OpenCloudOS-Kernel/drivers/thirdparty/ice/ice_vf_lib.h

416 lines
12 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (C) 2018-2021, Intel Corporation. */
#ifndef _ICE_VF_LIB_H_
#define _ICE_VF_LIB_H_
#include <linux/types.h>
#include <linux/hashtable.h>
#include <linux/bitmap.h>
#include <linux/mutex.h>
#include <linux/kref.h>
#include <linux/pci.h>
#include <linux/if_ether.h>
#if IS_ENABLED(CONFIG_NET_DEVLINK)
#include <net/devlink.h>
#endif /* CONFIG_NET_DEVLINK */
#include "virtchnl.h"
#include "ice_type.h"
#include "ice_flow.h"
#include "ice_virtchnl_fdir.h"
#include "ice_virtchnl_fsub.h"
#include "ice_dcf.h"
#include "ice_vsi_vlan_ops.h"
#define ICE_MAX_SRIOV_VFS 256
/* VF resource constraints */
#define ICE_MAX_QS_PER_VF 256
struct ice_pf;
struct ice_vf;
struct ice_virtchnl_ops;
/* VF capabilities */
enum ice_virtchnl_cap {
ICE_VIRTCHNL_VF_CAP_PRIVILEGE = 0,
};
/* Specific VF states */
enum ice_vf_states {
ICE_VF_STATE_INIT = 0, /* PF is initializing VF */
ICE_VF_STATE_ACTIVE, /* VF resources are allocated for use */
ICE_VF_STATE_QS_ENA, /* VF queue(s) enabled */
ICE_VF_STATE_DIS,
ICE_VF_STATE_MC_PROMISC,
ICE_VF_STATE_UC_PROMISC,
ICE_VF_STATES_NBITS
};
struct ice_time_mac {
unsigned long time_modified;
u8 addr[ETH_ALEN];
};
/* VF MDD events print structure */
struct ice_mdd_vf_events {
u16 count; /* total count of Rx|Tx events */
/* count number of the last printed event */
u16 last_printed;
};
#define ICE_HASH_IP_CTX_IP 0
#define ICE_HASH_IP_CTX_IP_ESP 1
#define ICE_HASH_IP_CTX_IP_UDP_ESP 2
#define ICE_HASH_IP_CTX_IP_AH 3
#define ICE_HASH_IP_CTX_IP_L2TPV3 4
#define ICE_HASH_IP_CTX_IP_PFCP 5
#define ICE_HASH_IP_CTX_IP_UDP 6
#define ICE_HASH_IP_CTX_IP_TCP 7
#define ICE_HASH_IP_CTX_IP_SCTP 8
#define ICE_HASH_IP_CTX_MAX 9
struct ice_vf_hash_ip_ctx {
struct ice_rss_hash_cfg ctx[ICE_HASH_IP_CTX_MAX];
};
#define ICE_HASH_GTPU_CTX_EH_IP 0
#define ICE_HASH_GTPU_CTX_EH_IP_UDP 1
#define ICE_HASH_GTPU_CTX_EH_IP_TCP 2
#define ICE_HASH_GTPU_CTX_UP_IP 3
#define ICE_HASH_GTPU_CTX_UP_IP_UDP 4
#define ICE_HASH_GTPU_CTX_UP_IP_TCP 5
#define ICE_HASH_GTPU_CTX_DW_IP 6
#define ICE_HASH_GTPU_CTX_DW_IP_UDP 7
#define ICE_HASH_GTPU_CTX_DW_IP_TCP 8
#define ICE_HASH_GTPU_CTX_MAX 9
struct ice_vf_hash_gtpu_ctx {
struct ice_rss_hash_cfg ctx[ICE_HASH_GTPU_CTX_MAX];
};
struct ice_vf_hash_ctx {
struct ice_vf_hash_ip_ctx v4;
struct ice_vf_hash_ip_ctx v6;
struct ice_vf_hash_gtpu_ctx ipv4;
struct ice_vf_hash_gtpu_ctx ipv6;
};
/* In ADQ, max 4 VSI's can be allocated per VF including primary VF VSI.
* These variables are used to store indices, ID's and number of queues
* for each VSI including that of primary VF VSI. Each Traffic class is
* termed as channel and each channel can in-turn have 4 queues which
* means max 16 queues overall per VF.
*/
struct ice_channel_vf {
u16 vsi_idx; /* index in PF struct for all channel VSIs */
u16 vsi_num; /* HW (absolute) index of this VSI */
u16 num_qps; /* number of queue pairs requested by user */
u16 offset;
u64 max_tx_rate; /* Tx rate limiting for channels */
};
/* The VF VLAN information controlled by DCF */
struct ice_dcf_vlan_info {
struct ice_vlan outer_port_vlan;
u16 outer_stripping_tpid;
u8 outer_stripping_ena:1;
u8 applying:1;
};
/* Structure to store fdir fv entry */
struct ice_fdir_prof_info {
struct ice_parser_profile prof;
u64 fdir_active_cnt;
};
/* Structure to store RSS field vector entry */
struct ice_rss_prof_info {
struct ice_parser_profile prof;
bool symm;
};
/* VF operations */
struct ice_vf_ops {
enum ice_disq_rst_src reset_type;
void (*free)(struct ice_vf *vf);
void (*clear_reset_state)(struct ice_vf *vf);
void (*clear_mbx_register)(struct ice_vf *vf);
void (*trigger_reset_register)(struct ice_vf *vf, bool is_vflr);
bool (*poll_reset_status)(struct ice_vf *vf);
void (*clear_reset_trigger)(struct ice_vf *vf);
void (*irq_close)(struct ice_vf *vf);
int (*create_vsi)(struct ice_vf *vf);
void (*post_vsi_rebuild)(struct ice_vf *vf);
struct ice_q_vector* (*get_q_vector)(struct ice_vf *vf,
struct ice_vsi *vsi,
u16 vector_id);
void (*cfg_rdma_irq_map)(struct ice_vf *vf,
struct virtchnl_rdma_qv_info *qv_info);
void (*clear_rdma_irq_map)(struct ice_vf *vf);
};
/* Virtchnl/SR-IOV config info */
struct ice_vfs {
DECLARE_HASHTABLE(table, 8); /* table of VF entries */
struct mutex table_lock; /* Lock for protecting the hash table */
u16 num_supported; /* max supported VFs on this PF */
u16 num_qps_per; /* number of queue pairs per VF */
u16 num_msix_per; /* number of MSI-X vectors per VF */
unsigned long last_printed_mdd_jiffies; /* MDD message rate limit */
DECLARE_BITMAP(malvfs, ICE_MAX_SRIOV_VFS); /* malicious VF indicator */
};
struct ice_vf_qs_bw {
u16 queue_id;
u32 committed;
u32 peak;
u8 tc;
};
/* VF information structure */
struct ice_vf {
struct hlist_node entry;
struct rcu_head rcu;
struct kref refcnt;
struct ice_pf *pf;
/* Used during virtchnl message handling and NDO ops against the VF
* that will trigger a VFR
*/
struct mutex cfg_lock;
u16 vf_id; /* VF ID in the PF space */
u16 lan_vsi_idx; /* index into PF struct */
u16 ctrl_vsi_idx;
struct ice_vf_fdir fdir;
struct ice_fdir_prof_info fdir_prof_info[ICE_MAX_PTGS];
struct ice_vf_fsub fsub;
struct ice_vf_hash_ctx hash_ctx;
struct ice_rss_prof_info rss_prof_info[ICE_MAX_PTGS];
struct ice_vf_qs_bw qs_bw[ICE_MAX_QS_PER_VF];
/* first vector index of this VF in the PF space */
int first_vector_idx;
struct ice_sw *vf_sw_id; /* switch ID the VF VSIs connect to */
struct virtchnl_version_info vf_ver;
u32 driver_caps; /* reported by VF driver */
u16 stag; /* VF Port Extender (PE) stag if used */
struct virtchnl_ether_addr dev_lan_addr;
struct virtchnl_ether_addr hw_lan_addr;
struct ice_time_mac legacy_last_added_umac;
DECLARE_BITMAP(txq_ena, ICE_MAX_QS_PER_VF);
DECLARE_BITMAP(rxq_ena, ICE_MAX_QS_PER_VF);
struct ice_vlan port_vlan_info; /* Port VLAN ID, QoS, and TPID */
struct virtchnl_vlan_caps vlan_v2_caps;
struct ice_dcf_vlan_info dcf_vlan_info;
u8 pf_set_mac:1; /* VF MAC address set by VMM admin */
u8 trusted:1;
u8 spoofchk:1;
#ifdef HAVE_NDO_SET_VF_LINK_STATE
u8 link_forced:1;
u8 link_up:1; /* only valid if VF link is forced */
#endif
/* VSI indices - actual VSI pointers are maintained in the PF structure
* When assigned, these will be non-zero, because VSI 0 is always
* the main LAN VSI for the PF.
*/
u16 lan_vsi_num; /* ID as used by firmware */
unsigned int min_tx_rate; /* Minimum Tx bandwidth limit in Mbps */
unsigned int max_tx_rate; /* Maximum Tx bandwidth limit in Mbps */
DECLARE_BITMAP(vf_states, ICE_VF_STATES_NBITS); /* VF runtime states */
unsigned long vf_caps; /* VF's adv. capabilities */
u16 num_req_qs; /* num of queue pairs requested by VF */
u16 num_mac;
u16 num_vf_qs; /* num of queue configured per VF */
u8 vlan_strip_ena; /* Outer and Inner VLAN strip enable */
#define ICE_INNER_VLAN_STRIP_ENA BIT(0)
#define ICE_OUTER_VLAN_STRIP_ENA BIT(1)
/* ADQ related variables */
u8 adq_enabled; /* flag to enable ADQ */
u8 adq_fltr_ena; /* flag to denote that ADQ filters are applied */
u8 num_tc;
u16 num_dmac_chnl_fltrs;
struct ice_channel_vf ch[VIRTCHNL_MAX_ADQ_V2_CHANNELS];
struct hlist_head tc_flower_fltr_list;
struct ice_mdd_vf_events mdd_rx_events;
struct ice_mdd_vf_events mdd_tx_events;
DECLARE_BITMAP(opcodes_allowlist, VIRTCHNL_OP_MAX);
struct ice_repr *repr;
const struct ice_virtchnl_ops *virtchnl_ops;
const struct ice_vf_ops *vf_ops;
#if IS_ENABLED(CONFIG_NET_DEVLINK)
/* devlink port data */
struct devlink_port devlink_port;
#endif /* CONFIG_NET_DEVLINK */
};
/* Flags for controlling behavior of ice_reset_vf */
enum ice_vf_reset_flags {
ICE_VF_RESET_VFLR = BIT(0), /* Indicate a VFLR reset */
ICE_VF_RESET_NOTIFY = BIT(1), /* Notify VF prior to reset */
ICE_VF_RESET_LOCK = BIT(2), /* Acquire the VF cfg_lock */
};
static inline u16 ice_vf_get_port_vlan_id(struct ice_vf *vf)
{
return vf->port_vlan_info.vid;
}
static inline u8 ice_vf_get_port_vlan_prio(struct ice_vf *vf)
{
return vf->port_vlan_info.prio;
}
static inline bool ice_vf_is_port_vlan_ena(struct ice_vf *vf)
{
return (ice_vf_get_port_vlan_id(vf) || ice_vf_get_port_vlan_prio(vf));
}
static inline u16 ice_vf_get_port_vlan_tpid(struct ice_vf *vf)
{
return vf->port_vlan_info.tpid;
}
/* VF Hash Table access functions
*
* These functions provide abstraction for interacting with the VF hash table.
* In general, direct access to the hash table should be avoided outside of
* these functions where possible.
*
* The VF entries in the hash table are protected by reference counting to
* track lifetime of accesses from the table. The ice_get_vf_by_id() function
* obtains a reference to the VF structure which must be dropped by using
* ice_put_vf().
*/
/**
* ice_for_each_vf - Iterate over each VF entry
* @pf: pointer to the PF private structure
* @bkt: bucket index used for iteration
* @vf: pointer to the VF entry currently being processed in the loop
*
* The bkt variable is an unsigned integer iterator used to traverse the VF
* entries. It is *not* guaranteed to be the VF's vf_id. Do not assume it is.
* Use vf->vf_id to get the id number if needed.
*
* The caller is expected to be under the table_lock mutex for the entire
* loop. Use this iterator if your loop is long or if it might sleep.
*/
#define ice_for_each_vf(pf, bkt, vf) \
hash_for_each((pf)->vfs.table, (bkt), (vf), entry)
/**
* ice_for_each_vf_rcu - Iterate over each VF entry protected by RCU
* @pf: pointer to the PF private structure
* @bkt: bucket index used for iteration
* @vf: pointer to the VF entry currently being processed in the loop
*
* The bkt variable is an unsigned integer iterator used to traverse the VF
* entries. It is *not* guaranteed to be the VF's vf_id. Do not assume it is.
* Use vf->vf_id to get the id number if needed.
*
* The caller is expected to be under rcu_read_lock() for the entire loop.
* Only use this iterator if your loop is short and you can guarantee it does
* not sleep.
*/
#define ice_for_each_vf_rcu(pf, bkt, vf) \
hash_for_each_rcu((pf)->vfs.table, (bkt), (vf), entry)
#ifdef CONFIG_PCI_IOV
/* The vf_id parameter is a u32 in order to handle IDs stored as u32 values
* without implicit truncation.
*/
struct ice_vf *ice_get_vf_by_id(struct ice_pf *pf, u32 vf_id);
void ice_put_vf(struct ice_vf *vf);
bool ice_is_valid_vf_id(struct ice_pf *pf, u32 vf_id);
bool ice_has_vfs(struct ice_pf *pf);
u16 ice_get_num_vfs(struct ice_pf *pf);
struct ice_vsi *ice_get_vf_vsi(struct ice_vf *vf);
bool ice_is_vf_disabled(struct ice_vf *vf);
int ice_check_vf_ready_for_cfg(struct ice_vf *vf);
void ice_set_vf_state_qs_dis(struct ice_vf *vf);
bool ice_is_any_vf_in_unicast_promisc(struct ice_pf *pf);
void ice_vf_get_promisc_masks(struct ice_vf *vf, struct ice_vsi *vsi,
u8 *ucast_m, u8 *mcast_m);
int
ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m);
int
ice_vf_clear_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m);
int ice_reset_vf(struct ice_vf *vf, u32 flags);
void ice_reset_all_vfs(struct ice_pf *pf);
#else /* CONFIG_PCI_IOV */
static inline struct ice_vf *ice_get_vf_by_id(struct ice_pf *pf, u32 vf_id)
{
return NULL;
}
static inline void ice_put_vf(struct ice_vf *vf)
{
}
static inline bool ice_is_valid_vf_id(struct ice_pf *pf, u32 vf_id)
{
return false;
}
static inline bool ice_has_vfs(struct ice_pf *pf)
{
return false;
}
static inline u16 ice_get_num_vfs(struct ice_pf *pf)
{
return 0;
}
static inline struct ice_vsi *ice_get_vf_vsi(struct ice_vf *vf)
{
return NULL;
}
static inline bool ice_is_vf_disabled(struct ice_vf *vf)
{
return true;
}
static inline int ice_check_vf_ready_for_cfg(struct ice_vf *vf)
{
return -EOPNOTSUPP;
}
static inline void ice_set_vf_state_qs_dis(struct ice_vf *vf)
{
}
static inline bool ice_is_any_vf_in_unicast_promisc(struct ice_pf *pf)
{
return false;
}
static inline int
ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m)
{
return -EOPNOTSUPP;
}
static inline int
ice_vf_clear_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m)
{
return -EOPNOTSUPP;
}
static inline int ice_reset_vf(struct ice_vf *vf, bool is_vflr)
{
return 0;
}
static inline void ice_reset_all_vfs(struct ice_pf *pf)
{
}
#endif /* !CONFIG_PCI_IOV */
#endif /* _ICE_VF_LIB_H_ */