1457 lines
43 KiB
C
Executable File
1457 lines
43 KiB
C
Executable File
/*
|
|
* Linux MegaRAID driver for SAS based RAID controllers
|
|
*
|
|
* Copyright (c) 2009-2018 LSI Corporation.
|
|
* Copyright (c) 2009-2018 Avago Technologies.
|
|
* Copyright (c) 2009-2018 Broadcom Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* FILE: megaraid_sas_fp.c
|
|
*
|
|
* Authors: Broadcom Inc.
|
|
* Sumant Patro
|
|
* Varad Talamacki
|
|
* Manoj Jose
|
|
* Kashyap Desai <kashyap.desai@broadcom.com>
|
|
* Sumit Saxena <sumit.saxena@broadcom.com>
|
|
*
|
|
* Send feedback to: megaraidlinux.pdl@broadcom.com
|
|
*/
|
|
|
|
#include <linux/version.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/list.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/module.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/poll.h>
|
|
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/scsi_device.h>
|
|
#include <scsi/scsi_host.h>
|
|
|
|
#include "megaraid_sas_fusion.h"
|
|
#include "megaraid_sas.h"
|
|
#include <asm/div64.h>
|
|
|
|
#define LB_PENDING_CMDS_DEFAULT 4
|
|
static unsigned int lb_pending_cmds = LB_PENDING_CMDS_DEFAULT;
|
|
module_param(lb_pending_cmds, int, 0444);
|
|
MODULE_PARM_DESC(lb_pending_cmds, "Change raid-1 load balancing outstanding "
|
|
"threshold. Valid Values are 1-128. Default: 4");
|
|
|
|
|
|
#define ABS_DIFF(a, b) (((a) > (b)) ? ((a) - (b)) : ((b) - (a)))
|
|
#define MR_LD_STATE_OPTIMAL 3
|
|
|
|
#define SPAN_ROW_SIZE(map, ld, index_) (MR_LdSpanPtrGet(ld, index_, map)->spanRowSize)
|
|
#define SPAN_ROW_DATA_SIZE(map_, ld, index_) (MR_LdSpanPtrGet(ld, index_, map)->spanRowDataSize)
|
|
#define SPAN_INVALID 0xff
|
|
|
|
/* Prototypes */
|
|
static u8 mr_update_span_set(struct MR_DRV_RAID_MAP_ALL *map,
|
|
PLD_SPAN_INFO ldSpanInfo);
|
|
static u8 mr_spanset_get_phy_params(struct megasas_instance *instance, u32 ld,
|
|
u64 stripRow, u16 stripRef, struct IO_REQUEST_INFO *io_info,
|
|
struct RAID_CONTEXT *pRAID_Context, struct MR_DRV_RAID_MAP_ALL *map);
|
|
static u64 get_row_from_strip(struct megasas_instance *instance, u32 ld,
|
|
u64 strip, struct MR_DRV_RAID_MAP_ALL *map);
|
|
|
|
u32 mega_mod64(u64 dividend, u32 divisor)
|
|
{
|
|
u64 d;
|
|
u32 remainder;
|
|
|
|
if (!divisor)
|
|
printk(KERN_ERR "megasas : DIVISOR is zero, in div fn\n");
|
|
|
|
d = dividend;
|
|
remainder = do_div(d, divisor);
|
|
return remainder;
|
|
}
|
|
|
|
/**
|
|
* @param dividend : Dividend
|
|
* @param divisor : Divisor
|
|
*
|
|
* @return quotient
|
|
**/
|
|
u64 mega_div64_32(uint64_t dividend, uint32_t divisor)
|
|
{
|
|
u32 remainder;
|
|
u64 d;
|
|
|
|
if (!divisor)
|
|
printk(KERN_ERR "megasas : DIVISOR is zero in mod fn\n");
|
|
|
|
d = dividend;
|
|
remainder = do_div(d, divisor);
|
|
|
|
return d;
|
|
}
|
|
|
|
struct MR_LD_RAID *MR_LdRaidGet(u32 ld, struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
return &map->raidMap.ldSpanMap[ld].ldRaid;
|
|
}
|
|
|
|
static struct MR_SPAN_BLOCK_INFO *MR_LdSpanInfoGet(u32 ld,
|
|
struct MR_DRV_RAID_MAP_ALL
|
|
*map)
|
|
{
|
|
return &map->raidMap.ldSpanMap[ld].spanBlock[0];
|
|
}
|
|
|
|
static u8 MR_LdDataArmGet(u32 ld, u32 armIdx, struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx];
|
|
}
|
|
|
|
u16 MR_ArPdGet(u32 ar, u32 arm, struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
return le16_to_cpu(map->raidMap.arMapInfo[ar].pd[arm]);
|
|
}
|
|
|
|
u16 MR_LdSpanArrayGet(u32 ld, u32 span, struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
return le16_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef);
|
|
}
|
|
|
|
__le16 MR_PdDevHandleGet(u32 pd, struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
return map->raidMap.devHndlInfo[pd].curDevHdl;
|
|
}
|
|
|
|
static u8 MR_PdInterfaceTypeGet(u32 pd, struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
return map->raidMap.devHndlInfo[pd].interfaceType;
|
|
}
|
|
|
|
u16 MR_GetLDTgtId(u32 ld, struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
return le16_to_cpu(map->raidMap.ldSpanMap[ld].ldRaid.targetId);
|
|
}
|
|
|
|
u16 MR_TargetIdToLdGet(u32 ldTgtId, struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
return map->raidMap.ldTgtIdToLd[ldTgtId];
|
|
}
|
|
|
|
static struct MR_LD_SPAN *MR_LdSpanPtrGet(u32 ld, u32 span,
|
|
struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
return &map->raidMap.ldSpanMap[ld].spanBlock[span].span;
|
|
}
|
|
|
|
/*
|
|
* This function will Populate Driver Map using firmware raid map
|
|
*/
|
|
static int MR_PopulateDrvRaidMap(struct megasas_instance *instance, u64 map_id)
|
|
{
|
|
struct fusion_context *fusion = instance->ctrl_context;
|
|
struct MR_FW_RAID_MAP_ALL *fw_map_old = NULL;
|
|
struct MR_FW_RAID_MAP *pFwRaidMap = NULL;
|
|
int i, j;
|
|
u16 ld_count;
|
|
struct MR_FW_RAID_MAP_DYNAMIC *fw_map_dyn;
|
|
struct MR_FW_RAID_MAP_EXT *fw_map_ext;
|
|
struct MR_RAID_MAP_DESC_TABLE *desc_table;
|
|
|
|
|
|
struct MR_DRV_RAID_MAP_ALL *drv_map =
|
|
fusion->ld_drv_map[(map_id & 1)];
|
|
struct MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
|
|
void *raid_map_data = NULL;
|
|
|
|
memset(drv_map, 0, fusion->drv_map_sz);
|
|
memset(pDrvRaidMap->ldTgtIdToLd,
|
|
0xff, (sizeof(u16) * MAX_LOGICAL_DRIVES_DYN));
|
|
|
|
if (instance->max_raid_mapsize) {
|
|
fw_map_dyn = fusion->ld_map[(map_id & 1)];
|
|
desc_table =
|
|
(struct MR_RAID_MAP_DESC_TABLE *)((void *)fw_map_dyn + le32_to_cpu(fw_map_dyn->desc_table_offset));
|
|
if (desc_table != fw_map_dyn->raid_map_desc_table)
|
|
dev_dbg(&instance->pdev->dev, "offsets of desc table are not matching desc %p original %p\n",
|
|
desc_table, fw_map_dyn->raid_map_desc_table);
|
|
|
|
ld_count = (u16)le16_to_cpu(fw_map_dyn->ld_count);
|
|
pDrvRaidMap->ldCount = (__le16)cpu_to_le16(ld_count);
|
|
pDrvRaidMap->fpPdIoTimeoutSec =
|
|
fw_map_dyn->fp_pd_io_timeout_sec;
|
|
pDrvRaidMap->totalSize =
|
|
cpu_to_le32(sizeof(struct MR_DRV_RAID_MAP_ALL));
|
|
/* point to actual data starting point*/
|
|
raid_map_data = (void *)fw_map_dyn +
|
|
le32_to_cpu(fw_map_dyn->desc_table_offset) +
|
|
le32_to_cpu(fw_map_dyn->desc_table_size);
|
|
|
|
for (i = 0; i < le32_to_cpu(fw_map_dyn->desc_table_num_elements); ++i) {
|
|
switch (le32_to_cpu(desc_table->raid_map_desc_type)) {
|
|
case RAID_MAP_DESC_TYPE_DEVHDL_INFO:
|
|
fw_map_dyn->dev_hndl_info =
|
|
(struct MR_DEV_HANDLE_INFO *)(raid_map_data + le32_to_cpu(desc_table->raid_map_desc_offset));
|
|
memcpy(pDrvRaidMap->devHndlInfo,
|
|
fw_map_dyn->dev_hndl_info,
|
|
sizeof(struct MR_DEV_HANDLE_INFO) *
|
|
le32_to_cpu(desc_table->raid_map_desc_elements));
|
|
break;
|
|
case RAID_MAP_DESC_TYPE_TGTID_INFO:
|
|
fw_map_dyn->ld_tgt_id_to_ld =
|
|
(u16 *)(raid_map_data +
|
|
le32_to_cpu(desc_table->raid_map_desc_offset));
|
|
for (j = 0; j < le32_to_cpu(desc_table->raid_map_desc_elements); j++) {
|
|
pDrvRaidMap->ldTgtIdToLd[j] =
|
|
le16_to_cpu(fw_map_dyn->ld_tgt_id_to_ld[j]);
|
|
}
|
|
break;
|
|
case RAID_MAP_DESC_TYPE_ARRAY_INFO:
|
|
fw_map_dyn->ar_map_info =
|
|
(struct MR_ARRAY_INFO *)
|
|
(raid_map_data + le32_to_cpu(desc_table->raid_map_desc_offset));
|
|
memcpy(pDrvRaidMap->arMapInfo,
|
|
fw_map_dyn->ar_map_info,
|
|
sizeof(struct MR_ARRAY_INFO) *
|
|
le32_to_cpu(desc_table->raid_map_desc_elements));
|
|
break;
|
|
case RAID_MAP_DESC_TYPE_SPAN_INFO:
|
|
fw_map_dyn->ld_span_map =
|
|
(struct MR_LD_SPAN_MAP *)
|
|
(raid_map_data +
|
|
le32_to_cpu(desc_table->raid_map_desc_offset));
|
|
memcpy(pDrvRaidMap->ldSpanMap,
|
|
fw_map_dyn->ld_span_map,
|
|
sizeof(struct MR_LD_SPAN_MAP) *
|
|
le32_to_cpu(desc_table->raid_map_desc_elements));
|
|
break;
|
|
default:
|
|
dev_dbg(&instance->pdev->dev, "wrong number of desctableElements %d\n",
|
|
fw_map_dyn->desc_table_num_elements);
|
|
}
|
|
++desc_table;
|
|
}
|
|
|
|
} else if (instance->supportmax256vd) {
|
|
fw_map_ext =
|
|
(struct MR_FW_RAID_MAP_EXT *)fusion->ld_map[(map_id & 1)];
|
|
ld_count = (u16)le16_to_cpu(fw_map_ext->ldCount);
|
|
if (ld_count > MAX_LOGICAL_DRIVES_EXT) {
|
|
dev_dbg(&instance->pdev->dev, "megaraid_sas: LD count exposed in RAID map in not valid\n");
|
|
return 1;
|
|
}
|
|
|
|
pDrvRaidMap->ldCount = (__le16)cpu_to_le16(ld_count);
|
|
pDrvRaidMap->fpPdIoTimeoutSec = fw_map_ext->fpPdIoTimeoutSec;
|
|
for (i = 0; i < (MAX_LOGICAL_DRIVES_EXT); i++)
|
|
pDrvRaidMap->ldTgtIdToLd[i] =
|
|
(u16)fw_map_ext->ldTgtIdToLd[i];
|
|
memcpy(pDrvRaidMap->ldSpanMap, fw_map_ext->ldSpanMap,
|
|
sizeof(struct MR_LD_SPAN_MAP) * ld_count);
|
|
memcpy(pDrvRaidMap->arMapInfo, fw_map_ext->arMapInfo,
|
|
sizeof(struct MR_ARRAY_INFO) * MAX_API_ARRAYS_EXT);
|
|
memcpy(pDrvRaidMap->devHndlInfo, fw_map_ext->devHndlInfo,
|
|
sizeof(struct MR_DEV_HANDLE_INFO) *
|
|
MAX_RAIDMAP_PHYSICAL_DEVICES);
|
|
|
|
/* New Raid map will not set totalSize, so keep expected value
|
|
* for legacy code in ValidateMapInfo
|
|
*/
|
|
pDrvRaidMap->totalSize =
|
|
cpu_to_le32(sizeof(struct MR_FW_RAID_MAP_EXT));
|
|
} else {
|
|
fw_map_old = (struct MR_FW_RAID_MAP_ALL *)
|
|
fusion->ld_map[(map_id & 1)];
|
|
pFwRaidMap = &fw_map_old->raidMap;
|
|
ld_count = (u16)le32_to_cpu(pFwRaidMap->ldCount);
|
|
if (ld_count > MAX_LOGICAL_DRIVES) {
|
|
dev_dbg(&instance->pdev->dev,
|
|
"LD count exposed in RAID map in not valid\n");
|
|
return 1;
|
|
}
|
|
|
|
pDrvRaidMap->totalSize = pFwRaidMap->totalSize;
|
|
pDrvRaidMap->ldCount = (__le16)cpu_to_le16(ld_count);
|
|
pDrvRaidMap->fpPdIoTimeoutSec = pFwRaidMap->fpPdIoTimeoutSec;
|
|
for (i = 0; i < MAX_RAIDMAP_LOGICAL_DRIVES + MAX_RAIDMAP_VIEWS; i++)
|
|
pDrvRaidMap->ldTgtIdToLd[i] =
|
|
(u8)pFwRaidMap->ldTgtIdToLd[i];
|
|
for (i = 0; i < ld_count; i++) {
|
|
pDrvRaidMap->ldSpanMap[i] = pFwRaidMap->ldSpanMap[i];
|
|
}
|
|
memcpy(pDrvRaidMap->arMapInfo, pFwRaidMap->arMapInfo,
|
|
sizeof(struct MR_ARRAY_INFO) * MAX_RAIDMAP_ARRAYS);
|
|
memcpy(pDrvRaidMap->devHndlInfo, pFwRaidMap->devHndlInfo,
|
|
sizeof(struct MR_DEV_HANDLE_INFO) *
|
|
MAX_RAIDMAP_PHYSICAL_DEVICES);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function will validate Map info data provided by FW
|
|
*/
|
|
u8 MR_ValidateMapInfo(struct megasas_instance *instance, u64 map_id)
|
|
{
|
|
struct fusion_context *fusion;
|
|
struct MR_DRV_RAID_MAP_ALL *drv_map;
|
|
struct MR_DRV_RAID_MAP *pDrvRaidMap;
|
|
struct LD_LOAD_BALANCE_INFO *lbInfo;
|
|
PLD_SPAN_INFO ldSpanInfo;
|
|
struct MR_LD_RAID *raid;
|
|
u16 num_lds, i;
|
|
u16 ld;
|
|
u32 expected_size;
|
|
|
|
if (MR_PopulateDrvRaidMap(instance, map_id))
|
|
return 0;
|
|
|
|
fusion = instance->ctrl_context;
|
|
drv_map = fusion->ld_drv_map[(map_id & 1)];
|
|
pDrvRaidMap = &drv_map->raidMap;
|
|
|
|
lbInfo = fusion->load_balance_info;
|
|
ldSpanInfo = fusion->log_to_span;
|
|
|
|
if (instance->max_raid_mapsize)
|
|
expected_size = sizeof(struct MR_DRV_RAID_MAP_ALL);
|
|
else if (instance->supportmax256vd)
|
|
expected_size = sizeof(struct MR_FW_RAID_MAP_EXT);
|
|
else
|
|
expected_size =
|
|
(sizeof(struct MR_FW_RAID_MAP) - sizeof(struct MR_LD_SPAN_MAP) +
|
|
(sizeof(struct MR_LD_SPAN_MAP) * le16_to_cpu(pDrvRaidMap->ldCount)));
|
|
|
|
if (le32_to_cpu(pDrvRaidMap->totalSize) != expected_size) {
|
|
dev_dbg(&instance->pdev->dev, "megasas: map info structure size 0x%x",
|
|
le32_to_cpu(pDrvRaidMap->totalSize));
|
|
dev_dbg(&instance->pdev->dev, "is not matching expected size 0x%x\n",
|
|
(unsigned int)expected_size);
|
|
dev_err(&instance->pdev->dev, "megasas: span map %x, pDrvRaidMap->totalSize : %x\n",
|
|
(unsigned int)sizeof(struct MR_LD_SPAN_MAP),
|
|
le32_to_cpu(pDrvRaidMap->totalSize));
|
|
return 0;
|
|
}
|
|
|
|
if (instance->UnevenSpanSupport)
|
|
if (mr_update_span_set(drv_map, ldSpanInfo))
|
|
return 0;
|
|
|
|
if (lbInfo)
|
|
mr_update_load_balance_params(drv_map, lbInfo);
|
|
|
|
num_lds = le16_to_cpu(drv_map->raidMap.ldCount);
|
|
|
|
memcpy(instance->ld_ids_prev, instance->ld_ids_from_raidmap,
|
|
sizeof(instance->ld_ids_from_raidmap));
|
|
memset(instance->ld_ids_from_raidmap, 0xff, MEGASAS_MAX_LD_IDS);
|
|
/*Convert Raid capability values to CPU arch */
|
|
for (i = 0; (num_lds > 0) && (i < MAX_LOGICAL_DRIVES_EXT); i++) {
|
|
ld = MR_TargetIdToLdGet(i, drv_map);
|
|
|
|
/* For non existing VDs, iterate to next VD*/
|
|
if (ld >= (MAX_LOGICAL_DRIVES_EXT - 1))
|
|
continue;
|
|
|
|
raid = MR_LdRaidGet(ld, drv_map);
|
|
le32_to_cpus((u32 *)&raid->capability);
|
|
instance->ld_ids_from_raidmap[i] = i;
|
|
num_lds--;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
u32 MR_GetSpanBlock(u32 ld, u64 row, u64 *span_blk,
|
|
struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
struct MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map);
|
|
struct MR_QUAD_ELEMENT *quad;
|
|
struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
|
|
u32 span, j;
|
|
|
|
for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) {
|
|
|
|
for (j = 0; j < le32_to_cpu(pSpanBlock->block_span_info.noElements); j++) {
|
|
quad = &pSpanBlock->block_span_info.quad[j];
|
|
|
|
if (le32_to_cpu(quad->diff) == 0)
|
|
return SPAN_INVALID;
|
|
if (le64_to_cpu(quad->logStart) <= row && row <=
|
|
le64_to_cpu(quad->logEnd) && (mega_mod64(row - le64_to_cpu(quad->logStart),
|
|
le32_to_cpu(quad->diff))) == 0) {
|
|
if (span_blk != NULL) {
|
|
u64 blk, debugBlk;
|
|
blk = mega_div64_32((row-le64_to_cpu(quad->logStart)), le32_to_cpu(quad->diff));
|
|
debugBlk = blk;
|
|
|
|
blk = (blk + le64_to_cpu(quad->offsetInSpan)) << raid->stripeShift;
|
|
*span_blk = blk;
|
|
}
|
|
return span;
|
|
}
|
|
}
|
|
}
|
|
return SPAN_INVALID;
|
|
}
|
|
|
|
/*
|
|
******************************************************************************
|
|
*
|
|
* This routine calculates the Span block for given row using spanset.
|
|
*
|
|
* Inputs :
|
|
* instance - HBA instance
|
|
* ld - Logical drive number
|
|
* row - Row number
|
|
* map - LD map
|
|
*
|
|
* Outputs :
|
|
*
|
|
* span - Span number
|
|
* block - Absolute Block number in the physical disk
|
|
* div_error - Devide error code.
|
|
*/
|
|
|
|
u32 mr_spanset_get_span_block(struct megasas_instance *instance,
|
|
u32 ld, u64 row, u64 *span_blk, struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
struct fusion_context *fusion = instance->ctrl_context;
|
|
struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
|
|
LD_SPAN_SET *span_set;
|
|
struct MR_QUAD_ELEMENT *quad;
|
|
u32 span, info;
|
|
PLD_SPAN_INFO ldSpanInfo = fusion->log_to_span;
|
|
|
|
for (info = 0; info < MAX_QUAD_DEPTH; info++) {
|
|
span_set = &(ldSpanInfo[ld].span_set[info]);
|
|
|
|
if (span_set->span_row_data_width == 0)
|
|
break;
|
|
|
|
if (row > span_set->data_row_end)
|
|
continue;
|
|
|
|
for (span = 0; span < raid->spanDepth; span++)
|
|
if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span].
|
|
block_span_info.noElements) >= info+1) {
|
|
quad = &map->raidMap.ldSpanMap[ld].
|
|
spanBlock[span].
|
|
block_span_info.quad[info];
|
|
if (le32_to_cpu(quad->diff) == 0)
|
|
return SPAN_INVALID;
|
|
if (le64_to_cpu(quad->logStart) <= row &&
|
|
row <= le64_to_cpu(quad->logEnd) &&
|
|
(mega_mod64(row - le64_to_cpu(quad->logStart),
|
|
le32_to_cpu(quad->diff))) == 0) {
|
|
if (span_blk != NULL) {
|
|
u64 blk;
|
|
blk = mega_div64_32
|
|
((row - le64_to_cpu(quad->logStart)),
|
|
le32_to_cpu(quad->diff));
|
|
blk = (blk + le64_to_cpu(quad->offsetInSpan))
|
|
<< raid->stripeShift;
|
|
*span_blk = blk;
|
|
}
|
|
return span;
|
|
}
|
|
}
|
|
}
|
|
return SPAN_INVALID;
|
|
}
|
|
|
|
/*
|
|
******************************************************************************
|
|
*
|
|
* This routine calculates the row for given strip using spanset.
|
|
*
|
|
* Inputs :
|
|
* instance - HBA instance
|
|
* ld - Logical drive number
|
|
* Strip - Strip
|
|
* map - LD map
|
|
*
|
|
* Outputs :
|
|
*
|
|
* row - row associated with strip
|
|
*/
|
|
|
|
static u64 get_row_from_strip(struct megasas_instance *instance,
|
|
u32 ld, u64 strip, struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
struct fusion_context *fusion = instance->ctrl_context;
|
|
struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
|
|
LD_SPAN_SET *span_set;
|
|
PLD_SPAN_INFO ldSpanInfo = fusion->log_to_span;
|
|
u32 info, strip_offset, span, span_offset;
|
|
u64 span_set_Strip, span_set_Row, retval;
|
|
|
|
for (info = 0; info < MAX_QUAD_DEPTH; info++) {
|
|
span_set = &(ldSpanInfo[ld].span_set[info]);
|
|
|
|
if ((span_set->span_row_data_width == 0) || (span_set->diff == 0))
|
|
break;
|
|
if (strip > span_set->data_strip_end)
|
|
continue;
|
|
|
|
span_set_Strip = strip - span_set->data_strip_start;
|
|
strip_offset = mega_mod64(span_set_Strip,
|
|
span_set->span_row_data_width);
|
|
span_set_Row = mega_div64_32(span_set_Strip,
|
|
span_set->span_row_data_width) * span_set->diff;
|
|
for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
|
|
if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span].
|
|
block_span_info.noElements) >= info+1) {
|
|
if (strip_offset >=
|
|
span_set->strip_offset[span])
|
|
span_offset++;
|
|
else
|
|
break;
|
|
}
|
|
|
|
retval = (span_set->data_row_start + span_set_Row +
|
|
(span_offset - 1));
|
|
return retval;
|
|
}
|
|
return -1LLU;
|
|
}
|
|
|
|
|
|
/*
|
|
******************************************************************************
|
|
*
|
|
* This routine calculates the Start Strip for given row using spanset.
|
|
*
|
|
* Inputs :
|
|
* instance - HBA instance
|
|
* ld - Logical drive number
|
|
* row - Row number
|
|
* map - LD map
|
|
*
|
|
* Outputs :
|
|
*
|
|
* Strip - Start strip associated with row
|
|
*/
|
|
|
|
static u64 get_strip_from_row(struct megasas_instance *instance,
|
|
u32 ld, u64 row, struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
struct fusion_context *fusion = instance->ctrl_context;
|
|
struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
|
|
LD_SPAN_SET *span_set;
|
|
struct MR_QUAD_ELEMENT *quad;
|
|
PLD_SPAN_INFO ldSpanInfo = fusion->log_to_span;
|
|
u32 span, info;
|
|
u64 strip;
|
|
|
|
for (info = 0; info < MAX_QUAD_DEPTH; info++) {
|
|
span_set = &(ldSpanInfo[ld].span_set[info]);
|
|
|
|
if (span_set->span_row_data_width == 0)
|
|
break;
|
|
if (row > span_set->data_row_end)
|
|
continue;
|
|
|
|
for (span = 0; span < raid->spanDepth; span++)
|
|
if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span].
|
|
block_span_info.noElements) >= info+1) {
|
|
quad = &map->raidMap.ldSpanMap[ld].
|
|
spanBlock[span].block_span_info.quad[info];
|
|
if (le32_to_cpu(quad->diff) == 0)
|
|
return -1;
|
|
if (le64_to_cpu(quad->logStart) <= row &&
|
|
row <= le64_to_cpu(quad->logEnd) &&
|
|
mega_mod64((row - le64_to_cpu(quad->logStart)),
|
|
le32_to_cpu(quad->diff)) == 0) {
|
|
strip = mega_div64_32
|
|
(((row - span_set->data_row_start)
|
|
- le64_to_cpu(quad->logStart)),
|
|
le32_to_cpu(quad->diff));
|
|
strip *= span_set->span_row_data_width;
|
|
strip += span_set->data_strip_start;
|
|
strip += span_set->strip_offset[span];
|
|
return strip;
|
|
}
|
|
}
|
|
}
|
|
dev_err(&instance->pdev->dev, "get_strip_from_row"
|
|
"returns invalid strip for ld=%x, row=%lx\n",
|
|
ld, (long unsigned int)row);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
******************************************************************************
|
|
*
|
|
* This routine calculates the Physical Arm for given strip using spanset.
|
|
*
|
|
* Inputs :
|
|
* instance - HBA instance
|
|
* ld - Logical drive number
|
|
* strip - Strip
|
|
* map - LD map
|
|
*
|
|
* Outputs :
|
|
*
|
|
* Phys Arm - Phys Arm associated with strip
|
|
*/
|
|
|
|
static u32 get_arm_from_strip(struct megasas_instance *instance,
|
|
u32 ld, u64 strip, struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
struct fusion_context *fusion = instance->ctrl_context;
|
|
struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
|
|
LD_SPAN_SET *span_set;
|
|
PLD_SPAN_INFO ldSpanInfo = fusion->log_to_span;
|
|
u32 info, strip_offset, span, span_offset, retval;
|
|
|
|
for (info = 0 ; info < MAX_QUAD_DEPTH; info++) {
|
|
span_set = &(ldSpanInfo[ld].span_set[info]);
|
|
|
|
if (span_set->span_row_data_width == 0)
|
|
break;
|
|
if (strip > span_set->data_strip_end)
|
|
continue;
|
|
|
|
strip_offset = (uint)mega_mod64
|
|
((strip - span_set->data_strip_start),
|
|
span_set->span_row_data_width);
|
|
|
|
for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
|
|
if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span].
|
|
block_span_info.noElements) >= info+1) {
|
|
if (strip_offset >=
|
|
span_set->strip_offset[span])
|
|
span_offset =
|
|
span_set->strip_offset[span];
|
|
else
|
|
break;
|
|
}
|
|
|
|
retval = (strip_offset - span_offset);
|
|
return retval;
|
|
}
|
|
|
|
dev_err(&instance->pdev->dev, "get_arm_from_strip"
|
|
"returns invalid arm for ld=%x strip=%lx\n",
|
|
ld, (long unsigned int)strip);
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* This Function will return Phys arm */
|
|
u8 get_arm(struct megasas_instance *instance, u32 ld, u8 span, u64 stripe,
|
|
struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
|
|
/* Need to check correct default value */
|
|
u32 arm = 0;
|
|
|
|
switch (raid->level) {
|
|
case 0:
|
|
case 5:
|
|
case 6:
|
|
arm = mega_mod64(stripe, SPAN_ROW_SIZE(map, ld, span));
|
|
break;
|
|
case 1:
|
|
/* start with logical arm */
|
|
arm = get_arm_from_strip(instance, ld, stripe, map);
|
|
if (arm != -1U)
|
|
arm *= 2;
|
|
break;
|
|
}
|
|
|
|
return arm;
|
|
}
|
|
|
|
|
|
/*
|
|
******************************************************************************
|
|
*
|
|
* This routine calculates the arm, span and block for the specified stripe and
|
|
* reference in stripe using spanset
|
|
*
|
|
* Inputs :
|
|
*
|
|
* ld - Logical drive number
|
|
* stripRow - Stripe number
|
|
* stripRef - Reference in stripe
|
|
*
|
|
* Outputs :
|
|
*
|
|
* span - Span number
|
|
* block - Absolute Block number in the physical disk
|
|
*/
|
|
static u8 mr_spanset_get_phy_params(struct megasas_instance *instance, u32 ld,
|
|
u64 stripRow, u16 stripRef, struct IO_REQUEST_INFO *io_info,
|
|
struct RAID_CONTEXT *pRAID_Context,
|
|
struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
|
|
u32 pd, arRef, r1_alt_pd;
|
|
u8 physArm, span;
|
|
u64 row;
|
|
u8 retval = true;
|
|
u64 *pdBlock = &io_info->pdBlock;
|
|
__le16 *pDevHandle = &io_info->devHandle;
|
|
u8 *pPdInterface = &io_info->pd_interface;
|
|
u32 logArm, rowMod, armQ, arm;
|
|
struct fusion_context *fusion;
|
|
|
|
fusion = instance->ctrl_context;
|
|
*pDevHandle = cpu_to_le16(MR_DEVHANDLE_INVALID);
|
|
|
|
/*Get row and span from io_info for Uneven Span IO.*/
|
|
row = io_info->start_row;
|
|
span = io_info->start_span;
|
|
|
|
if (SPAN_ROW_SIZE(map, ld, span) == 0)
|
|
return false;
|
|
|
|
if (raid->level == 6) {
|
|
logArm = get_arm_from_strip(instance, ld, stripRow, map);
|
|
if (logArm == -1U)
|
|
return false;
|
|
rowMod = mega_mod64(row, SPAN_ROW_SIZE(map, ld, span));
|
|
armQ = SPAN_ROW_SIZE(map, ld, span) - 1 - rowMod;
|
|
arm = armQ + 1 + logArm;
|
|
if (arm >= SPAN_ROW_SIZE(map, ld, span))
|
|
arm -= SPAN_ROW_SIZE(map, ld, span);
|
|
physArm = (u8)arm;
|
|
} else
|
|
/* Calculate the arm */
|
|
physArm = get_arm(instance, ld, span, stripRow, map);
|
|
if (physArm == 0xFF)
|
|
return false;
|
|
|
|
arRef = MR_LdSpanArrayGet(ld, span, map);
|
|
pd = MR_ArPdGet(arRef, physArm, map);
|
|
|
|
if (pd != MR_PD_INVALID) {
|
|
*pDevHandle = MR_PdDevHandleGet(pd, map);
|
|
*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
|
|
/* get second pd also for raid 1/10 fast path writes*/
|
|
if ((instance->adapter_type >= VENTURA_SERIES) &&
|
|
(raid->level == 1) &&
|
|
!io_info->isRead) {
|
|
r1_alt_pd = MR_ArPdGet(arRef, physArm + 1, map);
|
|
if (r1_alt_pd != MR_PD_INVALID)
|
|
io_info->r1_alt_dev_handle =
|
|
MR_PdDevHandleGet(r1_alt_pd, map);
|
|
}
|
|
} else {
|
|
if ((raid->level >= 5) &&
|
|
((instance->adapter_type == THUNDERBOLT_SERIES) ||
|
|
((instance->adapter_type == INVADER_SERIES) &&
|
|
(raid->regTypeReqOnRead != REGION_TYPE_UNUSED))))
|
|
pRAID_Context->reg_lock_flags = REGION_TYPE_EXCLUSIVE;
|
|
else if (raid->level == 1) {
|
|
physArm = physArm + 1;
|
|
pd = MR_ArPdGet(arRef, physArm, map);
|
|
if (pd != MR_PD_INVALID) {
|
|
*pDevHandle = MR_PdDevHandleGet(pd, map);
|
|
*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
|
|
}
|
|
}
|
|
}
|
|
|
|
*pdBlock += stripRef + le64_to_cpu(MR_LdSpanPtrGet(ld, span, map)->startBlk);
|
|
if (instance->adapter_type >= VENTURA_SERIES) {
|
|
((struct RAID_CONTEXT_G35 *)pRAID_Context)->span_arm =
|
|
(span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
|
|
io_info->span_arm =
|
|
(span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
|
|
} else {
|
|
pRAID_Context->span_arm =
|
|
(span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
|
|
io_info->span_arm = pRAID_Context->span_arm;
|
|
}
|
|
io_info->pd_after_lb = pd;
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
******************************************************************************
|
|
*
|
|
* This routine calculates the arm, span and block for the specified stripe and
|
|
* reference in stripe.
|
|
*
|
|
* Inputs :
|
|
*
|
|
* ld - Logical drive number
|
|
* stripRow - Stripe number
|
|
* stripRef - Reference in stripe
|
|
*
|
|
* Outputs :
|
|
*
|
|
* span - Span number
|
|
* block - Absolute Block number in the physical disk
|
|
*/
|
|
u8 MR_GetPhyParams(struct megasas_instance *instance, u32 ld, u64 stripRow,
|
|
u16 stripRef, struct IO_REQUEST_INFO *io_info,
|
|
struct RAID_CONTEXT *pRAID_Context,
|
|
struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
|
|
u32 pd, arRef, r1_alt_pd;
|
|
u8 physArm, span;
|
|
u64 row;
|
|
u8 retval = true;
|
|
u64 *pdBlock = &io_info->pdBlock;
|
|
__le16 *pDevHandle = &io_info->devHandle;
|
|
u8 *pPdInterface = &io_info->pd_interface;
|
|
struct fusion_context *fusion;
|
|
|
|
fusion = instance->ctrl_context;
|
|
*pDevHandle = cpu_to_le16(MR_DEVHANDLE_INVALID);
|
|
|
|
row = mega_div64_32(stripRow, raid->rowDataSize);
|
|
|
|
if (raid->level == 6) {
|
|
/* logical arm within row */
|
|
u32 logArm = mega_mod64(stripRow, raid->rowDataSize);
|
|
u32 rowMod, armQ, arm;
|
|
|
|
if (raid->rowSize == 0)
|
|
return false;
|
|
/* get logical row mod */
|
|
rowMod = mega_mod64(row, raid->rowSize);
|
|
armQ = raid->rowSize-1-rowMod; /* index of Q drive */
|
|
arm = armQ+1+logArm; /* data always logically follows Q */
|
|
if (arm >= raid->rowSize) /* handle wrap condition */
|
|
arm -= raid->rowSize;
|
|
physArm = (u8)arm;
|
|
} else {
|
|
if (raid->modFactor == 0)
|
|
return false;
|
|
physArm = MR_LdDataArmGet(ld, mega_mod64(stripRow,
|
|
raid->modFactor),
|
|
map);
|
|
}
|
|
|
|
if (raid->spanDepth == 1) {
|
|
span = 0;
|
|
*pdBlock = row << raid->stripeShift;
|
|
} else {
|
|
span = (u8)MR_GetSpanBlock(ld, row, pdBlock, map);
|
|
if (span == SPAN_INVALID)
|
|
return false;
|
|
}
|
|
|
|
/* Get the array on which this span is present */
|
|
arRef = MR_LdSpanArrayGet(ld, span, map);
|
|
pd = MR_ArPdGet(arRef, physArm, map); /* Get the pd */
|
|
|
|
if (pd != MR_PD_INVALID) {
|
|
/* Get dev handle from Pd. */
|
|
*pDevHandle = MR_PdDevHandleGet(pd, map);
|
|
*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
|
|
/* get second pd also for raid 1/10 fast path writes*/
|
|
if ((instance->adapter_type >= VENTURA_SERIES) &&
|
|
(raid->level == 1) &&
|
|
!io_info->isRead) {
|
|
r1_alt_pd = MR_ArPdGet(arRef, physArm + 1, map);
|
|
if (r1_alt_pd != MR_PD_INVALID)
|
|
io_info->r1_alt_dev_handle =
|
|
MR_PdDevHandleGet(r1_alt_pd, map);
|
|
}
|
|
} else {
|
|
if ((raid->level >= 5) &&
|
|
((instance->adapter_type == THUNDERBOLT_SERIES) ||
|
|
((instance->adapter_type == INVADER_SERIES) &&
|
|
(raid->regTypeReqOnRead != REGION_TYPE_UNUSED))))
|
|
pRAID_Context->reg_lock_flags = REGION_TYPE_EXCLUSIVE;
|
|
else if (raid->level == 1) {
|
|
/* Get alternate Pd. */
|
|
physArm = physArm + 1;
|
|
pd = MR_ArPdGet(arRef, physArm, map);
|
|
if (pd != MR_PD_INVALID) {
|
|
/* Get dev handle from Pd */
|
|
*pDevHandle = MR_PdDevHandleGet(pd, map);
|
|
*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
|
|
}
|
|
}
|
|
}
|
|
|
|
*pdBlock += stripRef + le64_to_cpu(MR_LdSpanPtrGet(ld, span, map)->startBlk);
|
|
if (instance->adapter_type >= VENTURA_SERIES) {
|
|
((struct RAID_CONTEXT_G35 *)pRAID_Context)->span_arm =
|
|
(span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
|
|
io_info->span_arm =
|
|
(span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
|
|
} else {
|
|
pRAID_Context->span_arm =
|
|
(span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
|
|
io_info->span_arm = pRAID_Context->span_arm;
|
|
}
|
|
io_info->pd_after_lb = pd;
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* mr_get_phy_params_r56_rmw - Calculate parameters for R56 CTIO write operation
|
|
* @instance: Adapter soft state
|
|
* @ld: LD index
|
|
* @stripNo: Strip Number
|
|
* @io_info: IO info structure pointer
|
|
* pRAID_Context: RAID context pointer
|
|
* map: RAID map pointer
|
|
*
|
|
* This routine calculates the logical arm, data Arm, row number and parity arm
|
|
* for R56 CTIO write operation.
|
|
*/
|
|
static u8 mr_get_phy_params_r56_rmw(struct megasas_instance *instance,
|
|
u32 ld, u64 stripNo,
|
|
struct IO_REQUEST_INFO *io_info,
|
|
struct RAID_CONTEXT_G35 *pRAID_Context,
|
|
struct MR_DRV_RAID_MAP_ALL *map)
|
|
{
|
|
struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
|
|
u8 span, dataArms, arms, dataArm, logArm;
|
|
s8 rightmostParityArm, PParityArm;
|
|
u64 rowNum;
|
|
u64 *pdBlock = &io_info->pdBlock;
|
|
|
|
dataArms = raid->rowDataSize;
|
|
arms = raid->rowSize;
|
|
|
|
rowNum = mega_div64_32(stripNo, dataArms);
|
|
/* parity disk arm, first arm is 0 */
|
|
if (arms == 0)
|
|
return 1;
|
|
rightmostParityArm = (arms - 1) - mega_mod64(rowNum, arms);
|
|
|
|
/* logical arm within row */
|
|
logArm = mega_mod64(stripNo, dataArms);
|
|
/* physical arm for data */
|
|
dataArm = mega_mod64((rightmostParityArm + 1 + logArm), arms);
|
|
|
|
if (raid->spanDepth == 1) {
|
|
span = 0;
|
|
} else {
|
|
span = (u8)MR_GetSpanBlock(ld, rowNum, pdBlock, map);
|
|
if (span == SPAN_INVALID)
|
|
return 1;
|
|
}
|
|
|
|
if (raid->level == 6) {
|
|
/* P Parity arm, note this can go negative adjust if negative */
|
|
PParityArm = (arms - 2) - mega_mod64(rowNum, arms);
|
|
|
|
if (PParityArm < 0)
|
|
PParityArm += arms;
|
|
|
|
/* rightmostParityArm is P-Parity for RAID 5 and Q-Parity for RAID */
|
|
pRAID_Context->flow_specific.r56_arm_map = rightmostParityArm;
|
|
pRAID_Context->flow_specific.r56_arm_map |=
|
|
(u16)(PParityArm << RAID_CTX_R56_P_ARM_SHIFT);
|
|
} else {
|
|
pRAID_Context->flow_specific.r56_arm_map |=
|
|
(u16)(rightmostParityArm << RAID_CTX_R56_P_ARM_SHIFT);
|
|
}
|
|
|
|
pRAID_Context->reg_lock_row_lba = cpu_to_le64(rowNum);
|
|
pRAID_Context->flow_specific.r56_arm_map |=
|
|
(u16)(logArm << RAID_CTX_R56_LOG_ARM_SHIFT);
|
|
cpu_to_le16s(&pRAID_Context->flow_specific.r56_arm_map);
|
|
pRAID_Context->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | dataArm;
|
|
pRAID_Context->raid_flags = (MR_RAID_FLAGS_IO_SUB_TYPE_R56_DIV_OFFLOAD <<
|
|
MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
******************************************************************************
|
|
*
|
|
* MR_BuildRaidContext function
|
|
*
|
|
* This function will initiate command processing. The start/end row and strip
|
|
* information is calculated then the lock is acquired.
|
|
* This function will return 0 if region lock was acquired OR return num strips
|
|
*/
|
|
u8
|
|
MR_BuildRaidContext(struct megasas_instance *instance,
|
|
struct IO_REQUEST_INFO *io_info,
|
|
struct RAID_CONTEXT *pRAID_Context,
|
|
struct MR_DRV_RAID_MAP_ALL *map, u8 **raidLUN)
|
|
{
|
|
struct fusion_context *fusion;
|
|
struct MR_LD_RAID *raid;
|
|
u32 stripSize, stripe_mask;
|
|
u64 endLba, endStrip, endRow, start_row, start_strip;
|
|
u64 regStart;
|
|
u32 regSize;
|
|
u8 num_strips, numRows;
|
|
u16 ref_in_start_stripe, ref_in_end_stripe;
|
|
u64 ldStartBlock;
|
|
u32 numBlocks, ldTgtId;
|
|
u8 isRead;
|
|
u8 retval = 0;
|
|
u8 startlba_span = SPAN_INVALID;
|
|
u64 *pdBlock = &io_info->pdBlock;
|
|
u16 ld;
|
|
|
|
ldStartBlock = io_info->ldStartBlock;
|
|
numBlocks = io_info->numBlocks;
|
|
ldTgtId = io_info->ldTgtId;
|
|
isRead = io_info->isRead;
|
|
io_info->IoforUnevenSpan = 0;
|
|
io_info->start_span = SPAN_INVALID;
|
|
fusion = instance->ctrl_context;
|
|
|
|
ld = MR_TargetIdToLdGet(ldTgtId, map);
|
|
raid = MR_LdRaidGet(ld, map);
|
|
/*check read ahead bit*/
|
|
io_info->ra_capable = raid->capability.ra_capable;
|
|
|
|
/*
|
|
* if rowDataSize @RAID map and spanRowDataSize @SPAN INFO are zero
|
|
* return FALSE
|
|
*/
|
|
if (raid->rowDataSize == 0) {
|
|
if (MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize == 0)
|
|
return false;
|
|
else if (instance->UnevenSpanSupport) {
|
|
io_info->IoforUnevenSpan = 1;
|
|
} else {
|
|
dev_info(&instance->pdev->dev,
|
|
"raid->rowDataSize is 0, but has SPAN[0]"
|
|
"rowDataSize = 0x%0x,"
|
|
"but there is _NO_ UnevenSpanSupport\n",
|
|
MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
io_info->data_arms = raid->rowDataSize;
|
|
|
|
stripSize = 1 << raid->stripeShift;
|
|
stripe_mask = stripSize-1;
|
|
|
|
|
|
/*
|
|
* calculate starting row and stripe, and number of strips and rows
|
|
*/
|
|
start_strip = ldStartBlock >> raid->stripeShift;
|
|
ref_in_start_stripe = (u16)(ldStartBlock & stripe_mask);
|
|
endLba = ldStartBlock + numBlocks - 1;
|
|
ref_in_end_stripe = (u16)(endLba & stripe_mask);
|
|
endStrip = endLba >> raid->stripeShift;
|
|
num_strips = (u8)(endStrip - start_strip + 1); /* End strip */
|
|
|
|
if (io_info->IoforUnevenSpan) {
|
|
start_row = get_row_from_strip(instance, ld, start_strip, map);
|
|
endRow = get_row_from_strip(instance, ld, endStrip, map);
|
|
if (start_row == -1ULL || endRow == -1ULL) {
|
|
dev_info(&instance->pdev->dev, "return from %s %d."
|
|
"Send IO w/o region lock.\n",
|
|
__func__, __LINE__);
|
|
return false;
|
|
}
|
|
|
|
if (raid->spanDepth == 1) {
|
|
startlba_span = 0;
|
|
*pdBlock = start_row << raid->stripeShift;
|
|
} else
|
|
startlba_span = (u8)mr_spanset_get_span_block(instance,
|
|
ld, start_row, pdBlock, map);
|
|
if (startlba_span == SPAN_INVALID) {
|
|
dev_info(&instance->pdev->dev, "return from %s %d"
|
|
"for row 0x%llx,start strip %llx"
|
|
"endSrip %llx\n", __func__, __LINE__,
|
|
(unsigned long long)start_row,
|
|
(unsigned long long)start_strip,
|
|
(unsigned long long)endStrip);
|
|
return false;
|
|
}
|
|
io_info->start_span = startlba_span;
|
|
io_info->start_row = start_row;
|
|
} else {
|
|
start_row = mega_div64_32(start_strip, raid->rowDataSize);
|
|
endRow = mega_div64_32(endStrip, raid->rowDataSize);
|
|
}
|
|
numRows = (u8)(endRow - start_row + 1);
|
|
|
|
/*
|
|
* calculate region info.
|
|
*/
|
|
|
|
/* assume region is at the start of the first row */
|
|
regStart = start_row << raid->stripeShift;
|
|
/* assume this IO needs the full row - we'll adjust if not true */
|
|
regSize = stripSize;
|
|
|
|
io_info->do_fp_rlbypass = raid->capability.fpBypassRegionLock;
|
|
|
|
/* Check if we can send this I/O via FastPath */
|
|
if (raid->capability.fpCapable) {
|
|
if (isRead)
|
|
io_info->fpOkForIo = (raid->capability.fpReadCapable &&
|
|
((num_strips == 1) ||
|
|
raid->capability.
|
|
fpReadAcrossStripe));
|
|
else
|
|
io_info->fpOkForIo = (raid->capability.fpWriteCapable &&
|
|
((num_strips == 1) ||
|
|
raid->capability.
|
|
fpWriteAcrossStripe));
|
|
} else
|
|
io_info->fpOkForIo = false;
|
|
|
|
if (numRows == 1) {
|
|
/* single-strip IOs can always lock only the data needed */
|
|
if (num_strips == 1) {
|
|
regStart += ref_in_start_stripe;
|
|
regSize = numBlocks;
|
|
}
|
|
/* multi-strip IOs always need to full stripe locked */
|
|
} else if (io_info->IoforUnevenSpan == 0) {
|
|
/*
|
|
* For Even span region lock optimization.
|
|
* If the start strip is the last in the start row
|
|
*/
|
|
if (start_strip == (start_row + 1) * raid->rowDataSize - 1) {
|
|
regStart += ref_in_start_stripe;
|
|
/* initialize count to sectors from startref to end
|
|
of strip */
|
|
regSize = stripSize - ref_in_start_stripe;
|
|
}
|
|
|
|
/* add complete rows in the middle of the transfer */
|
|
if (numRows > 2)
|
|
regSize += (numRows-2) << raid->stripeShift;
|
|
|
|
/* if IO ends within first strip of last row*/
|
|
if (endStrip == endRow*raid->rowDataSize)
|
|
regSize += ref_in_end_stripe+1;
|
|
else
|
|
regSize += stripSize;
|
|
} else {
|
|
/*
|
|
* For Uneven span region lock optimization.
|
|
* If the start strip is the last in the start row
|
|
*/
|
|
if (start_strip == (get_strip_from_row(instance, ld, start_row, map) +
|
|
SPAN_ROW_DATA_SIZE(map, ld, startlba_span) - 1)) {
|
|
regStart += ref_in_start_stripe;
|
|
/* initialize count to sectors from
|
|
* startRef to end of strip
|
|
*/
|
|
regSize = stripSize - ref_in_start_stripe;
|
|
}
|
|
/* Add complete rows in the middle of the transfer*/
|
|
|
|
if (numRows > 2)
|
|
/* Add complete rows in the middle of the transfer*/
|
|
regSize += (numRows-2) << raid->stripeShift;
|
|
|
|
/* if IO ends within first strip of last row */
|
|
if (endStrip == get_strip_from_row(instance, ld, endRow, map))
|
|
regSize += ref_in_end_stripe + 1;
|
|
else
|
|
regSize += stripSize;
|
|
}
|
|
|
|
pRAID_Context->timeout_value =
|
|
cpu_to_le16(raid->fpIoTimeoutForLd ?
|
|
raid->fpIoTimeoutForLd :
|
|
map->raidMap.fpPdIoTimeoutSec);
|
|
if (instance->adapter_type == INVADER_SERIES)
|
|
pRAID_Context->reg_lock_flags = (isRead) ?
|
|
raid->regTypeReqOnRead : raid->regTypeReqOnWrite;
|
|
else if (instance->adapter_type == THUNDERBOLT_SERIES)
|
|
pRAID_Context->reg_lock_flags = (isRead) ?
|
|
REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite;
|
|
pRAID_Context->virtual_disk_tgt_id = raid->targetId;
|
|
pRAID_Context->reg_lock_row_lba = cpu_to_le64(regStart);
|
|
pRAID_Context->reg_lock_length = cpu_to_le32(regSize);
|
|
pRAID_Context->config_seq_num = raid->seqNum;
|
|
/* save pointer to raid->LUN array */
|
|
*raidLUN = raid->LUN;
|
|
|
|
/* Aero R5/6 Division Offload for WRITE */
|
|
if (fusion->r56_div_offload && (raid->level >= 5) && !isRead) {
|
|
if (mr_get_phy_params_r56_rmw(instance, ld, start_strip, io_info,
|
|
(struct RAID_CONTEXT_G35 *)pRAID_Context,
|
|
map))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/*Get Phy Params only if FP capable, or else leave it to MR firmware
|
|
to do the calculation.*/
|
|
if (io_info->fpOkForIo) {
|
|
retval = io_info->IoforUnevenSpan ?
|
|
mr_spanset_get_phy_params(instance, ld,
|
|
start_strip, ref_in_start_stripe,
|
|
io_info, pRAID_Context, map) :
|
|
MR_GetPhyParams(instance, ld, start_strip,
|
|
ref_in_start_stripe, io_info,
|
|
pRAID_Context, map);
|
|
/* If IO on an invalid Pd, then FP is not possible.*/
|
|
if (io_info->devHandle == MR_DEVHANDLE_INVALID)
|
|
io_info->fpOkForIo = false;
|
|
return retval;
|
|
} else if (isRead) {
|
|
uint stripIdx;
|
|
for (stripIdx = 0; stripIdx < num_strips; stripIdx++) {
|
|
retval = io_info->IoforUnevenSpan ?
|
|
mr_spanset_get_phy_params(instance, ld,
|
|
start_strip + stripIdx,
|
|
ref_in_start_stripe, io_info,
|
|
pRAID_Context, map) :
|
|
MR_GetPhyParams(instance, ld,
|
|
start_strip + stripIdx, ref_in_start_stripe,
|
|
io_info, pRAID_Context, map);
|
|
if (!retval)
|
|
return true;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
******************************************************************************
|
|
*
|
|
* This routine pepare spanset info from Valid Raid map and store it into
|
|
* local copy of ldSpanInfo per instance data structure.
|
|
*
|
|
* Inputs :
|
|
* map - LD map
|
|
* ldSpanInfo - ldSpanInfo per HBA instance
|
|
*
|
|
*/
|
|
static u8 mr_update_span_set(struct MR_DRV_RAID_MAP_ALL *map,
|
|
PLD_SPAN_INFO ldSpanInfo)
|
|
{
|
|
u8 span, count;
|
|
u32 element, span_row_width;
|
|
u64 span_row;
|
|
struct MR_LD_RAID *raid;
|
|
LD_SPAN_SET *span_set, *span_set_prev;
|
|
struct MR_QUAD_ELEMENT *quad;
|
|
int ldCount;
|
|
u16 ld;
|
|
|
|
|
|
for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) {
|
|
ld = MR_TargetIdToLdGet(ldCount, map);
|
|
if (ld >= (MAX_LOGICAL_DRIVES_EXT - 1))
|
|
continue;
|
|
raid = MR_LdRaidGet(ld, map);
|
|
for (element = 0; element < MAX_QUAD_DEPTH; element++) {
|
|
for (span = 0; span < raid->spanDepth; span++) {
|
|
if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span].
|
|
block_span_info.noElements) <
|
|
element + 1)
|
|
continue;
|
|
span_set = &(ldSpanInfo[ld].span_set[element]);
|
|
quad = &map->raidMap.ldSpanMap[ld].
|
|
spanBlock[span].block_span_info.
|
|
quad[element];
|
|
|
|
span_set->diff = le32_to_cpu(quad->diff);
|
|
|
|
for (count = 0, span_row_width = 0;
|
|
count < raid->spanDepth; count++) {
|
|
if (le32_to_cpu(map->raidMap.ldSpanMap[ld].
|
|
spanBlock[count].
|
|
block_span_info.
|
|
noElements) >= element + 1) {
|
|
span_set->strip_offset[count] =
|
|
span_row_width;
|
|
span_row_width +=
|
|
MR_LdSpanPtrGet
|
|
(ld, count, map)->spanRowDataSize;
|
|
}
|
|
}
|
|
|
|
span_set->span_row_data_width = span_row_width;
|
|
if (le32_to_cpu(quad->diff) == 0)
|
|
return 1;
|
|
span_row = mega_div64_32(((le64_to_cpu(quad->logEnd) -
|
|
le64_to_cpu(quad->logStart)) + le32_to_cpu(quad->diff)),
|
|
le32_to_cpu(quad->diff));
|
|
|
|
if (element == 0) {
|
|
span_set->log_start_lba = 0;
|
|
span_set->log_end_lba =
|
|
((span_row << raid->stripeShift)
|
|
* span_row_width) - 1;
|
|
|
|
span_set->span_row_start = 0;
|
|
span_set->span_row_end = span_row - 1;
|
|
|
|
span_set->data_strip_start = 0;
|
|
span_set->data_strip_end =
|
|
(span_row * span_row_width) - 1;
|
|
|
|
span_set->data_row_start = 0;
|
|
span_set->data_row_end =
|
|
(span_row * le32_to_cpu(quad->diff)) - 1;
|
|
} else {
|
|
span_set_prev = &(ldSpanInfo[ld].
|
|
span_set[element - 1]);
|
|
span_set->log_start_lba =
|
|
span_set_prev->log_end_lba + 1;
|
|
span_set->log_end_lba =
|
|
span_set->log_start_lba +
|
|
((span_row << raid->stripeShift)
|
|
* span_row_width) - 1;
|
|
|
|
span_set->span_row_start =
|
|
span_set_prev->span_row_end + 1;
|
|
span_set->span_row_end =
|
|
span_set->span_row_start + span_row - 1;
|
|
|
|
span_set->data_strip_start =
|
|
span_set_prev->data_strip_end + 1;
|
|
span_set->data_strip_end =
|
|
span_set->data_strip_start +
|
|
(span_row * span_row_width) - 1;
|
|
|
|
span_set->data_row_start =
|
|
span_set_prev->data_row_end + 1;
|
|
span_set->data_row_end =
|
|
span_set->data_row_start +
|
|
(span_row * le32_to_cpu(quad->diff)) - 1;
|
|
}
|
|
break;
|
|
}
|
|
if (span == raid->spanDepth)
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void mr_update_load_balance_params(struct MR_DRV_RAID_MAP_ALL *drv_map,
|
|
struct LD_LOAD_BALANCE_INFO *lbInfo)
|
|
{
|
|
int ldCount;
|
|
u16 ld;
|
|
struct MR_LD_RAID *raid;
|
|
|
|
if (lb_pending_cmds > 128 || lb_pending_cmds < 1)
|
|
lb_pending_cmds = LB_PENDING_CMDS_DEFAULT;
|
|
|
|
for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) {
|
|
ld = MR_TargetIdToLdGet(ldCount, drv_map);
|
|
if (ld >= MAX_LOGICAL_DRIVES_EXT - 1) {
|
|
lbInfo[ldCount].loadBalanceFlag = 0;
|
|
continue;
|
|
}
|
|
|
|
raid = MR_LdRaidGet(ld, drv_map);
|
|
if ((raid->level != 1) ||
|
|
(raid->ldState != MR_LD_STATE_OPTIMAL)) {
|
|
lbInfo[ldCount].loadBalanceFlag = 0;
|
|
continue;
|
|
}
|
|
lbInfo[ldCount].loadBalanceFlag = 1;
|
|
}
|
|
}
|
|
|
|
u8 megasas_get_best_arm_pd(struct megasas_instance *instance,
|
|
struct LD_LOAD_BALANCE_INFO *lbInfo,
|
|
struct IO_REQUEST_INFO *io_info,
|
|
struct MR_DRV_RAID_MAP_ALL *drv_map)
|
|
{
|
|
struct MR_LD_RAID *raid;
|
|
u16 pd1_dev_handle;
|
|
u16 pend0, pend1, ld;
|
|
u64 diff0, diff1;
|
|
u8 bestArm, pd0, pd1, span, arm;
|
|
u32 arRef, span_row_size;
|
|
|
|
u64 block = io_info->ldStartBlock;
|
|
u32 count = io_info->numBlocks;
|
|
|
|
span = ((io_info->span_arm & RAID_CTX_SPANARM_SPAN_MASK)
|
|
>> RAID_CTX_SPANARM_SPAN_SHIFT);
|
|
arm = (io_info->span_arm & RAID_CTX_SPANARM_ARM_MASK);
|
|
|
|
ld = MR_TargetIdToLdGet(io_info->ldTgtId, drv_map);
|
|
raid = MR_LdRaidGet(ld, drv_map);
|
|
span_row_size = instance->UnevenSpanSupport ?
|
|
SPAN_ROW_SIZE(drv_map, ld, span) : raid->rowSize;
|
|
|
|
arRef = MR_LdSpanArrayGet(ld, span, drv_map);
|
|
pd0 = MR_ArPdGet(arRef, arm, drv_map);
|
|
pd1 = MR_ArPdGet(arRef, (arm + 1) >= span_row_size ?
|
|
(arm + 1 - span_row_size) : arm + 1, drv_map);
|
|
|
|
/* Get PD1 Dev Handle */
|
|
|
|
pd1_dev_handle = MR_PdDevHandleGet(pd1, drv_map);
|
|
|
|
if (pd1_dev_handle == MR_DEVHANDLE_INVALID) {
|
|
bestArm = arm;
|
|
} else {
|
|
/* get the pending cmds for the data and mirror arms */
|
|
pend0 = atomic_read(&lbInfo->scsi_pending_cmds[pd0]);
|
|
pend1 = atomic_read(&lbInfo->scsi_pending_cmds[pd1]);
|
|
|
|
/* Determine the disk whose head is nearer to the req. block */
|
|
diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[pd0]);
|
|
diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[pd1]);
|
|
bestArm = (diff0 <= diff1 ? arm : arm ^ 1);
|
|
|
|
/* Make balance count from 16 to 4 to
|
|
* keep driver in sync with Firmware
|
|
*/
|
|
if ((bestArm == arm && pend0 > pend1 + lb_pending_cmds) ||
|
|
(bestArm != arm && pend1 > pend0 + lb_pending_cmds))
|
|
bestArm ^= 1;
|
|
|
|
/* Update the last accessed block on the correct pd */
|
|
io_info->span_arm =
|
|
(span << RAID_CTX_SPANARM_SPAN_SHIFT) | bestArm;
|
|
io_info->pd_after_lb = (bestArm == arm) ? pd0 : pd1;
|
|
}
|
|
|
|
lbInfo->last_accessed_block[io_info->pd_after_lb] = block + count - 1;
|
|
return io_info->pd_after_lb;
|
|
}
|
|
|
|
__le16 get_updated_dev_handle(struct megasas_instance *instance,
|
|
struct LD_LOAD_BALANCE_INFO *lbInfo,
|
|
struct IO_REQUEST_INFO *io_info,
|
|
struct MR_DRV_RAID_MAP_ALL *drv_map)
|
|
{
|
|
u8 arm_pd;
|
|
__le16 devHandle;
|
|
|
|
/* get best new arm (PD ID) */
|
|
arm_pd = megasas_get_best_arm_pd(instance, lbInfo, io_info, drv_map);
|
|
devHandle = MR_PdDevHandleGet(arm_pd, drv_map);
|
|
io_info->pd_interface = MR_PdInterfaceTypeGet(arm_pd, drv_map);
|
|
atomic_inc(&lbInfo->scsi_pending_cmds[arm_pd]);
|
|
|
|
return devHandle;
|
|
}
|