OpenCloudOS-Kernel/drivers/thirdparty/iavf/iavf_ptp.c

1042 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2013, Intel Corporation. */
#include "iavf.h"
/**
* iavf_ptp_disable_tx_tstamp - Disable timestamping in Tx rings
* @adapter: private adapter structure
*
* Disable timestamp capture for all Tx rings
*/
static void iavf_ptp_disable_tx_tstamp(struct iavf_adapter *adapter)
{
unsigned int i;
for (i = 0; i < adapter->num_active_queues; i++)
adapter->tx_rings[i].flags &= ~IAVF_TXRX_FLAGS_HW_TSTAMP;
}
/**
* iavf_ptp_enable_tx_tstamp - Enable timestamping in Tx rings
* @adapter: private adapter structure
*
* Enable timestamp capture for all Tx rings
*/
static void iavf_ptp_enable_tx_tstamp(struct iavf_adapter *adapter)
{
unsigned int i;
for (i = 0; i < adapter->num_active_queues; i++)
adapter->tx_rings[i].flags |= IAVF_TXRX_FLAGS_HW_TSTAMP;
}
/**
* iavf_ptp_disable_rx_tstamp - Disable timestamping in Rx rings
* @adapter: private adapter structure
*
* Disable timestamp reporting for all Rx rings.
*/
static void iavf_ptp_disable_rx_tstamp(struct iavf_adapter *adapter)
{
unsigned int i;
for (i = 0; i < adapter->num_active_queues; i++)
adapter->rx_rings[i].flags &= ~IAVF_TXRX_FLAGS_HW_TSTAMP;
}
/**
* iavf_ptp_enable_rx_tstamp - Enable timestamping in Rx rings
* @adapter: private adapter structure
*
* Enable timestamp reporting for all Rx rings.
*/
static void iavf_ptp_enable_rx_tstamp(struct iavf_adapter *adapter)
{
unsigned int i;
for (i = 0; i < adapter->num_active_queues; i++)
adapter->rx_rings[i].flags |= IAVF_TXRX_FLAGS_HW_TSTAMP;
}
/**
* iavf_ptp_set_timestamp_mode - Set device timestamping mode
* @adapter: private adapter structure
* @config: timestamping configuration request
*
* Set the timestamping mode requested from the SIOCSHWTSTAMP ioctl.
*
* Note: this function always translates Rx timestamp requests for any packet
* category into HWTSTAMP_FILTER_ALL.
*/
static int
iavf_ptp_set_timestamp_mode(struct iavf_adapter *adapter, struct hwtstamp_config *config)
{
/* Reserved for future extensions. */
if (config->flags)
return -EINVAL;
switch (config->tx_type) {
case HWTSTAMP_TX_OFF:
iavf_ptp_disable_tx_tstamp(adapter);
break;
case HWTSTAMP_TX_ON:
if (!(iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_TX_TSTAMP)))
return -EOPNOTSUPP;
iavf_ptp_enable_tx_tstamp(adapter);
break;
default:
return -ERANGE;
}
switch (config->rx_filter) {
case HWTSTAMP_FILTER_NONE:
iavf_ptp_disable_rx_tstamp(adapter);
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
#ifdef HAVE_HWTSTAMP_FILTER_NTP_ALL
case HWTSTAMP_FILTER_NTP_ALL:
#endif /* HAVE_HWTSTAMP_FILTER_NTP_ALL */
case HWTSTAMP_FILTER_ALL:
if (!(iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_RX_TSTAMP)))
return -EOPNOTSUPP;
config->rx_filter = HWTSTAMP_FILTER_ALL;
iavf_ptp_enable_rx_tstamp(adapter);
break;
default:
return -ERANGE;
}
return 0;
}
/**
* iavf_ptp_get_ts_config - Get timestamping configuration for SIOCGHWTSTAMP
* @adapter: private adapter structure
* @ifr: the ioctl request structure
*
* Copy the current hardware timestamping configuration back to userspace.
* Called in response to the SIOCGHWTSTAMP ioctl that queries a device's
* current timestamp settings.
*/
int iavf_ptp_get_ts_config(struct iavf_adapter *adapter, struct ifreq *ifr)
{
struct hwtstamp_config *config = &adapter->ptp.hwtstamp_config;
return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? -EFAULT : 0;
}
/**
* iavf_ptp_set_ts_config - Set timestamping configuration from SIOCSHWTSTAMP
* @adapter: private adapter structure
* @ifr: the ioctl request structure
*
* Program the requested timestamping configuration from SIOCSHWTSTAMP ioctl
* to the device.
*/
int iavf_ptp_set_ts_config(struct iavf_adapter *adapter, struct ifreq *ifr)
{
struct hwtstamp_config config;
int err;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
err = iavf_ptp_set_timestamp_mode(adapter, &config);
if (err)
return err;
/* Save successful settings for future reference */
adapter->ptp.hwtstamp_config = config;
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
}
/**
* clock_to_adapter - Convert clock info pointer to adapter pointer
* @ptp_info: PTP info structure
*
* Use container_of in order to extract a pointer to the iAVF adapter private
* structure.
*/
static struct iavf_adapter *clock_to_adapter(struct ptp_clock_info *ptp_info)
{
struct iavf_ptp *ptp_priv;
ptp_priv = container_of(ptp_info, struct iavf_ptp, info);
return container_of(ptp_priv, struct iavf_adapter, ptp);
}
/**
* iavf_ptp_cap_supported - Check if a PTP capability is supported
* @adapter: private adapter structure
* @cap: the capability bitmask to check
*
* Return true if every capability set in cap is also set in the enabled
* capabilities reported by the PF.
*/
bool iavf_ptp_cap_supported(struct iavf_adapter *adapter, u32 cap)
{
if (!PTP_ALLOWED(adapter))
return false;
/* Only return true if every bit in cap is set in hw_caps.caps */
return (adapter->ptp.hw_caps.caps & cap) == cap;
}
/**
* iavf_allocate_ptp_cmd - Allocate a PTP command message structure
* @v_opcode: the virtchnl opcode
* @msglen: length in bytes of the associated virtchnl structure
*
* Allocates a PTP command message and pre-fills it with the provided message
* length and opcode.
*/
static struct iavf_ptp_aq_cmd *iavf_allocate_ptp_cmd(enum virtchnl_ops v_opcode, u16 msglen)
{
struct iavf_ptp_aq_cmd *cmd;
cmd = kzalloc(struct_size(cmd, msg, msglen), GFP_KERNEL);
if (!cmd)
return NULL;
cmd->v_opcode = v_opcode;
cmd->msglen = msglen;
return cmd;
}
/**
* iavf_queue_ptp_cmd - Queue PTP command for sending over virtchnl
* @adapter: private adapter structure
* @cmd: the command structure to send
*
* Queue the given command structure into the PTP virtchnl command queue tos
* end to the PF.
*/
static void iavf_queue_ptp_cmd(struct iavf_adapter *adapter, struct iavf_ptp_aq_cmd *cmd)
{
spin_lock(&adapter->ptp.aq_cmd_lock);
list_add_tail(&cmd->list, &adapter->ptp.aq_cmds);
spin_unlock(&adapter->ptp.aq_cmd_lock);
adapter->aq_required |= IAVF_FLAG_AQ_SEND_PTP_CMD;
mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
}
/**
* iavf_send_phc_read - Send request to read PHC time
* @adapter: private adapter structure
*
* Send a request to obtain the PTP hardware clock time. This allocates the
* VIRTCHNL_OP_1588_PTP_GET_TIME message and queues it up to send to
* indirectly read the PHC time.
*
* This function does not wait for the reply from the PF.
*/
static int iavf_send_phc_read(struct iavf_adapter *adapter)
{
struct iavf_ptp_aq_cmd *cmd;
if (!adapter->ptp.initialized)
return -EOPNOTSUPP;
cmd = iavf_allocate_ptp_cmd(VIRTCHNL_OP_1588_PTP_GET_TIME,
sizeof(struct virtchnl_phc_time));
if (!cmd)
return -ENOMEM;
iavf_queue_ptp_cmd(adapter, cmd);
return 0;
}
/**
* iavf_read_phc_indirect - Indirectly read the PHC time via virtchnl
* @adapter: private adapter structure
* @ts: storage for the timestamp value
* @sts: system timestamp values before and after the read
*
* Used when the device does not have direct register access to the PHC time.
* Indirectly reads the time via the VIRTCHNL_OP_1588_PTP_GET_TIME, and waits
* for the reply from the PF.
*
* Based on some simple measurements using ftrace and phc2sys, this clock
* access method has about a ~110 usec latency even when the system is not
* under load. In order to achieve acceptable results when using phc2sys with
* the indirect clock access method, it is recommended to use more
* conservative proportional and integration constants with the P/I servo.
*/
static int iavf_read_phc_indirect(struct iavf_adapter *adapter, struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
long ret;
int err;
adapter->ptp.phc_time_ready = false;
ptp_read_system_prets(sts);
err = iavf_send_phc_read(adapter);
if (err)
return err;
ret = wait_event_interruptible_timeout(adapter->ptp.phc_time_waitqueue,
adapter->ptp.phc_time_ready,
HZ);
if (ret < 0)
return ret;
else if (!ret)
return -EBUSY;
*ts = ns_to_timespec64(adapter->ptp.cached_phc_time);
ptp_read_system_postts(sts);
return 0;
}
/**
* iavf_read_phc_ns - Read PHC time from registers and convert to nanoseconds
* @adapter: private adapter structure
* @sts: system timestamp values before and after the read
*
* Capture the PHC time from the registers and convert it to nanoseconds.
* Capture the system time before and after reading the lower clock register,
* to allow more precise comparison between the PHC time and CLOCK_REALTIME.
*
* This requires direct access to the PHC registers, which may not be
* available on all devices.
*
* If this method is available, it has a significantly reduced latency of
* about 2 microseconds. It is preferred whenever available.
*/
static u64 iavf_read_phc_ns(struct iavf_adapter *adapter, struct ptp_system_timestamp *sts)
{
u8 __iomem *phc_addr, *clock_lo, *clock_hi;
u32 hi, hi2, lo;
phc_addr = READ_ONCE(adapter->ptp.phc_addr);
if (WARN_ON(!phc_addr))
return 0;
clock_lo = phc_addr + adapter->ptp.hw_caps.phc_regs.clock_lo;
clock_hi = phc_addr + adapter->ptp.hw_caps.phc_regs.clock_hi;
hi = readl(clock_hi);
ptp_read_system_prets(sts);
lo = readl(clock_lo);
ptp_read_system_postts(sts);
hi2 = readl(clock_hi);
if (hi != hi2) {
/* clock_lo might have rolled over, so recapture it */
ptp_read_system_prets(sts);
lo = readl(clock_lo);
ptp_read_system_postts(sts);
hi = hi2;
}
return ((u64)hi << 32) | lo;
}
/**
* iavf_read_phc_direct - Directly read PHC time from the registers
* @adapter: private adapter structure
* @ts: storage for the PHC time
* @sts: system timestamp values before and after the read
*
* Read the PHC time from the registers, and convert it to a timespec64.
*/
static int iavf_read_phc_direct(struct iavf_adapter *adapter, struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
u64 time = iavf_read_phc_ns(adapter, sts);
*ts = ns_to_timespec64(time);
return 0;
}
/**
* iavf_ptp_gettimex64 - Get current PTP clock time
* @ptp: PTP clock info structure
* @ts: storage for the current time
* @sts: system timestamps before and after time captured
*
* Read the current PTP clock time, and return it in the ts structure. Capture
* the system time before and after the PTP clock time in sts. Note that
* ptp_read_sytsem_prets and ptp_read_system_postts are NULL-aware and will do
* nothing if sts is NULL.
*/
static int iavf_ptp_gettimex64(struct ptp_clock_info *ptp, struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct iavf_adapter *adapter = clock_to_adapter(ptp);
if (!adapter->ptp.initialized)
return -ENODEV;
if (adapter->ptp.phc_addr)
return iavf_read_phc_direct(adapter, ts, sts);
else
return iavf_read_phc_indirect(adapter, ts, sts);
}
#ifndef HAVE_PTP_CLOCK_INFO_GETTIMEX64
/**
* iavf_ptp_gettime64 - wrapper in case ptp_caps doesn't have .gettimex64
* @ptp: PTP clock info structure
* @ts: storage for the current time
*
* Implement .gettime64 for the PTP clock. Wrapper that just calls
* iavf_ptp_gettimex64 with a NULL sts pointer.
*/
static int iavf_ptp_gettime64(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
return iavf_ptp_gettimex64(ptp, ts, NULL);
}
#ifndef HAVE_PTP_CLOCK_INFO_GETTIME64
/**
* iavf_ptp_gettime32 - wrapper in case ptp_caps doesn't have .gettime64
* @ptp: PTP clock info structure
* @ts: storage for the current time
*
* Implement .gettime for the PTP clock. Wrapper that just calls
* iavf_ptp_gettime64 and converts the timespec back to a 32bit timespec
* before returning.
*/
static int iavf_ptp_gettime32(struct ptp_clock_info *ptp, struct timespec *ts)
{
struct timespec64 ts64;
int err;
err = iavf_ptp_gettime64(ptp, &ts64);
if (err)
return err;
*ts = timespec64_to_timespec(ts64);
return 0;
}
#endif /* !HAVE_PTP_CLOCK_INFO_GETTIME64 */
#endif /* !HAVE_PTP_CLOCK_INFO_GETTIMEX64 */
/**
* iavf_ptp_settime64 - Set PTP clock time
* @ptp: PTP clock info structure
* @ts: the time to set the clock to
*
* Set the PTP clock time to the requested value.
*/
static int iavf_ptp_settime64(struct ptp_clock_info *ptp, const struct timespec64 *ts)
{
struct iavf_adapter *adapter = clock_to_adapter(ptp);
struct virtchnl_phc_time *msg;
struct iavf_ptp_aq_cmd *cmd;
if (!iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_WRITE_PHC))
return -EACCES;
if (!adapter->ptp.initialized)
return -ENODEV;
cmd = iavf_allocate_ptp_cmd(VIRTCHNL_OP_1588_PTP_SET_TIME, sizeof(*msg));
if (!cmd)
return -ENOMEM;
msg = (typeof(msg))cmd->msg;
msg->time = timespec64_to_ns(ts);
iavf_queue_ptp_cmd(adapter, cmd);
return 0;
}
#ifndef HAVE_PTP_CLOCK_INFO_GETTIME64
/**
* iavf_ptp_settime32 - wrapper in case ptp_caps doesn't have .settime64
* @ptp: PTP clock info structure
* @ts: 32bit timespec with requested time
*
* Implement .settime for the PTP clock. Wrapper that just calls
* iavf_ptp_settime64 after converting the 32bit timespec to a 64bit timespec.
*/
static int iavf_ptp_settime32(struct ptp_clock_info *ptp, const struct timespec *ts)
{
struct timespec64 ts64 = timespec_to_timespec64(*ts);
return iavf_ptp_settime64(ptp, &ts64);
}
#endif
/**
* iavf_ptp_adjtime - Adjust PTP clock time by requested amount
* @ptp: PTP clock info structure
* @delta: Offset in nanoseconds to adjust the clock time by
*
* Adjust the PTP clock time by the provided delta.
*/
static int iavf_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct iavf_adapter *adapter = clock_to_adapter(ptp);
struct virtchnl_phc_adj_time *msg;
struct iavf_ptp_aq_cmd *cmd;
if (!iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_WRITE_PHC))
return -EACCES;
if (!adapter->ptp.initialized)
return -ENODEV;
cmd = iavf_allocate_ptp_cmd(VIRTCHNL_OP_1588_PTP_ADJ_TIME, sizeof(*msg));
if (!cmd)
return -ENOMEM;
msg = (typeof(msg))cmd->msg;
msg->delta = delta;
iavf_queue_ptp_cmd(adapter, cmd);
return 0;
}
/**
* iavf_ptp_adjfine - Adjust PTP clock time by scaled parts per million
* @ptp: PTP clock info structure
* @scaled_ppm: scaled parts per million adjustment
*
* Perform a frequency adjustment by the provided scaled parts per million
* value.
*/
static int iavf_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct iavf_adapter *adapter = clock_to_adapter(ptp);
struct virtchnl_phc_adj_freq *msg;
struct iavf_ptp_aq_cmd *cmd;
if (!iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_WRITE_PHC))
return -EACCES;
if (!adapter->ptp.initialized)
return -ENODEV;
cmd = iavf_allocate_ptp_cmd(VIRTCHNL_OP_1588_PTP_ADJ_FREQ, sizeof(*msg));
if (!cmd)
return -ENOMEM;
msg = (typeof(msg))cmd->msg;
msg->scaled_ppm = (s64)scaled_ppm;
iavf_queue_ptp_cmd(adapter, cmd);
return 0;
}
#ifndef HAVE_PTP_CLOCK_INFO_ADJFINE
/**
* ppb_to_scaled_ppm - Convert parts per billion to scaled parts per million
* @ppb: parts per billion value
*
* Older versions of the kernel stack request frequency adjustments in parts
* per billion. Newer kernels can request adjustment using the full 'freq'
* field from the 'struct timex'. This is represented as parts per million,
* but with a 16 bit binary fractional field, i.e. parts per 1 million * 2^16.
*
* In essence, this is adjustments in parts per 65,536,000,000, which we call
* scaled_ppm.
*
* The following equation shows the relationship between ppb and scaled_ppm:
*
* ppb = scaled_ppm * 1000 / 2^16
*
* i.e.
*
* scaled_ppm = (ppb / 1000) * 2^16
*
* We can further simplify this to:
*
* scaled_ppm = ( ppb / 125 ) * 2^13
*
* For reference, here is the approximate conversion between scaled_ppm and ppb:
*
* 1 scaled_ppm ~= 0.015 ppb
* 1 ppb ~= 65.5 scaled_ppm
*/
static long ppb_to_scaled_ppm(s32 ppb)
{
long scaled_ppm;
scaled_ppm = (s64)ppb << 13;
scaled_ppm /= 125;
return scaled_ppm;
}
/**
* iavf_ptp_adjfreq - wrapper in case ptp_caps doesn't have .adjfine
* @ptp: PTP clock info structure
* @ppb: parts per billion frequency adjustment
*
* Implement .adjfreq for the PTP clock. Wrapper that converts ppb to
* scaled_ppm and then calls iavf_ptp_adjfine.
*/
static int iavf_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
return iavf_ptp_adjfine(ptp, ppb_to_scaled_ppm(ppb));
}
#endif
/**
* iavf_ptp_tx_hang - Detect when Tx timestamp has taken too long
* @adapter: private adapter structure
*
* Detect when a Tx timestamp event has been outstanding for more than one
* second. If this occurs, discard the waiting SKB and clear the flag.
*
* This is important for two reasons. First, if a timestamp event is missed
* and we do nothing, the driver could prevent all future timestamp requests
* indefinitely. Second, if a timestamp event is late, the timestamp extension
* algorithm might incorrectly calculate the wrong timestamp.
*/
static void iavf_ptp_tx_hang(struct iavf_adapter *adapter)
{
if (!test_bit(__IAVF_TX_TSTAMP_IN_PROGRESS, &adapter->crit_section))
return;
if (time_is_before_jiffies(adapter->ptp.tx_start + HZ)) {
struct sk_buff *skb = adapter->ptp.tx_skb;
adapter->ptp.tx_skb = NULL;
clear_bit_unlock(__IAVF_TX_TSTAMP_IN_PROGRESS, &adapter->crit_section);
/* Free the SKB after we've cleared the bitlock */
dev_kfree_skb_any(skb);
adapter->ptp.tx_hwtstamp_timeouts++;
}
}
/**
* iavf_ptp_cache_phc_time - Cache PHC time for performing timestamp extension
* @adapter: private adapter structure
*
* Periodically cache the PHC time in order to allow for timestamp extension.
* This is required because the Tx and Rx timestamps only contain 32bits of
* nanoseconds. Timestamp extension allows calculating the corrected 64bit
* timestamp. This algorithm relies on the cached time being within ~1 second
* of the timestamp.
*/
static void iavf_ptp_cache_phc_time(struct iavf_adapter *adapter)
{
if (time_is_before_jiffies(adapter->ptp.cached_phc_updated + HZ)) {
if (adapter->ptp.phc_addr) {
adapter->ptp.cached_phc_time = iavf_read_phc_ns(adapter, NULL);
adapter->ptp.cached_phc_updated = jiffies;
} else {
/* The response from virtchnl will store the time into cached_phc_time */
iavf_send_phc_read(adapter);
}
}
}
/**
* iavf_ptp_do_aux_work - Perform periodic work required for PTP support
* @ptp: PTP clock info structure
*
* Handler to take care of periodic work required for PTP operation. This
* includes the following tasks:
*
* 1) updating cached_phc_time
*
* cached_phc_time is used by the Tx and Rx timestamp flows in order to
* perform timestamp extension, by carefully comparing the timestamp
* 32bit nanosecond timestamps and determining the corrected 64bit
* timestamp value to report to userspace. This algorithm only works if
* the cached_phc_time is within ~1 second of the Tx or Rx timestamp
* event. This task periodically reads the PHC time and stores it, to
* ensure that timestamp extension operates correctly.
*
* 2) canceling outstanding Tx timestamp events
*
* Tx timestamps require waiting to receive a timestamp event indication
* from hardware. In some rare cases, the packet might have been dropped
* without a timestamp. If this occurs, the Tx timestamp event will never
* complete. To avoid this, we check if a timestamp event has taken too
* long, and discard it if so.
*
* Returns: time in jiffies until the periodic task should be re-scheduled.
*/
long iavf_ptp_do_aux_work(struct ptp_clock_info *ptp)
{
struct iavf_adapter *adapter = clock_to_adapter(ptp);
iavf_ptp_cache_phc_time(adapter);
iavf_ptp_tx_hang(adapter);
/* Check work about twice a second */
return msecs_to_jiffies(500);
}
/**
* iavf_ptp_register_clock - Register a new PTP for userspace
* @adapter: private adapter structure
*
* Allocate and register a new PTP clock device if necessary.
*/
static int iavf_ptp_register_clock(struct iavf_adapter *adapter)
{
struct ptp_clock_info *ptp_info = &adapter->ptp.info;
struct device *dev = &adapter->pdev->dev;
memset(ptp_info, 0, sizeof(*ptp_info));
snprintf(ptp_info->name, sizeof(ptp_info->name) - 1, "%s-%s-clk", dev_driver_string(dev),
netdev_name(adapter->netdev));
ptp_info->owner = THIS_MODULE;
ptp_info->max_adj = adapter->ptp.hw_caps.max_adj;
#if defined(HAVE_PTP_CLOCK_INFO_GETTIMEX64)
ptp_info->gettimex64 = iavf_ptp_gettimex64;
#elif defined(HAVE_PTP_CLOCK_INFO_GETTIME64)
ptp_info->gettime64 = iavf_ptp_gettime64;
#else
ptp_info->gettime = iavf_ptp_gettime32;
#endif
#ifdef HAVE_PTP_CLOCK_INFO_GETTIME64
ptp_info->settime64 = iavf_ptp_settime64;
#else
ptp_info->settime = iavf_ptp_settime32;
#endif
ptp_info->adjtime = iavf_ptp_adjtime;
#ifdef HAVE_PTP_CLOCK_INFO_ADJFINE
ptp_info->adjfine = iavf_ptp_adjfine;
#else
ptp_info->adjfreq = iavf_ptp_adjfreq;
#endif
#ifdef HAVE_PTP_CLOCK_DO_AUX_WORK
ptp_info->do_aux_work = iavf_ptp_do_aux_work;
#endif
dev_info(&adapter->pdev->dev, "registering PTP clock %s\n", adapter->ptp.info.name);
adapter->ptp.clock = ptp_clock_register(ptp_info, dev);
if (IS_ERR(adapter->ptp.clock))
return PTR_ERR(adapter->ptp.clock);
return 0;
}
/**
* iavf_ptp_map_phc_addr - Map PHC clock register region
* @adapter: private adapter structure
*
* Map the PCI region that contains the PTP hardware clock registers for
* directly accessing the device time.
*/
static void iavf_ptp_map_phc_addr(struct iavf_adapter *adapter)
{
struct virtchnl_ptp_caps *hw_caps = &adapter->ptp.hw_caps;
struct device *dev = &adapter->pdev->dev;
resource_size_t region_size;
void __iomem *phc_addr;
WARN(adapter->ptp.phc_addr, "PHC clock register address already mapped");
if (!iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_PHC_REGS)) {
dev_dbg(dev, "Device does not have direct clock register access. Falling back to indirect clock access\n");
return;
}
region_size = pci_resource_len(adapter->pdev, hw_caps->phc_regs.pcie_region);
if (hw_caps->phc_regs.clock_lo > region_size) {
dev_warn(dev, "Low clock register outside of PHC bar area. Falling back to indirect clock access\n");
return;
}
if (hw_caps->phc_regs.clock_hi > region_size) {
dev_warn(dev, "High clock register outside of PHC bar area. Falling back to indirect clock access\n");
return;
}
phc_addr = pci_ioremap_bar(adapter->pdev, hw_caps->phc_regs.pcie_region);
if (!phc_addr) {
dev_warn(dev, "Unable to map PHC registers for clock access. Falling back to indirect clock access\n");
return;
}
adapter->ptp.phc_addr = phc_addr;
}
/**
* iavf_ptp_unmap_phc_addr - Unmap the PHC clock register region
* @adapter: private adapter structure
*
* Unmap and release the PHC clock register region.
*/
static void iavf_ptp_unmap_phc_addr(struct iavf_adapter *adapter)
{
if (adapter->ptp.phc_addr) {
iounmap(adapter->ptp.phc_addr);
adapter->ptp.phc_addr = NULL;
}
}
/**
* iavf_validate_tx_tstamp_format - Check if driver knows timestamp format
* @adapter: private adapter structure
*
* Check that the driver understands the timestamp format that the PF
* indicated. If we do not understand the format, then we must disable Tx
* timestamps. Otherwise we might process timestamps from
* VIRTCHNL_OP_1588_PTP_TX_TSTAMP incorrectly.
*/
static void iavf_validate_tx_tstamp_format(struct iavf_adapter *adapter)
{
struct device *dev = &adapter->pdev->dev;
switch (adapter->ptp.hw_caps.tx_tstamp_format) {
case VIRTCHNL_1588_PTP_TSTAMP_40BIT:
case VIRTCHNL_1588_PTP_TSTAMP_64BIT_NS:
dev_dbg(dev, "%s: got Tx timestamp format %u\n",
__func__, adapter->ptp.hw_caps.tx_tstamp_format);
break;
default:
dev_warn(dev, "Disabling Tx timestamps due to unexpected Tx timestamp format %u\n",
adapter->ptp.hw_caps.tx_tstamp_format);
adapter->ptp.hw_caps.caps &= ~VIRTCHNL_1588_PTP_CAP_TX_TSTAMP;
break;
}
}
/**
* iavf_ptp_init - Initialize PTP support if capability was negotiated
* @adapter: private adapter structure
*
* Initialize PTP functionality, based on the capabilities that the PF has
* enabled for this VF.
*/
void iavf_ptp_init(struct iavf_adapter *adapter)
{
struct device *dev = &adapter->pdev->dev;
int err;
if (WARN_ON(adapter->ptp.initialized)) {
dev_err(dev, "PTP functionality was already initialized!\n");
return;
}
if (!iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_READ_PHC)) {
dev_dbg(dev, "Device does not have PTP clock support\n");
return;
}
err = iavf_ptp_register_clock(adapter);
if (err) {
dev_warn(dev, "Failed to register PTP clock device\n");
return;
}
#ifdef HAVE_PTP_CLOCK_DO_AUX_WORK
ptp_schedule_worker(adapter->ptp.clock, 0);
#endif
iavf_ptp_map_phc_addr(adapter);
iavf_validate_tx_tstamp_format(adapter);
adapter->ptp.initialized = true;
}
/**
* iavf_ptp_release - Disable PTP support
* @adapter: private adapter structure
*
* Release all PTP resources that were previously initialized.
*/
void iavf_ptp_release(struct iavf_adapter *adapter)
{
struct iavf_ptp_aq_cmd *cmd, *tmp;
if (!IS_ERR_OR_NULL(adapter->ptp.clock)) {
dev_info(&adapter->pdev->dev, "removing PTP clock %s\n", adapter->ptp.info.name);
ptp_clock_unregister(adapter->ptp.clock);
adapter->ptp.clock = NULL;
}
/* Cancel any remaining uncompleted PTP clock commands */
spin_lock(&adapter->ptp.aq_cmd_lock);
list_for_each_entry_safe(cmd, tmp, &adapter->ptp.aq_cmds, list) {
list_del(&cmd->list);
kfree(cmd);
}
adapter->aq_required &= ~IAVF_FLAG_AQ_SEND_PTP_CMD;
spin_unlock(&adapter->ptp.aq_cmd_lock);
iavf_ptp_unmap_phc_addr(adapter);
adapter->ptp.hwtstamp_config.tx_type = HWTSTAMP_TX_OFF;
iavf_ptp_disable_tx_tstamp(adapter);
adapter->ptp.hwtstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
iavf_ptp_disable_rx_tstamp(adapter);
adapter->ptp.initialized = false;
}
/**
* iavf_ptp_process_caps - Handle change in PTP capabilities
* @adapter: private adapter structure
*
* Handle any state changes necessary due to change in PTP capabilities, such
* as after a device reset or change in configuration from the PF.
*/
void iavf_ptp_process_caps(struct iavf_adapter *adapter)
{
struct device *dev = &adapter->pdev->dev;
dev_dbg(dev, "PTP capabilities changed at runtime\n");
/* Check if we lost PTP capability after loading */
if (adapter->ptp.initialized &&
!iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_READ_PHC)) {
iavf_ptp_release(adapter);
return;
}
/* Check if we gained PTP capability after loading */
if (!adapter->ptp.initialized &&
iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_READ_PHC)) {
iavf_ptp_init(adapter);
return;
}
/* The following checks are only necessary if we still have PTP clock
* capability. These handle if one of the extended capabilities is
* changed.
*/
if (adapter->ptp.phc_addr &&
!(iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_PHC_REGS)))
iavf_ptp_unmap_phc_addr(adapter);
else if (!adapter->ptp.phc_addr &&
(iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_PHC_REGS)))
iavf_ptp_map_phc_addr(adapter);
iavf_validate_tx_tstamp_format(adapter);
/* Check if the device lost access to Tx timestamp outgoing packets */
if (!iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_TX_TSTAMP)) {
adapter->ptp.hwtstamp_config.tx_type = HWTSTAMP_TX_OFF;
iavf_ptp_disable_tx_tstamp(adapter);
}
/* Check if the device lost access to Rx timestamp incoming packets */
if (!iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_RX_TSTAMP)) {
adapter->ptp.hwtstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
iavf_ptp_disable_rx_tstamp(adapter);
}
}
/**
* iavf_ptp_extend_32b_timestamp - Convert a 32b nanoseconds timestamp to 64b nanoseconds
* @cached_phc_time: recently cached copy of PHC time
* @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
*
* Hardware captures timestamps which contain only 32 bits of nominal
* nanoseconds, as opposed to the 64bit timestamps that the stack expects.
*
* Extend the 32bit nanosecond timestamp using the following algorithm and
* assumptions:
*
* 1) have a recently cached copy of the PHC time
* 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
* seconds) before or after the PHC time was captured.
* 3) calculate the delta between the cached time and the timestamp
* 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
* captured after the PHC time. In this case, the full timestamp is just
* the cached PHC time plus the delta.
* 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
* timestamp was captured *before* the PHC time, i.e. because the PHC
* cache was updated after the timestamp was captured by hardware. In this
* case, the full timestamp is the cached time minus the inverse delta.
*
* This algorithm works even if the PHC time was updated after a Tx timestamp
* was requested, but before the Tx timestamp event was reported from
* hardware.
*
* This calculation primarily relies on keeping the cached PHC time up to
* date. If the timestamp was captured more than 2^31 nanoseconds after the
* PHC time, it is possible that the lower 32bits of PHC time have
* overflowed more than once, and we might generate an incorrect timestamp.
*
* This is prevented by (a) periodically updating the cached PHC time once
* a second, and (b) discarding any Tx timestamp packet if it has waited for
* a timestamp for more than one second.
*/
u64 iavf_ptp_extend_32b_timestamp(u64 cached_phc_time, u32 in_tstamp)
{
const u64 mask = GENMASK_ULL(31, 0);
u32 delta;
u64 ns;
/* Calculate the delta between the lower 32bits of the cached PHC
* time and the in_tstamp value
*/
delta = (in_tstamp - (u32)(cached_phc_time & mask));
/* Do not assume that the in_tstamp is always more recent than the
* cached PHC time. If the delta is large, it indicates that the
* in_tstamp was taken in the past, and should be converted
* forward.
*/
if (delta > (mask / 2)) {
/* reverse the delta calculation here */
delta = ((u32)(cached_phc_time & mask) - in_tstamp);
ns = cached_phc_time - delta;
} else {
ns = cached_phc_time + delta;
}
return ns;
}
/**
* iavf_ptp_extend_40b_timestamp - Convert a 40b timestamp to 64b nanoseconds
* @cached_phc_time: recently cached copy of PHC time
* @in_tstamp: Ingress/egress 40b timestamp value
*
* For some devices, the Tx and Rx timestamps use a 40bit timestamp:
*
* *--------------------------------------------------------------*
* | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
* *--------------------------------------------------------------*
*
* The low bit is an indicator of whether the timestamp is valid. The next
* 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
* and the remaining 32 bits are the lower 32 bits of the PHC timer.
*
* It is assumed that the caller verifies the timestamp is valid prior to
* calling this function.
*
* Extract the 32bit nominal nanoseconds and extend them. See
* iavf_ptp_extend_32b_timestamp for a detailed explanation of the extension
* algorithm.
*/
u64 iavf_ptp_extend_40b_timestamp(u64 cached_phc_time, u64 in_tstamp)
{
const u64 mask = GENMASK_ULL(31, 0);
return iavf_ptp_extend_32b_timestamp(cached_phc_time, (in_tstamp >> 8) & mask);
}