICE *sas_device_priv_data;
struct MPT3SAS_TARGET *sas_target_priv_data;
int val = 0;
struct scsi_device *sdev;
struct _raid_device *raid_device;
int qdepth;
if (sscanf(buf, "%d", &val) != 1)
return -EINVAL;
switch (val) {
case 0:
ioc->enable_sdev_max_qd = 0;
shost_for_each_device(sdev, ioc->shost) {
sas_device_priv_data = sdev->hostdata;
if (!sas_device_priv_data)
continue;
sas_target_priv_data = sas_device_priv_data->sas_target;
if (!sas_target_priv_data)
continue;
if (sas_target_priv_data->flags & MPT_TARGET_FLAGS_VOLUME) {
raid_device = mpt3sas_raid_device_find_by_handle(ioc,
sas_target_priv_data->handle);
switch (raid_device->volume_type) {
case MPI2_RAID_VOL_TYPE_RAID0:
if (raid_device->device_info &
MPI2_SAS_DEVICE_INFO_SSP_TARGET)
qdepth = MPT3SAS_SAS_QUEUE_DEPTH;
else
qdepth = MPT3SAS_SATA_QUEUE_DEPTH;
break;
case MPI2_RAID_VOL_TYPE_RAID1E:
case MPI2_RAID_VOL_TYPE_RAID1:
case MPI2_RAID_VOL_TYPE_RAID10:
case MPI2_RAID_VOL_TYPE_UNKNOWN:
default:
qdepth = MPT3SAS_RAID_QUEUE_DEPTH;
}
} else if (sas_target_priv_data->flags &
MPT_TARGET_FLAGS_PCIE_DEVICE)
qdepth = ioc->max_nvme_qd;
else
qdepth = (sas_target_priv_data->sas_dev->port_type > 1) ?
ioc->max_wideport_qd : ioc->max_narrowport_qd;
mpt3sas_scsih_change_queue_depth(sdev, qdepth);
}
break;
case 1:
ioc->enable_sdev_max_qd = 1;
shost_for_each_device(sdev, ioc->shost) {
mpt3sas_scsih_change_queue_depth(sdev, shost->can_queue);
}
break;
default:
return -EINVAL;
}
return strlen(buf);
}
static DEVICE_ATTR(enable_sdev_max_qd, S_IRUGO | S_IWUSR,
_ctl_enable_sdev_max_qd_show, _ctl_enable_sdev_max_qd_store);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5,16,0))
static struct attribute *mpt3sas_host_attrs[] = {
&dev_attr_version_fw.attr,
&dev_attr_version_bios.attr,
&dev_attr_version_mpi.attr,
&dev_attr_version_product.attr,
&dev_attr_version_nvdata_persistent.attr,
&dev_attr_version_nvdata_default.attr,
&dev_attr_board_name.attr,
&dev_attr_board_assembly.attr,
&dev_attr_board_tracer.attr,
&dev_attr_io_delay.attr,
&dev_attr_device_delay.attr,
&dev_attr_logging_level.attr,
&dev_attr_fwfault_debug.attr,
&dev_attr_fw_queue_depth.attr,
&dev_attr_host_sas_address.attr,
&dev_attr_task_management.attr,
&dev_attr_ioc_reset_count.attr,
&dev_attr_host_trace_buffer_size.attr,
&dev_attr_host_trace_buffer.attr,
&dev_attr_host_trace_buffer_enable.attr,
&dev_attr_reply_queue_count.attr,
#if defined(TARGET_MODE) && defined(STM_RING_BUFFER)
&dev_attr_stm.attr,
#endif
&dev_attr_diag_trigger_master.attr,
&dev_attr_diag_trigger_event.attr,
&dev_attr_diag_trigger_scsi.attr,
&dev_attr_diag_trigger_mpi.attr,
&dev_attr_BRM_status.attr,
#ifdef MPT2SAS_WD_DDIOCOUNT
&dev_attr_ddio_count.attr,
&dev_attr_ddio_err_count.attr,
#endif
&dev_attr_drv_support_bitmap.attr,
&dev_attr_enable_sdev_max_qd.attr,
NULL,
};
static const struct attribute_group mpt3sas_host_attr_group = {
.attrs = mpt3sas_host_attrs
};
const struct attribute_group *mpt3sas_host_groups[] = {
&mpt3sas_host_attr_group,
NULL
};
#else
struct device_attribute *mpt3sas_host_attrs[] = {
&dev_attr_version_fw,
&dev_attr_version_bios,
&dev_attr_version_mpi,
&dev_attr_version_product,
&dev_attr_version_nvdata_persistent,
&dev_attr_version_nvdata_default,
&dev_attr_board_name,
&dev_attr_board_assembly,
&dev_attr_board_tracer,
&dev_attr_io_delay,
&dev_attr_device_delay,
&dev_attr_logging_level,
&dev_attr_fwfault_debug,
&dev_attr_fw_queue_depth,
&dev_attr_host_sas_address,
&dev_attr_task_management,
&dev_attr_ioc_reset_count,
&dev_attr_host_trace_buffer_size,
&dev_attr_host_trace_buffer,
&dev_attr_host_trace_buffer_enable,
&dev_attr_reply_queue_count,
#if defined(TARGET_MODE) && defined(STM_RING_BUFFER)
&dev_attr_stm,
#endif
&dev_attr_diag_trigger_master,
&dev_attr_diag_trigger_event,
&dev_attr_diag_trigger_scsi,
&dev_attr_diag_trigger_mpi,
&dev_attr_BRM_status,
#ifdef MPT2SAS_WD_DDIOCOUNT
&dev_attr_ddio_count,
&dev_attr_ddio_err_count,
#endif
&dev_attr_drv_support_bitmap,
&dev_attr_enable_sdev_max_qd,
NULL,
};
#endif
/* device attributes */
/**
* _ctl_device_sas_address_show - sas address
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is the sas address for the target
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_device_sas_address_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
(unsigned long long)sas_device_priv_data->sas_target->sas_address);
}
static DEVICE_ATTR(sas_address, S_IRUGO, _ctl_device_sas_address_show, NULL);
/**
* _ctl_device_handle_show - device handle
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is the firmware assigned device handle
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_device_handle_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
return snprintf(buf, PAGE_SIZE, "0x%04x\n",
sas_device_priv_data->sas_target->handle);
}
static DEVICE_ATTR(sas_device_handle, S_IRUGO, _ctl_device_handle_show, NULL);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,6,0))
/**
* _ctl_device_ncq_io_prio_show - send prioritized io commands to device
* @dev - pointer to embedded device
* @buf - the buffer returned
*
* A sysfs 'read/write' sdev attribute, only works with SATA
*/
static ssize_t
_ctl_device_ncq_prio_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
return snprintf(buf, PAGE_SIZE, "%d\n",
sas_device_priv_data->ncq_prio_enable);
}
static ssize_t
_ctl_device_ncq_prio_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
int ncq_prio_enable = 0;
if (sscanf(buf, "%d", &ncq_prio_enable) != 1)
return -EINVAL;
if (!mpt3sas_scsih_ncq_prio_supp(sdev))
return -EINVAL;
sas_device_priv_data->ncq_prio_enable = ncq_prio_enable;
return strlen(buf);
}
static DEVICE_ATTR(sas_ncq_prio_enable, S_IRUGO | S_IWUSR,
_ctl_device_ncq_prio_enable_show,
_ctl_device_ncq_prio_enable_store);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5,16,0))
static struct attribute *mpt3sas_dev_attrs[] = {
&dev_attr_sas_address.attr,
&dev_attr_sas_device_handle.attr,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,6,0))
&dev_attr_sas_ncq_prio_enable.attr,
#endif
NULL,
};
static const struct attribute_group mpt3sas_dev_attr_group = {
.attrs = mpt3sas_dev_attrs
};
const struct attribute_group *mpt3sas_dev_groups[] = {
&mpt3sas_dev_attr_group,
NULL
};
#else
struct device_attribute *mpt3sas_dev_attrs[] = {
&dev_attr_sas_address,
&dev_attr_sas_device_handle,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,6,0))
&dev_attr_sas_ncq_prio_enable,
#endif
NULL,
};
#endif
/* file operations table for mpt3ctl device */ static const struct
file_operations ctl_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = _ctl_ioctl,
.poll = _ctl_poll,
.fasync = _ctl_fasync,
#ifdef CONFIG_COMPAT
.compat_ioctl = _ctl_ioctl_compat,
#endif
};
/* file operations table for mpt2ctl device */ static const struct
file_operations ctl_gen2_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = _ctl_mpt2_ioctl,
.poll = _ctl_poll,
.fasync = _ctl_fasync,
#ifdef CONFIG_COMPAT
.compat_ioctl = _ctl_mpt2_ioctl_compat,
#endif
};
static struct miscdevice ctl_dev = {
.minor = MPT3SAS_MINOR,
.name = MPT3SAS_DEV_NAME,
.fops = &ctl_fops,
};
static struct miscdevice gen2_ctl_dev = {
.minor = MPT2SAS_MINOR,
.name = MPT2SAS_DEV_NAME,
.fops = &ctl_gen2_fops,
};
/**
* mpt3sas_ctl_init - main entry point for ctl.
*
*/
void
mpt3sas_ctl_init(int enumerate_hba)
{
async_queue = NULL;
/* Don't register mpt3ctl ioctl device if
* hbas_to_enumarate is one.
*/
if (enumerate_hba != 1)
if (misc_register(&ctl_dev) < 0)
pr_err("%s can't register misc device [minor=%d]\n",
MPT3SAS_DRIVER_NAME, MPT3SAS_MINOR);
/* Don't register mpt2ctl ioctl device if
* hbas_to_enumarate is two.
*/
if (enumerate_hba != 2)
if (misc_register(&gen2_ctl_dev) < 0)
pr_err("%s can't register misc device [minor=%d]\n",
MPT2SAS_DRIVER_NAME, MPT2SAS_MINOR);
init_waitqueue_head(&ctl_poll_wait);
}
/**
* mpt3sas_ctl_exit - exit point for ctl
*
*/
void
mpt3sas_ctl_exit(int enumerate_hba)
{
struct MPT3SAS_ADAPTER *ioc;
int i;
list_for_each_entry(ioc, &mpt3sas_ioc_list, list) {
/* free memory associated to diag buffers */
for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
if (!ioc->diag_buffer[i])
continue;
pci_free_consistent(ioc->pdev, ioc->diag_buffer_sz[i],
ioc->diag_buffer[i], ioc->diag_buffer_dma[i]);
ioc->diag_buffer[i] = NULL;
ioc->diag_buffer_status[i] = 0;
}
kfree(ioc->event_log);
}
if (enumerate_hba != 1)
misc_deregister(&ctl_dev);
if (enumerate_hba != 2)
misc_deregister(&gen2_ctl_dev);
}
#ifdef CPQ_CIM
#include "mpt3sas_csmi_ctl.c"
#endif