OpenCloudOS-Kernel/drivers/thirdparty/iavf/iavf_main.c

5581 lines
158 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2013, Intel Corporation. */
#include "iavf.h"
#include "iavf_helper.h"
#include "iavf_prototype.h"
/* All iavf tracepoints are defined by the include below, which must
* be included exactly once across the whole kernel with
* CREATE_TRACE_POINTS defined
*/
#define CREATE_TRACE_POINTS
#include "iavf_trace.h"
static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
static int iavf_close(struct net_device *netdev);
static void iavf_init_get_resources(struct iavf_adapter *adapter);
static int iavf_check_reset_complete(struct iavf_hw *hw);
static void iavf_handle_reset(struct iavf_adapter *adapter);
char iavf_driver_name[] = "iavf";
static const char iavf_driver_string[] =
"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
#define DRV_VERSION_MAJOR (4)
#define DRV_VERSION_MINOR (2)
#define DRV_VERSION_BUILD (7)
#define DRV_VERSION "4.2.7"
const char iavf_driver_version[] = DRV_VERSION;
static const char iavf_copyright[] =
"Copyright (c) 2013, Intel Corporation.";
/* iavf_pci_tbl - PCI Device ID Table
*
* Wildcard entries (PCI_ANY_ID) should come last
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
* Class, Class Mask, private data (not used) }
*/
static const struct pci_device_id iavf_pci_tbl[] = {
{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
/* required last entry */
{0, }
};
MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
MODULE_ALIAS("i40evf");
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
static const struct net_device_ops iavf_netdev_ops;
#ifdef HAVE_RHEL6_NET_DEVICE_OPS_EXT
static const struct net_device_ops_ext iavf_netdev_ops_ext;
#endif /* HAVE_RHEL6_NET_DEVICE_OPS_EXT */
struct workqueue_struct *iavf_wq;
/**
* iavf_schedule_reset - Set the flags and schedule a reset event
* @adapter: board private structure
*
* Set IAVF_FLAG_RESET_NEEDED flag so iavf_watchdog_task() will change drivers
* state to __IAVF_RESETTING.
**/
void iavf_schedule_reset(struct iavf_adapter *adapter)
{
adapter->flags |= IAVF_FLAG_RESET_NEEDED;
mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
}
/**
* iavf_schedule_request_stats - Set the flags and schedule statistics request
* @adapter: board private structure
*
* Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly
* request and refresh ethtool stats
**/
void iavf_schedule_request_stats(struct iavf_adapter *adapter)
{
adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS;
mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
}
/**
* iavf_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
* @txqueue: stuck queue
**/
#ifdef HAVE_TX_TIMEOUT_TXQUEUE
static void
iavf_tx_timeout(struct net_device *netdev, __always_unused unsigned int txqueue)
#else
static void iavf_tx_timeout(struct net_device *netdev)
#endif
{
struct iavf_adapter *adapter = netdev_priv(netdev);
adapter->tx_timeout_count++;
iavf_schedule_reset(adapter);
}
/**
* iavf_misc_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
**/
static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
{
struct iavf_hw *hw = &adapter->hw;
if (!adapter->msix_entries)
return;
wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
iavf_flush(hw);
synchronize_irq(adapter->msix_entries[0].vector);
}
/**
* iavf_misc_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
**/
static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
{
struct iavf_hw *hw = &adapter->hw;
wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
iavf_flush(hw);
}
/**
* iavf_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
**/
static void iavf_irq_disable(struct iavf_adapter *adapter)
{
int i;
struct iavf_hw *hw = &adapter->hw;
if (!adapter->msix_entries)
return;
for (i = 1; i < adapter->num_msix_vectors; i++) {
wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
synchronize_irq(adapter->msix_entries[i].vector);
}
iavf_flush(hw);
}
/**
* iavf_irq_enable_queues - Enable interrupt for specified queues
* @adapter: board private structure
* @mask: bitmap of queues to enable
**/
void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
{
struct iavf_hw *hw = &adapter->hw;
int i;
for (i = 1; i < adapter->num_msix_vectors; i++) {
if (mask & BIT(i - 1)) {
wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
}
}
}
/**
* iavf_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
* @flush: boolean value whether to run rd32()
**/
void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
{
struct iavf_hw *hw = &adapter->hw;
iavf_misc_irq_enable(adapter);
iavf_irq_enable_queues(adapter, ~0);
if (flush)
iavf_flush(hw);
}
/**
* iavf_msix_aq - Interrupt handler for vector 0
* @irq: interrupt number
* @data: pointer to netdev
**/
static irqreturn_t iavf_msix_aq(int irq, void *data)
{
struct net_device *netdev = data;
struct iavf_adapter *adapter = netdev_priv(netdev);
struct iavf_hw *hw = &adapter->hw;
/* handle non-queue interrupts */
rd32(hw, IAVF_VFINT_ICR01);
rd32(hw, IAVF_VFINT_ICR0_ENA1);
/* schedule work on the private workqueue */
queue_work(iavf_wq, &adapter->adminq_task);
return IRQ_HANDLED;
}
/**
* iavf_msix_clean_rings - MSIX mode Interrupt Handler
* @irq: interrupt number
* @data: pointer to a q_vector
**/
static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
{
struct iavf_q_vector *q_vector = data;
if (!q_vector->tx.ring && !q_vector->rx.ring)
return IRQ_HANDLED;
napi_schedule_irqoff(&q_vector->napi);
return IRQ_HANDLED;
}
/**
* iavf_map_vector_to_rxq - associate irqs with rx queues
* @adapter: board private structure
* @v_idx: interrupt number
* @r_idx: queue number
**/
static void
iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
{
struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
struct iavf_hw *hw = &adapter->hw;
rx_ring->q_vector = q_vector;
rx_ring->next = q_vector->rx.ring;
rx_ring->vsi = &adapter->vsi;
q_vector->rx.ring = rx_ring;
q_vector->rx.count++;
q_vector->rx.next_update = jiffies + 1;
q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
q_vector->ring_mask |= BIT(r_idx);
wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
q_vector->rx.current_itr >> 1);
q_vector->rx.current_itr = q_vector->rx.target_itr;
}
/**
* iavf_map_vector_to_txq - associate irqs with tx queues
* @adapter: board private structure
* @v_idx: interrupt number
* @t_idx: queue number
**/
static void
iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
{
struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
struct iavf_hw *hw = &adapter->hw;
tx_ring->q_vector = q_vector;
tx_ring->next = q_vector->tx.ring;
tx_ring->vsi = &adapter->vsi;
q_vector->tx.ring = tx_ring;
q_vector->tx.count++;
q_vector->tx.next_update = jiffies + 1;
q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
q_vector->num_ringpairs++;
wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
q_vector->tx.target_itr >> 1);
q_vector->tx.current_itr = q_vector->tx.target_itr;
}
/**
* iavf_map_rings_to_vectors - Maps descriptor rings to vectors
* @adapter: board private structure to initialize
*
* This function maps descriptor rings to the queue-specific vectors
* we were allotted through the MSI-X enabling code. Ideally, we'd have
* one vector per ring/queue, but on a constrained vector budget, we
* group the rings as "efficiently" as possible. You would add new
* mapping configurations in here.
**/
static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
{
int rings_remaining = adapter->num_active_queues;
int ridx = 0, vidx = 0;
int q_vectors;
q_vectors = adapter->num_msix_vectors - NONQ_VECS;
for (; ridx < rings_remaining; ridx++) {
iavf_map_vector_to_rxq(adapter, vidx, ridx);
iavf_map_vector_to_txq(adapter, vidx, ridx);
/* In the case where we have more queues than vectors, continue
* round-robin on vectors until all queues are mapped.
*/
if (++vidx >= q_vectors)
vidx = 0;
}
adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
}
#ifdef HAVE_IRQ_AFFINITY_NOTIFY
/**
* iavf_irq_affinity_notify - Callback for affinity changes
* @notify: context as to what irq was changed
* @mask: the new affinity mask
*
* This is a callback function used by the irq_set_affinity_notifier function
* so that we may register to receive changes to the irq affinity masks.
**/
static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
const cpumask_t *mask)
{
struct iavf_q_vector *q_vector =
container_of(notify, struct iavf_q_vector, affinity_notify);
cpumask_copy(&q_vector->affinity_mask, mask);
}
/**
* iavf_irq_affinity_release - Callback for affinity notifier release
* @ref: internal core kernel usage
*
* This is a callback function used by the irq_set_affinity_notifier function
* to inform the current notification subscriber that they will no longer
* receive notifications.
**/
static void iavf_irq_affinity_release(struct kref *ref) {}
#endif /* HAVE_IRQ_AFFINITY_NOTIFY */
/**
* iavf_request_traffic_irqs - Initialize MSI-X interrupts
* @adapter: board private structure
* @basename: device basename
*
* Allocates MSI-X vectors for tx and rx handling, and requests
* interrupts from the kernel.
**/
static int
iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
{
unsigned int vector, q_vectors;
unsigned int rx_int_idx = 0, tx_int_idx = 0;
int irq_num, err;
int cpu;
iavf_irq_disable(adapter);
/* Decrement for Other and TCP Timer vectors */
q_vectors = adapter->num_msix_vectors - NONQ_VECS;
for (vector = 0; vector < q_vectors; vector++) {
struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
if (q_vector->tx.ring && q_vector->rx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name),
"iavf-%s-TxRx-%u", basename, rx_int_idx++);
tx_int_idx++;
} else if (q_vector->rx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name),
"iavf-%s-rx-%u", basename, rx_int_idx++);
} else if (q_vector->tx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name),
"iavf-%s-tx-%u", basename, tx_int_idx++);
} else {
/* skip this unused q_vector */
continue;
}
err = request_irq(irq_num,
iavf_msix_clean_rings,
0,
q_vector->name,
q_vector);
if (err) {
dev_info(&adapter->pdev->dev,
"Request_irq failed, error: %d\n", err);
goto free_queue_irqs;
}
#ifdef HAVE_IRQ_AFFINITY_NOTIFY
/* register for affinity change notifications */
q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
q_vector->affinity_notify.release =
iavf_irq_affinity_release;
irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
#endif
#ifdef HAVE_IRQ_AFFINITY_HINT
/* Spread the IRQ affinity hints across online CPUs. Note that
* get_cpu_mask returns a mask with a permanent lifetime so
* it's safe to use as a hint for irq_set_affinity_hint.
*/
cpu = cpumask_local_spread(q_vector->v_idx, -1);
irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
#endif /* HAVE_IRQ_AFFINITY_HINT */
}
return 0;
free_queue_irqs:
while (vector) {
vector--;
irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
#ifdef HAVE_IRQ_AFFINITY_NOTIFY
irq_set_affinity_notifier(irq_num, NULL);
#endif
#ifdef HAVE_IRQ_AFFINITY_HINT
irq_set_affinity_hint(irq_num, NULL);
#endif
free_irq(irq_num, &adapter->q_vectors[vector]);
}
return err;
}
/**
* iavf_request_misc_irq - Initialize MSI-X interrupts
* @adapter: board private structure
*
* Allocates MSI-X vector 0 and requests interrupts from the kernel. This
* vector is only for the admin queue, and stays active even when the netdev
* is closed.
**/
static int iavf_request_misc_irq(struct iavf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err;
snprintf(adapter->misc_vector_name,
sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
dev_name(&adapter->pdev->dev));
err = request_irq(adapter->msix_entries[0].vector,
&iavf_msix_aq, 0,
adapter->misc_vector_name, netdev);
if (err) {
dev_err(&adapter->pdev->dev,
"request_irq for %s failed: %d\n",
adapter->misc_vector_name, err);
free_irq(adapter->msix_entries[0].vector, netdev);
}
return err;
}
/**
* iavf_free_traffic_irqs - Free MSI-X interrupts
* @adapter: board private structure
*
* Frees all MSI-X vectors other than 0.
**/
static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
{
int vector, irq_num, q_vectors;
if (!adapter->msix_entries)
return;
q_vectors = adapter->num_msix_vectors - NONQ_VECS;
for (vector = 0; vector < q_vectors; vector++) {
irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
#ifdef HAVE_IRQ_AFFINITY_NOTIFY
irq_set_affinity_notifier(irq_num, NULL);
#endif
#ifdef HAVE_IRQ_AFFINITY_HINT
irq_set_affinity_hint(irq_num, NULL);
#endif
free_irq(irq_num, &adapter->q_vectors[vector]);
}
}
/**
* iavf_free_misc_irq - Free MSI-X miscellaneous vector
* @adapter: board private structure
*
* Frees MSI-X vector 0.
**/
static void iavf_free_misc_irq(struct iavf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
if (!adapter->msix_entries)
return;
free_irq(adapter->msix_entries[0].vector, netdev);
}
/**
* iavf_configure_tx - Configure Transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void iavf_configure_tx(struct iavf_adapter *adapter)
{
struct iavf_hw *hw = &adapter->hw;
int i;
for (i = 0; i < adapter->num_active_queues; i++)
adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
}
/**
* iavf_select_rx_desc_format - Select Rx descriptor format
* @adapter: adapter private structure
*
* Select what Rx descriptor format based on availability and enabled
* features.
*
* Returns the desired RXDID to select for a given Rx queue, as defined by
* enum virtchnl_rxdid_format.
*/
static u8 iavf_select_rx_desc_format(struct iavf_adapter *adapter)
{
u64 supported_rxdids = adapter->supported_rxdids.supported_rxdids;
/* If we did not negotiate VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC, we must
* stick with the default value of the legacy 32 byte format.
*/
if (!RXDID_ALLOWED(adapter))
return VIRTCHNL_RXDID_1_32B_BASE;
/* Rx timestamping requires the use of flexible NIC descriptors */
if (iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_RX_TSTAMP)) {
if (supported_rxdids & BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC))
return VIRTCHNL_RXDID_2_FLEX_SQ_NIC;
dev_dbg(&adapter->pdev->dev, "Unable to negotiate flexible descriptor format.\n");
}
/* Warn if the PF does not list support for the default legacy
* descriptor format. This shouldn't happen, as this is the format
* used if VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC is not supported. It is
* likely caused by a bug in the PF implementation failing to indicate
* support for the format.
*/
if (supported_rxdids & BIT(VIRTCHNL_RXDID_1_32B_BASE))
dev_warn(&adapter->pdev->dev, "PF does not list support for default Rx descriptor format\n");
return VIRTCHNL_RXDID_1_32B_BASE;
}
/**
* iavf_configure_rx - Configure Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void iavf_configure_rx(struct iavf_adapter *adapter)
{
unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
struct iavf_hw *hw = &adapter->hw;
int i;
adapter->rxdid = iavf_select_rx_desc_format(adapter);
dev_dbg(&adapter->pdev->dev, "Configuring Rx using descriptor ID of %u\n",
adapter->rxdid);
/* Legacy Rx will always default to a 2048 buffer size. */
#if (PAGE_SIZE < 8192)
if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
struct net_device *netdev = adapter->netdev;
/* For jumbo frames on systems with 4K pages we have to use
* an order 1 page, so we might as well increase the size
* of our Rx buffer to make better use of the available space
*/
rx_buf_len = IAVF_RXBUFFER_3072;
/* We use a 1536 buffer size for configurations with
* standard Ethernet mtu. On x86 this gives us enough room
* for shared info and 192 bytes of padding.
*/
if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
(netdev->mtu <= ETH_DATA_LEN))
rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
}
#endif
for (i = 0; i < adapter->num_active_queues; i++) {
adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
adapter->rx_rings[i].rx_buf_len = rx_buf_len;
adapter->rx_rings[i].rxdid = adapter->rxdid;
if (adapter->flags & IAVF_FLAG_LEGACY_RX)
clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
else
set_ring_build_skb_enabled(&adapter->rx_rings[i]);
}
}
#ifdef HAVE_VLAN_RX_REGISTER
/**
* iavf_vlan_rx_register - Register for RX vlan filtering, enable VLAN
* tag stripping
* @netdev: netdevice structure
* @grp: vlan group data
**/
static void iavf_vlan_rx_register(struct net_device *netdev,
struct vlan_group *grp)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
/* Since VLAN tag stripping is always enabled, just store vlgrp. */
adapter->vsi.vlgrp = grp;
}
#endif
/**
* iavf_find_vlan - Search filter list for specific vlan filter
* @adapter: board private structure
* @vlan: vlan tag
*
* Returns ptr to the filter object or NULL. Must be called while holding the
* mac_vlan_list_lock.
**/
static struct
iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
struct iavf_vlan vlan)
{
struct iavf_vlan_filter *f;
list_for_each_entry(f, &adapter->vlan_filter_list, list) {
if (f->vlan.vid == vlan.vid &&
f->vlan.tpid == vlan.tpid)
return f;
}
return NULL;
}
/**
* iavf_add_vlan - Add a vlan filter to the list
* @adapter: board private structure
* @vlan: VLAN tag
*
* Returns ptr to the filter object or NULL when no memory available.
**/
static struct
iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
struct iavf_vlan vlan)
{
struct iavf_vlan_filter *f = NULL;
spin_lock_bh(&adapter->mac_vlan_list_lock);
f = iavf_find_vlan(adapter, vlan);
if (!f) {
f = kzalloc(sizeof(*f), GFP_ATOMIC);
if (!f)
goto clearout;
f->vlan = vlan;
list_add_tail(&f->list, &adapter->vlan_filter_list);
f->add = true;
adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
}
clearout:
spin_unlock_bh(&adapter->mac_vlan_list_lock);
return f;
}
/**
* iavf_del_vlan - Remove a vlan filter from the list
* @adapter: board private structure
* @vlan: VLAN tag
**/
static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
{
struct iavf_vlan_filter *f;
spin_lock_bh(&adapter->mac_vlan_list_lock);
f = iavf_find_vlan(adapter, vlan);
if (f) {
f->remove = true;
adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
}
spin_unlock_bh(&adapter->mac_vlan_list_lock);
}
/**
* iavf_restore_filters
* @adapter: board private structure
*
* Restore existing non MAC filters when VF netdev comes back up
**/
static void iavf_restore_filters(struct iavf_adapter *adapter)
{
/* re-add all VLAN filters */
#ifdef HAVE_VLAN_RX_REGISTER
if (adapter->vsi.vlgrp)
iavf_vlan_rx_register(adapter->netdev, adapter->vsi.vlgrp);
#else /* HAVE_VLAN_RX_REGISTER */
if (VLAN_FILTERING_ALLOWED(adapter)) {
u16 vid;
for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID)
iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q));
for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID)
iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD));
}
#endif /* HAVE_VLAN_RX_REGISTER */
}
/**
* iavf_get_num_vlans_added - get number of VLANs added
* @adapter: board private structure
*/
static u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
{
return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) +
bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID);
}
/**
* iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
* @adapter: board private structure
*
* This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
* do not impose a limit as that maintains current behavior and for
* VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
**/
static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
{
/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
* never been a limit on the VF driver side
*/
if (VLAN_ALLOWED(adapter))
return VLAN_N_VID;
else if (VLAN_V2_ALLOWED(adapter))
return adapter->vlan_v2_caps.filtering.max_filters;
return 0;
}
/**
* iavf_max_vlans_added - check if maximum VLANs allowed already exist
* @adapter: board private structure
**/
static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
{
if (iavf_get_num_vlans_added(adapter) <
iavf_get_max_vlans_allowed(adapter))
return false;
return true;
}
/**
* iavf_vlan_rx_add_vid - Add a VLAN filter to a device
* @netdev: network device struct
* @proto: unused protocol data
* @vid: VLAN tag
**/
#ifdef HAVE_INT_NDO_VLAN_RX_ADD_VID
#ifdef NETIF_F_HW_VLAN_CTAG_RX
static int iavf_vlan_rx_add_vid(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
#else
static int iavf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
#endif
{
struct iavf_adapter *adapter = netdev_priv(netdev);
#ifdef NETIF_F_HW_VLAN_CTAG_RX
u16 local_vlan_proto = be16_to_cpu(proto);
#else
u16 local_vlan_proto = ETH_P_8021Q;
#endif
if (!VLAN_FILTERING_ALLOWED(adapter))
return -EIO;
if (iavf_max_vlans_added(adapter)) {
netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
iavf_get_max_vlans_allowed(adapter));
return -EIO;
}
if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, local_vlan_proto)))
return -ENOMEM;
if (local_vlan_proto == ETH_P_8021Q)
set_bit(vid, adapter->vsi.active_cvlans);
else
set_bit(vid, adapter->vsi.active_svlans);
return 0;
}
#else
static void iavf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
if (!VLAN_FILTERING_ALLOWED(adapter))
return;
if (iavf_max_vlans_added(adapter)) {
netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
iavf_get_max_vlans_allowed(adapter));
return;
}
iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q));
set_bit(vid, adapter->vsi.active_cvlans);
}
#endif
/**
* iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
* @netdev: network device struct
* @proto: unused protocol data
* @vid: VLAN tag
**/
#ifdef HAVE_INT_NDO_VLAN_RX_ADD_VID
#ifdef NETIF_F_HW_VLAN_CTAG_RX
static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
#else
static int iavf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
#endif
{
struct iavf_adapter *adapter = netdev_priv(netdev);
#ifdef NETIF_F_HW_VLAN_CTAG_RX
u16 local_vlan_proto = be16_to_cpu(proto);
#else
u16 local_vlan_proto = ETH_P_8021Q;
#endif
if (!VLAN_FILTERING_ALLOWED(adapter))
return -EIO;
iavf_del_vlan(adapter, IAVF_VLAN(vid, local_vlan_proto));
if (local_vlan_proto == ETH_P_8021Q)
clear_bit(vid, adapter->vsi.active_cvlans);
else
clear_bit(vid, adapter->vsi.active_svlans);
return 0;
}
#else
static void iavf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
if (!VLAN_FILTERING_ALLOWED(adapter))
return;
iavf_del_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q));
clear_bit(vid, adapter->vsi.active_cvlans);
}
#endif
/**
* iavf_find_filter - Search filter list for specific mac filter
* @adapter: board private structure
* @macaddr: the MAC address
*
* Returns ptr to the filter object or NULL. Must be called while holding the
* mac_vlan_list_lock.
**/
static struct
iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
const u8 *macaddr)
{
struct iavf_mac_filter *f;
if (!macaddr)
return NULL;
list_for_each_entry(f, &adapter->mac_filter_list, list) {
if (ether_addr_equal(macaddr, f->macaddr))
return f;
}
return NULL;
}
/**
* iavf_add_filter - Add a mac filter to the filter list
* @adapter: board private structure
* @macaddr: the MAC address
*
* Returns ptr to the filter object or NULL when no memory available.
**/
static struct
iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
const u8 *macaddr)
{
struct iavf_mac_filter *f;
if (!macaddr)
return NULL;
f = iavf_find_filter(adapter, macaddr);
if (!f) {
f = kzalloc(sizeof(*f), GFP_ATOMIC);
if (!f)
return f;
ether_addr_copy(f->macaddr, macaddr);
list_add_tail(&f->list, &adapter->mac_filter_list);
f->add = true;
f->is_new_mac = true;
f->is_primary = false;
adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
} else {
f->remove = false;
}
return f;
}
/**
* iavf_replace_primary_mac - Replace current primary address
* @adapter: board private structure
* @new_mac: new mac address to be applied
*
* Replace current dev_addr and send request to PF for removal of previous
* primary mac address filter and addition of new primary mac filter.
* Return 0 for success, -ENOMEM for failure.
*
* Do not call this with mac_vlan_list_lock!
**/
int iavf_replace_primary_mac(struct iavf_adapter *adapter,
const u8 *new_mac)
{
struct net_device *netdev = adapter->netdev;
struct iavf_hw *hw = &adapter->hw;
struct iavf_mac_filter *f;
spin_lock_bh(&adapter->mac_vlan_list_lock);
f = iavf_find_filter(adapter, hw->mac.addr);
if (f) {
f->remove = true;
f->is_primary = true;
adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
}
f = iavf_add_filter(adapter, new_mac);
if (f) {
f->is_primary = true;
ether_addr_copy(netdev->dev_addr, new_mac);
}
spin_unlock_bh(&adapter->mac_vlan_list_lock);
/* schedule the watchdog task to immediately process the request */
if (f) {
queue_work(iavf_wq, &adapter->watchdog_task.work);
return 0;
}
return -ENOMEM;
}
/**
* iavf_set_mac - NDO callback to set port mac address
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
**/
static int iavf_set_mac(struct net_device *netdev, void *p)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
if (iavf_chnl_filters_exist(adapter)) {
netdev_err(netdev,
"unable to set mac address because device %s has tc-flower filters. Delete all of them and try again\n",
netdev->name);
return -EAGAIN;
}
return iavf_replace_primary_mac(adapter, addr->sa_data);
}
/**
* iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
* @netdev: the netdevice
* @addr: address to add
*
* Called by __dev_(mc|uc)_sync when an address needs to be added. We call
* __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
*/
static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
if (iavf_add_filter(adapter, addr))
return 0;
else
return -ENOMEM;
}
/**
* iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
* @netdev: the netdevice
* @addr: address to add
*
* Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
* __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
*/
static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
struct iavf_mac_filter *f;
/* Under some circumstances, we might receive a request to delete
* our own device address from our uc list. Because we store the
* device address in the VSI's MAC/VLAN filter list, we need to ignore
* such requests and not delete our device address from this list.
*/
if (ether_addr_equal(addr, netdev->dev_addr))
return 0;
f = iavf_find_filter(adapter, addr);
if (f) {
f->remove = true;
adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
}
return 0;
}
/**
* iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
* @adapter: device specific adapter
*/
bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
{
return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags)
& (IFF_PROMISC | IFF_ALLMULTI);
}
/**
* iavf_set_rx_mode - NDO callback to set the netdev filters
* @netdev: network interface device structure
**/
static void iavf_set_rx_mode(struct net_device *netdev)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
spin_lock_bh(&adapter->mac_vlan_list_lock);
__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
spin_unlock_bh(&adapter->mac_vlan_list_lock);
spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
if (iavf_promiscuous_mode_changed(adapter))
adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
}
/**
* iavf_napi_enable_all - enable NAPI on all queue vectors
* @adapter: board private structure
**/
static void iavf_napi_enable_all(struct iavf_adapter *adapter)
{
int q_idx;
struct iavf_q_vector *q_vector;
int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
for (q_idx = 0; q_idx < q_vectors; q_idx++) {
struct napi_struct *napi;
q_vector = &adapter->q_vectors[q_idx];
napi = &q_vector->napi;
napi_enable(napi);
}
}
/**
* iavf_napi_disable_all - disable NAPI on all queue vectors
* @adapter: board private structure
**/
static void iavf_napi_disable_all(struct iavf_adapter *adapter)
{
int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
struct iavf_q_vector *q_vector;
int q_idx;
for (q_idx = 0; q_idx < q_vectors; q_idx++) {
q_vector = &adapter->q_vectors[q_idx];
napi_disable(&q_vector->napi);
}
}
/**
* iavf_configure - set up transmit and receive data structures
* @adapter: board private structure
**/
static void iavf_configure(struct iavf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int i;
iavf_set_rx_mode(netdev);
iavf_configure_tx(adapter);
iavf_configure_rx(adapter);
adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
for (i = 0; i < adapter->num_active_queues; i++) {
struct iavf_ring *ring = &adapter->rx_rings[i];
iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
}
}
/**
* iavf_up_complete - Finish the last steps of bringing up a connection
* @adapter: board private structure
*
* Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
**/
static void iavf_up_complete(struct iavf_adapter *adapter)
{
#ifdef CONFIG_NETDEVICES_MULTIQUEUE
if (adapter->num_active_queues > 1)
netdev->features |= NETIF_F_MULTI_QUEUE;
#endif
iavf_change_state(adapter, __IAVF_RUNNING);
clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
iavf_napi_enable_all(adapter);
adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
}
/**
* iavf_down - Shutdown the connection processing
* @adapter: board private structure
*
* Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
**/
void iavf_down(struct iavf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct iavf_vlan_filter *vlf;
struct iavf_cloud_filter *cf;
struct iavf_mac_filter *f;
if (adapter->state <= __IAVF_DOWN_PENDING)
return;
netif_carrier_off(netdev);
netif_tx_disable(netdev);
adapter->link_up = false;
iavf_irq_disable(adapter);
iavf_napi_disable_all(adapter);
spin_lock_bh(&adapter->mac_vlan_list_lock);
/* clear the sync flag on all filters */
__dev_uc_unsync(adapter->netdev, NULL);
__dev_mc_unsync(adapter->netdev, NULL);
/* remove all MAC filters */
list_for_each_entry(f, &adapter->mac_filter_list, list) {
f->remove = true;
}
/* remove all VLAN filters */
list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
vlf->remove = true;
}
spin_unlock_bh(&adapter->mac_vlan_list_lock);
/* remove all cloud filters */
spin_lock_bh(&adapter->cloud_filter_list_lock);
list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
cf->del = true;
}
spin_unlock_bh(&adapter->cloud_filter_list_lock);
if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
adapter->state != __IAVF_RESETTING) {
/* cancel any current operation */
adapter->current_op = VIRTCHNL_OP_UNKNOWN;
/* Schedule operations to close down the HW. Don't wait
* here for this to complete. The watchdog is still running
* and it will take care of this.
*/
adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
/* In case the queue configure or enable operations are still
* pending from when the interface was opened, make sure
* they're canceled here.
*/
adapter->aq_required &= ~IAVF_FLAG_AQ_ENABLE_QUEUES;
adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_QUEUES;
}
mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
}
/**
* iavf_acquire_msix_vectors - Setup the MSIX capability
* @adapter: board private structure
* @vectors: number of vectors to request
*
* Work with the OS to set up the MSIX vectors needed.
*
* Returns 0 on success, negative on failure
**/
static int
iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
{
int v_actual;
/* We'll want at least 3 (vector_threshold):
* 0) Other (Admin Queue and link, mostly)
* 1) TxQ[0] Cleanup
* 2) RxQ[0] Cleanup
*
* The more we get, the more we will assign to Tx/Rx Cleanup
* for the separate queues...where Rx Cleanup >= Tx Cleanup.
* Right now, we simply care about how many we'll get; we'll
* set them up later while requesting irq's.
*/
v_actual = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
MIN_MSIX_COUNT, vectors);
if (v_actual < 0) {
dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts: %d\n",
v_actual);
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
return v_actual;
}
adapter->num_msix_vectors = v_actual;
return 0;
}
/**
* iavf_free_queues - Free memory for all rings
* @adapter: board private structure to initialize
*
* Free all of the memory associated with queue pairs.
**/
static void iavf_free_queues(struct iavf_adapter *adapter)
{
if (!adapter->vsi_res)
return;
adapter->num_active_queues = 0;
kfree(adapter->tx_rings);
adapter->tx_rings = NULL;
kfree(adapter->rx_rings);
adapter->rx_rings = NULL;
}
/**
* iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
* @adapter: board private structure
*
* Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
* stripped in certain descriptor fields. Instead of checking the offload
* capability bits in the hot path, cache the location the ring specific
* flags.
*/
void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_active_queues; i++) {
struct iavf_ring *tx_ring = &adapter->tx_rings[i];
struct iavf_ring *rx_ring = &adapter->rx_rings[i];
/* prevent multiple L2TAG bits being set after VFR */
tx_ring->flags &=
~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
rx_ring->flags &=
~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
if (VLAN_ALLOWED(adapter)) {
tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
} else if (VLAN_V2_ALLOWED(adapter)) {
struct virtchnl_vlan_supported_caps *stripping_support;
struct virtchnl_vlan_supported_caps *insertion_support;
stripping_support =
&adapter->vlan_v2_caps.offloads.stripping_support;
insertion_support =
&adapter->vlan_v2_caps.offloads.insertion_support;
if (stripping_support->outer) {
if (stripping_support->outer &
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
rx_ring->flags |=
IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
else if (stripping_support->outer &
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
rx_ring->flags |=
IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
} else if (stripping_support->inner) {
if (stripping_support->inner &
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
rx_ring->flags |=
IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
else if (stripping_support->inner &
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
rx_ring->flags |=
IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
}
if (insertion_support->outer) {
if (insertion_support->outer &
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
tx_ring->flags |=
IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
else if (insertion_support->outer &
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
tx_ring->flags |=
IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
} else if (insertion_support->inner) {
if (insertion_support->inner &
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
tx_ring->flags |=
IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
else if (insertion_support->inner &
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
tx_ring->flags |=
IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
}
}
}
}
/**
* iavf_alloc_queues - Allocate memory for all rings
* @adapter: board private structure to initialize
*
* We allocate one ring per queue at run-time since we don't know the
* number of queues at compile-time. The polling_netdev array is
* intended for Multiqueue, but should work fine with a single queue.
**/
static int iavf_alloc_queues(struct iavf_adapter *adapter)
{
int i, num_active_queues;
/* If we're in reset reallocating queues we don't actually know yet for
* certain the PF gave us the number of queues we asked for but we'll
* assume it did. Once basic reset is finished we'll confirm once we
* start negotiating config with PF.
*/
if (adapter->num_req_queues)
num_active_queues = adapter->num_req_queues;
#ifdef __TC_MQPRIO_MODE_MAX
else if (iavf_is_adq_enabled(adapter))
num_active_queues = adapter->ch_config.total_qps;
#endif /* __TC_MQPRIO_MODE_MAX */
else if (adapter->orig_num_active_queues)
num_active_queues = adapter->orig_num_active_queues;
else
num_active_queues = min_t(int,
adapter->vsi_res->num_queue_pairs,
(int)(num_online_cpus()));
adapter->tx_rings = kcalloc(num_active_queues,
sizeof(struct iavf_ring), GFP_KERNEL);
if (!adapter->tx_rings)
goto err_out;
adapter->rx_rings = kcalloc(num_active_queues,
sizeof(struct iavf_ring), GFP_KERNEL);
if (!adapter->rx_rings)
goto err_out;
for (i = 0; i < num_active_queues; i++) {
struct iavf_ring *tx_ring;
struct iavf_ring *rx_ring;
tx_ring = &adapter->tx_rings[i];
tx_ring->queue_index = i;
tx_ring->netdev = adapter->netdev;
tx_ring->dev = pci_dev_to_dev(adapter->pdev);
tx_ring->count = adapter->tx_desc_count;
tx_ring->itr_setting = IAVF_ITR_TX_DEF;
if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
rx_ring = &adapter->rx_rings[i];
rx_ring->queue_index = i;
rx_ring->netdev = adapter->netdev;
rx_ring->dev = pci_dev_to_dev(adapter->pdev);
rx_ring->count = adapter->rx_desc_count;
rx_ring->itr_setting = IAVF_ITR_RX_DEF;
}
adapter->num_active_queues = num_active_queues;
iavf_set_queue_vlan_tag_loc(adapter);
return 0;
err_out:
iavf_free_queues(adapter);
return -ENOMEM;
}
/**
* iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
* @adapter: board private structure to initialize
*
* Attempt to configure the interrupts using the best available
* capabilities of the hardware and the kernel.
**/
static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
{
int vector, v_budget;
int pairs = 0;
int err = 0;
if (!adapter->vsi_res) {
err = -EIO;
goto out;
}
pairs = adapter->num_active_queues;
/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
* us much good if we have more vectors than CPUs. However, we already
* limit the total number of queues by the number of CPUs so we do not
* need any further limiting here.
*/
v_budget = min_t(int, pairs + NONQ_VECS,
(int)adapter->vf_res->max_vectors);
adapter->msix_entries = kcalloc(v_budget,
sizeof(struct msix_entry), GFP_KERNEL);
if (!adapter->msix_entries) {
err = -ENOMEM;
goto out;
}
for (vector = 0; vector < v_budget; vector++)
adapter->msix_entries[vector].entry = vector;
err = iavf_acquire_msix_vectors(adapter, v_budget);
out:
#ifdef CONFIG_NETDEVICES_MULTIQUEUE
/* Notify the stack of the (possibly) reduced Tx Queue count. */
adapter->netdev->egress_subqueue_count = pairs;
#else /* CONFIG_NETDEVICES_MULTIQUEUE */
netif_set_real_num_rx_queues(adapter->netdev, pairs);
netif_set_real_num_tx_queues(adapter->netdev, pairs);
#endif /* CONFIG_NETDEVICES_MULTIQUEUE */
return err;
}
/**
* iavf_alloc_q_vectors - Allocate memory for interrupt vectors
* @adapter: board private structure to initialize
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
**/
static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
{
int q_idx = 0, num_q_vectors;
struct iavf_q_vector *q_vector;
num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
GFP_KERNEL);
if (!adapter->q_vectors)
return -ENOMEM;
for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
q_vector = &adapter->q_vectors[q_idx];
q_vector->adapter = adapter;
q_vector->vsi = &adapter->vsi;
q_vector->v_idx = q_idx;
q_vector->reg_idx = q_idx;
#ifdef HAVE_IRQ_AFFINITY_NOTIFY
cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
#endif
netif_napi_add(adapter->netdev, &q_vector->napi,
iavf_napi_poll, NAPI_POLL_WEIGHT);
}
return 0;
}
/**
* iavf_free_q_vectors - Free memory allocated for interrupt vectors
* @adapter: board private structure to initialize
*
* This function frees the memory allocated to the q_vectors. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void iavf_free_q_vectors(struct iavf_adapter *adapter)
{
int q_idx, num_q_vectors;
int napi_vectors;
if (!adapter->q_vectors)
return;
num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
napi_vectors = adapter->num_active_queues;
for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
if (q_idx < napi_vectors)
netif_napi_del(&q_vector->napi);
}
kfree(adapter->q_vectors);
adapter->q_vectors = NULL;
}
/**
* iavf_reset_interrupt_capability - Reset MSIX setup
* @adapter: board private structure
*
**/
void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
{
if (!adapter->msix_entries)
return;
pci_disable_msix(adapter->pdev);
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
}
/**
* iavf_init_interrupt_scheme - Determine if MSIX is supported and init
* @adapter: board private structure to initialize
*
**/
int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
{
int err;
err = iavf_alloc_queues(adapter);
if (err) {
dev_err(&adapter->pdev->dev,
"Unable to allocate memory for queues\n");
goto err_alloc_queues;
}
rtnl_lock();
err = iavf_set_interrupt_capability(adapter);
rtnl_unlock();
if (err) {
dev_err(&adapter->pdev->dev,
"Unable to setup interrupt capabilities\n");
goto err_set_interrupt;
}
err = iavf_alloc_q_vectors(adapter);
if (err) {
dev_err(&adapter->pdev->dev,
"Unable to allocate memory for queue vectors\n");
goto err_alloc_q_vectors;
}
#ifdef __TC_MQPRIO_MODE_MAX
/* If we've made it so far while ADQ flag being ON, then we haven't
* bailed out anywhere in middle. And ADQ isn't just enabled but actual
* resources have been allocated in the reset path.
* Now we can truly claim that ADQ is enabled.
*/
if (iavf_is_adq_enabled(adapter))
dev_info(&adapter->pdev->dev, "ADQ Enabled, %u TCs created",
adapter->num_tc);
#endif /* __TC_MQPRIO_MODE_MAX */
dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
(adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
adapter->num_active_queues);
return 0;
err_alloc_q_vectors:
iavf_reset_interrupt_capability(adapter);
err_set_interrupt:
iavf_free_queues(adapter);
err_alloc_queues:
return err;
}
/**
* iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
static int iavf_config_rss_aq(struct iavf_adapter *adapter)
{
struct iavf_aqc_get_set_rss_key_data *rss_key =
(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
struct iavf_hw *hw = &adapter->hw;
int ret = 0;
if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
/* bail because we already have a command pending */
dev_err(&adapter->pdev->dev,
"Cannot configure RSS, command %d pending\n",
adapter->current_op);
return -EBUSY;
}
ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
if (ret) {
dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
iavf_stat_str(hw, ret),
iavf_aq_str(hw, hw->aq.asq_last_status));
return ret;
}
ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
adapter->rss_lut, adapter->rss_lut_size);
if (ret) {
dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
iavf_stat_str(hw, ret),
iavf_aq_str(hw, hw->aq.asq_last_status));
}
return ret;
}
/**
* iavf_config_rss_reg - Configure RSS keys and lut by writing registers
* @adapter: board private structure
*
* Returns 0 on success, negative on failure
**/
static int iavf_config_rss_reg(struct iavf_adapter *adapter)
{
struct iavf_hw *hw = &adapter->hw;
u32 *dw;
u16 i;
dw = (u32 *)adapter->rss_key;
for (i = 0; i <= adapter->rss_key_size / 4; i++)
wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
dw = (u32 *)adapter->rss_lut;
for (i = 0; i <= adapter->rss_lut_size / 4; i++)
wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
iavf_flush(hw);
return 0;
}
/**
* iavf_config_rss - Configure RSS keys and lut
* @adapter: board private structure
*
* Returns 0 on success, negative on failure
**/
int iavf_config_rss(struct iavf_adapter *adapter)
{
if (RSS_PF(adapter)) {
adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
IAVF_FLAG_AQ_SET_RSS_KEY;
return 0;
} else if (RSS_AQ(adapter)) {
return iavf_config_rss_aq(adapter);
} else {
return iavf_config_rss_reg(adapter);
}
}
/**
* iavf_fill_rss_lut - Fill the lut with default values
* @adapter: board private structure
**/
static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
{
u16 i;
for (i = 0; i < adapter->rss_lut_size; i++)
adapter->rss_lut[i] = i % adapter->num_active_queues;
}
/**
* iavf_init_rss - Prepare for RSS
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
static int iavf_init_rss(struct iavf_adapter *adapter)
{
struct iavf_hw *hw = &adapter->hw;
int ret;
if (!RSS_PF(adapter)) {
/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
if (adapter->vf_res->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
else
adapter->hena = IAVF_DEFAULT_RSS_HENA;
wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
}
iavf_fill_rss_lut(adapter);
netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
ret = iavf_config_rss(adapter);
return ret;
}
/**
* iavf_free_rss - Free memory used by RSS structs
* @adapter: board private structure
**/
static void iavf_free_rss(struct iavf_adapter *adapter)
{
kfree(adapter->rss_key);
adapter->rss_key = NULL;
kfree(adapter->rss_lut);
adapter->rss_lut = NULL;
}
/**
* iavf_reinit_interrupt_scheme - Reallocate queues and vectors
* @adapter: board private structure
*
* Returns 0 on success, negative on failure
**/
static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err;
if (!test_bit(__IAVF_VSI_DOWN, adapter->vsi.state))
iavf_free_traffic_irqs(adapter);
iavf_free_misc_irq(adapter);
iavf_reset_interrupt_capability(adapter);
iavf_free_q_vectors(adapter);
iavf_free_queues(adapter);
err = iavf_init_interrupt_scheme(adapter);
if (err)
goto err;
netif_tx_stop_all_queues(netdev);
err = iavf_request_misc_irq(adapter);
if (err)
goto err;
set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
iavf_map_rings_to_vectors(adapter);
err:
return err;
}
/**
* iavf_set_vlan_offload_features - set VLAN offload configuration
* @adapter: board private structure
* @prev_features: previous features used for comparison
* @features: updated features used for configuration
*
* Set the aq_required bit(s) based on the requested features passed in to
* configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
* the watchdog if any changes are requested to expedite the request via
* virtchnl.
*/
#ifdef HAVE_RHEL6_NET_DEVICE_OPS_EXT
static void
iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
u32 prev_features,
u32 features)
#else
static void
iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
netdev_features_t prev_features,
netdev_features_t features)
#endif
{
bool enable_stripping = true, enable_insertion = true;
u16 vlan_ethertype = 0;
u64 aq_required = 0;
#ifdef NETIF_F_HW_VLAN_CTAG_RX
/* keep cases separate because one ethertype for offloads can be
* disabled at the same time as another is disabled, so check for an
* enabled ethertype first, then check for disabled. Default to
* ETH_P_8021Q so an ethertype is specified if disabling insertion and
* stripping.
*/
if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
vlan_ethertype = ETH_P_8021AD;
else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
vlan_ethertype = ETH_P_8021Q;
else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
vlan_ethertype = ETH_P_8021AD;
else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
vlan_ethertype = ETH_P_8021Q;
else
vlan_ethertype = ETH_P_8021Q;
if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
enable_stripping = false;
if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
enable_insertion = false;
#else
if (features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX))
vlan_ethertype = ETH_P_8021Q;
if (prev_features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX))
vlan_ethertype = ETH_P_8021Q;
else
vlan_ethertype = ETH_P_8021Q;
if (!(features & NETIF_F_HW_VLAN_RX))
enable_stripping = false;
if (!(features & NETIF_F_HW_VLAN_TX))
enable_insertion = false;
#endif
if (VLAN_ALLOWED(adapter)) {
/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
* stripping via virtchnl. VLAN insertion can be toggled on the
* netdev, but it doesn't require a virtchnl message
*/
if (enable_stripping)
aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
else
aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
} else if (VLAN_V2_ALLOWED(adapter)) {
switch (vlan_ethertype) {
case ETH_P_8021Q:
if (enable_stripping)
aq_required |=
IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
else
aq_required |=
IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
if (enable_insertion)
aq_required |=
IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
else
aq_required |=
IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
break;
case ETH_P_8021AD:
if (enable_stripping)
aq_required |=
IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
else
aq_required |=
IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
if (enable_insertion)
aq_required |=
IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
else
aq_required |=
IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
break;
}
}
if (aq_required) {
adapter->aq_required |= aq_required;
mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
}
}
/**
* iavf_startup - first step of driver startup
* @adapter: board private structure
*
* Function process __IAVF_STARTUP driver state.
* When success the state is changed to __IAVF_INIT_VERSION_CHECK
* when fails the state is changed to __IAVF_INIT_FAILED
**/
static void iavf_startup(struct iavf_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct iavf_hw *hw = &adapter->hw;
int ret;
WARN_ON(adapter->state != __IAVF_STARTUP);
/* driver loaded, probe complete */
adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
ret = iavf_set_mac_type(hw);
if (ret) {
dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", ret);
goto err;
}
ret = iavf_check_reset_complete(hw);
if (ret) {
dev_dbg(&pdev->dev, "Device is still in reset (%d), retrying\n",
ret);
goto err;
}
hw->aq.num_arq_entries = IAVF_AQ_LEN;
hw->aq.num_asq_entries = IAVF_AQ_LEN;
hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
ret = iavf_init_adminq(hw);
if (ret) {
dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", ret);
goto err;
}
ret = iavf_send_api_ver(adapter);
if (ret) {
dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
iavf_shutdown_adminq(hw);
goto err;
}
iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
return;
err:
iavf_change_state(adapter, __IAVF_INIT_FAILED);
}
/**
* iavf_init_version_check - second step of driver startup
* @adapter: board private structure
*
* Function process __IAVF_INIT_VERSION_CHECK driver state.
* When success the state is changed to __IAVF_INIT_GET_RESOURCES
* when fails the state is changed to __IAVF_INIT_FAILED
**/
static void iavf_init_version_check(struct iavf_adapter *adapter)
{
struct iavf_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
int ret;
WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
if (!iavf_asq_done(hw)) {
dev_err(&pdev->dev, "Admin queue command never completed\n");
iavf_shutdown_adminq(hw);
iavf_change_state(adapter, __IAVF_STARTUP);
goto err;
}
/* aq msg sent, awaiting reply */
ret = iavf_verify_api_ver(adapter);
if (ret) {
if (ret == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
ret = iavf_send_api_ver(adapter);
else
dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
adapter->pf_version.major,
adapter->pf_version.minor,
VIRTCHNL_VERSION_MAJOR,
VIRTCHNL_VERSION_MINOR);
goto err;
}
ret = iavf_send_vf_config_msg(adapter);
if (ret) {
dev_err(&pdev->dev, "Unable to send config request (%d)\n",
ret);
goto err;
}
iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
return;
err:
iavf_change_state(adapter, __IAVF_INIT_FAILED);
}
/**
* iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
* @adapter: board private structure
*/
int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
{
int i, num_req_queues = adapter->num_req_queues;
struct iavf_vsi *vsi = &adapter->vsi;
for (i = 0; i < adapter->vf_res->num_vsis; i++) {
if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
adapter->vsi_res = &adapter->vf_res->vsi_res[i];
}
if (!adapter->vsi_res) {
dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
return -ENODEV;
}
if (num_req_queues &&
num_req_queues > adapter->vsi_res->num_queue_pairs) {
/* Problem. The PF gave us fewer queues than what we had
* negotiated in our request. Need a reset to see if we can't
* get back to a working state.
*/
dev_err(&adapter->pdev->dev,
"Requested %d queues, but PF only gave us %d.\n",
num_req_queues,
adapter->vsi_res->num_queue_pairs);
adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
iavf_schedule_reset(adapter);
return -EAGAIN;
}
adapter->num_req_queues = 0;
adapter->vsi.id = adapter->vsi_res->vsi_id;
adapter->vsi.back = adapter;
adapter->vsi.base_vector = 1;
adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
vsi->netdev = adapter->netdev;
vsi->qs_handle = adapter->vsi_res->qset_handle;
if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
adapter->rss_key_size = adapter->vf_res->rss_key_size;
adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
} else {
adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
}
return 0;
}
/**
* iavf_init_get_resources - third step of driver startup
* @adapter: board private structure
*
* Function process __IAVF_INIT_GET_RESOURCES driver state and
* finishes driver initialization procedure.
* When success the state is changed to __IAVF_DOWN
* when fails the state is changed to __IAVF_INIT_FAILED
**/
static void iavf_init_get_resources(struct iavf_adapter *adapter)
{
struct iavf_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
int ret;
WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
/* aq msg sent, awaiting reply */
if (!adapter->vf_res) {
adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
GFP_KERNEL);
if (!adapter->vf_res)
goto err;
}
ret = iavf_get_vf_config(adapter);
if (ret == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
ret = iavf_send_vf_config_msg(adapter);
goto err_alloc;
} else if (ret == IAVF_ERR_PARAM) {
/* We only get ERR_PARAM if the device is in a very bad
* state or if we've been disabled for previous bad
* behavior. Either way, we're done now.
*/
iavf_shutdown_adminq(hw);
dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
return;
}
if (ret) {
dev_err(&pdev->dev, "Unable to get VF config (%d)\n", ret);
goto err_alloc;
}
ret = iavf_parse_vf_resource_msg(adapter);
if (ret) {
dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
ret);
goto err_alloc;
}
/* Some features require additional messages to negotiate extended
* capabilities. These are processed in sequence by the
* __IAVF_INIT_EXTENDED_CAPS driver state.
*/
adapter->extended_caps = IAVF_EXTENDED_CAPS;
iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
return;
err_alloc:
kfree(adapter->vf_res);
adapter->vf_res = NULL;
err:
iavf_change_state(adapter, __IAVF_INIT_FAILED);
}
/**
* iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
* @adapter: board private structure
*
* Function processes send of the extended VLAN V2 capability message to the
* PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
* e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
*/
static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
{
int ret;
WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
if (ret && ret == -EOPNOTSUPP) {
/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
* we did not send the capability exchange message and do not
* expect a response.
*/
adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
}
/* We sent the message, so move on to the next step */
adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
}
/**
* iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
* @adapter: board private structure
*
* Function processes receipt of the extended VLAN V2 capability message from
* the PF.
**/
static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
{
int ret;
WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
ret = iavf_get_vf_vlan_v2_caps(adapter);
if (ret)
goto err;
/* We've processed receipt of the VLAN V2 caps message */
adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
return;
err:
/* We didn't receive a reply. Make sure we try sending again when
* __IAVF_INIT_FAILED attempts to recover.
*/
adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
iavf_change_state(adapter, __IAVF_INIT_FAILED);
}
/**
* iavf_init_send_supported_rxdids - part of querying for supported RXDID formats
* @adapter: board private structure
*
* Function processes send of the request for supported RXDIDs to the PF.
* Must clear IAVF_EXTENDED_CAP_RECV_RXDID if the message is not sent, e.g.
* due to the PF not negotiating VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC.
*/
static void iavf_init_send_supported_rxdids(struct iavf_adapter *adapter)
{
int ret;
WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_RXDID));
ret = iavf_send_vf_supported_rxdids_msg(adapter);
if (ret && ret == -EOPNOTSUPP) {
/* PF does not support VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC. In this
* case, we did not send the capability exchange message and
* do not expect a response.
*/
adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_RXDID;
}
/* We sent the message, so move on to the next step */
adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_RXDID;
}
/**
* iavf_init_recv_supported_rxdids - part of querying for supported RXDID formats
* @adapter: board private structure
*
* Function processes receipt of the supported RXDIDs message from the PF.
**/
static void iavf_init_recv_supported_rxdids(struct iavf_adapter *adapter)
{
int ret;
WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_RXDID));
memset(&adapter->supported_rxdids, 0, sizeof(adapter->supported_rxdids));
ret = iavf_get_vf_supported_rxdids(adapter);
if (ret)
goto err;
/* We've processed the PF response to the VIRTCHNL_OP_GET_SUPPORTED_RXDIDS
* message we sent previously.
*/
adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_RXDID;
return;
err:
/* We didn't receive a reply. Make sure we try sending again when
* __IAVF_INIT_FAILED attempts to recover.
*/
adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_RXDID;
iavf_change_state(adapter, __IAVF_INIT_FAILED);
}
/**
* iavf_init_send_ptp_caps - part of querying for extended PTP capabilities
* @adapter: board private structure
*
* Function processes send of the request for 1588 PTP capabilities to the PF.
* Must clear IAVF_EXTENDED_CAP_SEND_PTP if the message is not sent, e.g.
* due to the PF not negotiating VIRTCHNL_VF_PTP_CAP
*/
static void iavf_init_send_ptp_caps(struct iavf_adapter *adapter)
{
int ret;
WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_PTP));
ret = iavf_send_vf_ptp_caps_msg(adapter);
if (ret && ret == -EOPNOTSUPP) {
/* PF does not support VIRTCHNL_VF_PTP_CAP. In this case, we
* did not send the capability exchange message and do not
* expect a response.
*/
adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_PTP;
}
/* We sent the message, so move on to the next step */
adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_PTP;
}
/**
* iavf_init_recv_ptp_caps - part of querying for supported PTP capabilities
* @adapter: board private structure
*
* Function processes receipt of the PTP capabilities supported on this VF.
**/
static void iavf_init_recv_ptp_caps(struct iavf_adapter *adapter)
{
int ret;
WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_PTP));
memset(&adapter->ptp.hw_caps, 0, sizeof(adapter->ptp.hw_caps));
ret = iavf_get_vf_ptp_caps(adapter);
if (ret)
goto err;
/* We've processed the PF response to the VIRTCHNL_OP_1588_PTP_GET_CAPS
* message we sent previously.
*/
adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_PTP;
return;
err:
/* We didn't receive a reply. Make sure we try sending again when
* __IAVF_INIT_FAILED attempts to recover.
*/
adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_PTP;
iavf_change_state(adapter, __IAVF_INIT_FAILED);
}
/**
* iavf_init_process_extended_caps - Part of driver startup
* @adapter: board private structure
*
* Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
* handles negotiating capabilities for features which require an additional
* message.
*
* Once all extended capabilities exchanges are finished, the driver will
* transition into __IAVF_INIT_CONFIG_ADAPTER.
*/
static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
{
WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
/* Process capability exchange for VLAN V2 */
if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
iavf_init_send_offload_vlan_v2_caps(adapter);
return;
} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
iavf_init_recv_offload_vlan_v2_caps(adapter);
return;
}
/* Process capability exchange for RXDID formats */
if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_RXDID) {
iavf_init_send_supported_rxdids(adapter);
return;
} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_RXDID) {
iavf_init_recv_supported_rxdids(adapter);
return;
}
/* Process capability exchange for PTP features */
if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_PTP) {
iavf_init_send_ptp_caps(adapter);
return;
} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_PTP) {
iavf_init_recv_ptp_caps(adapter);
return;
}
/* When we reach here, no further extended capabilities exchanges are
* necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
*/
iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
}
/**
* iavf_init_config_adapter - last part of driver startup
* @adapter: board private structure
*
* After all the supported capabilities are negotiated, then the
* __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
*/
static void iavf_init_config_adapter(struct iavf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
int ret;
WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
if (iavf_process_config(adapter))
goto err;
adapter->current_op = VIRTCHNL_OP_UNKNOWN;
adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
#ifndef HAVE_SWIOTLB_SKIP_CPU_SYNC
/* force legacy Rx mode if SKIP_CPU_SYNC is not supported */
adapter->flags |= IAVF_FLAG_LEGACY_RX;
#endif
netdev->netdev_ops = &iavf_netdev_ops;
#ifdef HAVE_RHEL6_NET_DEVICE_OPS_EXT
set_netdev_ops_ext(netdev, &iavf_netdev_ops_ext);
#endif
iavf_set_ethtool_ops(netdev);
netdev->watchdog_timeo = 5 * HZ;
#ifdef HAVE_NETDEVICE_MIN_MAX_MTU
/* MTU range: 68 - 9710 */
#ifdef HAVE_RHEL7_EXTENDED_MIN_MAX_MTU
netdev->extended->min_mtu = ETH_MIN_MTU;
netdev->extended->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
#else
netdev->min_mtu = ETH_MIN_MTU;
netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
#endif /* HAVE_RHEL7_EXTENDED_MIN_MAX_MTU */
#endif /* HAVE_NETDEVICE_MIN_MAX_NTU */
if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
adapter->hw.mac.addr);
eth_hw_addr_random(netdev);
ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
} else {
ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
}
adapter->tx_desc_count = IAVF_DEFAULT_TXD;
adapter->rx_desc_count = IAVF_DEFAULT_RXD;
ret = iavf_init_interrupt_scheme(adapter);
if (ret)
goto err_sw_init;
iavf_map_rings_to_vectors(adapter);
if (adapter->vf_res->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
ret = iavf_request_misc_irq(adapter);
if (ret)
goto err_sw_init;
netif_carrier_off(netdev);
adapter->link_up = false;
if (!adapter->netdev_registered) {
ret = register_netdev(netdev);
if (ret)
goto err_register;
}
adapter->netdev_registered = true;
netif_tx_stop_all_queues(netdev);
dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
if (netdev->features & NETIF_F_GRO)
dev_info(&pdev->dev, "GRO is enabled\n");
iavf_change_state(adapter, __IAVF_DOWN);
set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
iavf_misc_irq_enable(adapter);
wake_up(&adapter->down_waitqueue);
adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
if (!adapter->rss_key || !adapter->rss_lut)
goto err_mem;
if (RSS_AQ(adapter))
adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
else
iavf_init_rss(adapter);
/* request initial VLAN offload settings */
iavf_set_vlan_offload_features(adapter, 0, netdev->features);
/* Setup initial PTP configuration */
iavf_ptp_init(adapter);
return;
err_mem:
iavf_free_rss(adapter);
err_register:
iavf_free_misc_irq(adapter);
err_sw_init:
iavf_reset_interrupt_capability(adapter);
err:
iavf_change_state(adapter, __IAVF_INIT_FAILED);
}
/**
* iavf_process_aq_command - process aq_required flags
* and sends aq command
* @adapter: pointer to iavf adapter structure
*
* Returns 0 on success
* Returns error code if no command was sent
* or error code if the command failed.
**/
static int iavf_process_aq_command(struct iavf_adapter *adapter)
{
if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
return iavf_send_vf_config_msg(adapter);
if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
return iavf_send_vf_offload_vlan_v2_msg(adapter);
if (adapter->aq_required & IAVF_FLAG_AQ_GET_SUPPORTED_RXDIDS)
return iavf_send_vf_supported_rxdids_msg(adapter);
if (adapter->aq_required & IAVF_FLAG_AQ_GET_PTP_CAPS)
return iavf_send_vf_ptp_caps_msg(adapter);
if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
iavf_disable_queues(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
iavf_map_queues(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
iavf_add_ether_addrs(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
iavf_add_vlans(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
iavf_del_ether_addrs(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
iavf_del_vlans(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
iavf_enable_vlan_stripping(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
iavf_disable_vlan_stripping(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
iavf_configure_queues(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
iavf_enable_queues(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
/* This message goes straight to the firmware, not the
* PF, so we don't have to set current_op as we will
* not get a response through the ARQ.
*/
adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
return iavf_init_rss(adapter);
}
if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
iavf_get_hena(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
iavf_set_hena(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
iavf_set_rss_key(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
iavf_set_rss_lut(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
iavf_set_promiscuous(adapter);
return 0;
}
#ifdef __TC_MQPRIO_MODE_MAX
if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
iavf_enable_channels(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
iavf_disable_channels(adapter);
return 0;
}
#endif /* __TC_MQPRIO_MODE_MAX */
if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
iavf_del_cloud_filter(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
iavf_add_cloud_filter(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_SEND_PTP_CMD) {
iavf_virtchnl_send_ptp_cmd(adapter);
return 0;
}
/* since only one operation is processed at a time, always keep stats
* requests at the lowest priority so all other operations get processed
* first
*/
if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
iavf_request_stats(adapter);
return 0;
}
return -EAGAIN;
}
/**
* iavf_send_reset_request - prepare driver and send reset request
* @adapter: pointer to iavf_adapter
*
* During reset we need to shut down and reinitialize the admin queue
* before we can use it to communicate with the PF again. We also clear
* and reinit the rings because that context is lost as well.
**/
static void iavf_send_reset_request(struct iavf_adapter *adapter)
{
struct iavf_hw *hw = &adapter->hw;
iavf_misc_irq_disable(adapter);
adapter->flags &= ~IAVF_FLAG_QUEUES_ENABLED;
/* Restart the AQ here. If we have been reset but didn't
* detect it, or if the PF had to reinit, our AQ will be hosed.
*/
iavf_shutdown_adminq(hw);
iavf_init_adminq(hw);
iavf_misc_irq_enable(adapter);
if (!iavf_request_reset(adapter))
adapter->flags |= IAVF_FLAG_RESET_PENDING;
}
/**
* iavf_set_flags_reset_detected - set flags for handling reset
* @adapter: pointer to iavf_adapter
*
* Set IAVF_FLAG_RESET_DETECTED flag and IAVF_FLAG_RESET_PENDING flags to handle
* reset without sending reset request to PF in iavf_watchdog_task() via
* iavf_send_reset_request().
**/
static void iavf_set_flags_reset_detected(struct iavf_adapter *adapter)
{
adapter->flags &= ~IAVF_FLAG_QUEUES_ENABLED;
adapter->flags |= IAVF_FLAG_RESET_DETECTED;
adapter->flags |= IAVF_FLAG_RESET_PENDING;
}
/**
* iavf_watchdog_task - Periodic call-back task
* @work: pointer to work_struct
**/
static void iavf_watchdog_task(struct work_struct *work)
{
struct iavf_adapter *adapter = container_of(work,
struct iavf_adapter,
watchdog_task.work);
struct iavf_hw *hw = &adapter->hw;
u32 reg_val;
/* If the driver is in the process of being removed then don't run or
* reschedule the watchdog task.
*/
if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
return;
if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
goto restart_watchdog;
if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
iavf_change_state(adapter, __IAVF_COMM_FAILED);
/* IAVF_FLAG_RESET_NEEDED is set in iavf_schedule_reset() */
if (adapter->flags & IAVF_FLAG_RESET_NEEDED &&
adapter->state != __IAVF_RESETTING) {
adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
iavf_change_state(adapter, __IAVF_RESETTING);
adapter->aq_required = 0;
adapter->current_op = VIRTCHNL_OP_UNKNOWN;
}
switch (adapter->state) {
case __IAVF_STARTUP:
iavf_startup(adapter);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
queue_delayed_work(iavf_wq, &adapter->watchdog_task,
msecs_to_jiffies(30));
return;
case __IAVF_INIT_VERSION_CHECK:
iavf_init_version_check(adapter);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
queue_delayed_work(iavf_wq, &adapter->watchdog_task,
msecs_to_jiffies(30));
return;
case __IAVF_INIT_GET_RESOURCES:
iavf_init_get_resources(adapter);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
queue_delayed_work(iavf_wq, &adapter->watchdog_task,
msecs_to_jiffies(1));
return;
case __IAVF_INIT_EXTENDED_CAPS:
iavf_init_process_extended_caps(adapter);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
queue_delayed_work(iavf_wq, &adapter->watchdog_task,
msecs_to_jiffies(1));
return;
case __IAVF_INIT_CONFIG_ADAPTER:
iavf_init_config_adapter(adapter);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
queue_delayed_work(iavf_wq, &adapter->watchdog_task,
msecs_to_jiffies(1));
return;
case __IAVF_INIT_FAILED:
if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
dev_err(&adapter->pdev->dev,
"Failed to communicate with PF; waiting before retry\n");
adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
iavf_shutdown_adminq(hw);
clear_bit(__IAVF_IN_CRITICAL_TASK,
&adapter->crit_section);
queue_delayed_work(iavf_wq,
&adapter->watchdog_task, (5 * HZ));
return;
}
/* Try again from failed step */
iavf_change_state(adapter, adapter->last_state);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ);
return;
case __IAVF_COMM_FAILED:
reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
reg_val == VIRTCHNL_VFR_COMPLETED) {
/* A chance for redemption! */
dev_err(&adapter->pdev->dev,
"Hardware came out of reset. Attempting reinit.\n");
/* When init_task contacts the PF and
* gets everything set up again, it'll restart the
* watchdog for us. Down, boy. Sit. Stay. Woof.
*/
iavf_change_state(adapter, __IAVF_STARTUP);
adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
}
adapter->aq_required = 0;
adapter->current_op = VIRTCHNL_OP_UNKNOWN;
clear_bit(__IAVF_IN_CRITICAL_TASK,
&adapter->crit_section);
queue_delayed_work(iavf_wq,
&adapter->watchdog_task,
msecs_to_jiffies(10));
return;
case __IAVF_RESETTING:
/* Proceed with handling reset if IAVF_FLAG_RESET_PENDING has
* been set in either iavf_send_reset_request() or
* iavf_set_flags_reset_detected().
*/
if (!(adapter->flags & IAVF_FLAG_RESET_PENDING))
iavf_send_reset_request(adapter);
else
iavf_handle_reset(adapter);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
queue_delayed_work(iavf_wq, &adapter->watchdog_task,
msecs_to_jiffies(2));
return;
case __IAVF_DOWN:
case __IAVF_DOWN_PENDING:
case __IAVF_TESTING:
case __IAVF_RUNNING:
if (adapter->current_op) {
if (!iavf_asq_done(hw)) {
dev_dbg(&adapter->pdev->dev,
"Admin queue timeout\n");
iavf_send_api_ver(adapter);
}
} else {
int ret = iavf_process_aq_command(adapter);
/* An error will be returned if no commands were
* processed; use this opportunity to update stats
* if the error isn't -ENOTSUPP
*/
if (ret && ret != -EOPNOTSUPP &&
adapter->state == __IAVF_RUNNING)
iavf_request_stats(adapter);
}
if (adapter->state == __IAVF_RUNNING) {
iavf_detect_recover_hung(&adapter->vsi);
iavf_chnl_detect_recover(&adapter->vsi);
}
#ifndef HAVE_PTP_CLOCK_DO_AUX_WORK
#if IS_ENABLED(CONFIG_PTP_1588_CLOCK)
if (adapter->ptp.initialized)
iavf_ptp_do_aux_work(&adapter->ptp.info);
#endif
#endif
break;
case __IAVF_REMOVE:
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
return;
default:
break;
}
/* check for hw reset */
if (iavf_is_reset(hw)) {
iavf_set_flags_reset_detected(adapter);
iavf_schedule_reset(adapter);
adapter->aq_required = 0;
adapter->current_op = VIRTCHNL_OP_UNKNOWN;
dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
queue_work(iavf_wq, &adapter->watchdog_task.work);
return;
}
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
restart_watchdog:
queue_work(iavf_wq, &adapter->adminq_task);
if (adapter->aq_required)
queue_delayed_work(iavf_wq, &adapter->watchdog_task,
msecs_to_jiffies(20));
else
queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
}
/**
* iavf_disable_vf - disable a VF that failed to reset
* @adapter: private adapter structure
*
* Helper function to shut down the VF when a reset never finishes.
**/
static void iavf_disable_vf(struct iavf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct iavf_mac_filter *f, *ftmp;
struct iavf_vlan_filter *fv, *fvtmp;
struct iavf_cloud_filter *cf, *cftmp;
/* reset never finished */
adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
/* We don't use netif_running() because it may be true prior to
* ndo_open() returning, so we can't assume it means all our open
* tasks have finished, since we're not holding the rtnl_lock here.
*/
if (!test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
netif_carrier_off(netdev);
netif_tx_disable(netdev);
adapter->link_up = false;
iavf_irq_disable(adapter);
iavf_napi_disable_all(adapter);
iavf_free_traffic_irqs(adapter);
iavf_free_all_tx_resources(adapter);
iavf_free_all_rx_resources(adapter);
}
spin_lock_bh(&adapter->mac_vlan_list_lock);
/* Delete all of the filters */
list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
list) {
list_del(&f->list);
kfree(f);
}
list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list,
list) {
list_del(&fv->list);
kfree(fv);
}
spin_unlock_bh(&adapter->mac_vlan_list_lock);
spin_lock_bh(&adapter->cloud_filter_list_lock);
list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
list_del(&cf->list);
kfree(cf);
adapter->num_cloud_filters--;
}
spin_unlock_bh(&adapter->cloud_filter_list_lock);
iavf_free_misc_irq(adapter);
iavf_reset_interrupt_capability(adapter);
iavf_free_q_vectors(adapter);
iavf_free_queues(adapter);
memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
iavf_shutdown_adminq(&adapter->hw);
adapter->netdev->flags &= ~IFF_UP;
adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
adapter->state = __IAVF_DOWN;
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
iavf_change_state(adapter, __IAVF_DOWN);
wake_up(&adapter->down_waitqueue);
dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
}
/**
* iavf_is_reset_detected - check if reset has been detected
* @adapter: pointer to iavf_adapter
*
* IAVF_FLAG_RESET_DETECTED is set if a HW reset is detected in
* iavf_watchdog_task() and cleared here, else poll for reset.
*/
static bool iavf_is_reset_detected(struct iavf_adapter *adapter)
{
struct iavf_hw *hw = &adapter->hw;
int i;
if (adapter->flags & IAVF_FLAG_RESET_DETECTED) {
adapter->flags &= ~IAVF_FLAG_RESET_DETECTED;
return true;
}
/* poll until we see the reset actually happen */
for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
if (iavf_is_reset(hw))
return true;
usleep_range(5000, 10000);
}
return false;
}
/**
* iavf_handle_reset - Handle hardware reset
* @adapter: pointer to iavf_adapter
*
* During reset we need to shut down and reinitialize the admin queue
* before we can use it to communicate with the PF again. We also clear
* and reinit the rings because that context is lost as well.
*
* This function is called in the __IAVF_RESETTING driver state. If a reset
* is detected and completes, the driver state changed to __IAVF_RUNNING or
* __IAVF_DOWN, else driver state will remain in __IAVF_RESETTING.
*
* The function is called with the IAVF_FLAG_RESET_PENDING flag set and it is
* cleared when a reset is detected and completes.
**/
static void iavf_handle_reset(struct iavf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct iavf_hw *hw = &adapter->hw;
int i = 0, err;
bool running;
u32 reg_val;
if (!iavf_is_reset_detected(adapter)) {
/* Driver state remains __IAVF_RESETTING and flags are not
* cleared, so iavf_watchdog_task() will call again.
*/
dev_info(&adapter->pdev->dev, "Never saw reset\n");
return;
}
/* wait until the reset is complete and the PF is responding to us */
for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
/* sleep first to make sure a minimum wait time is met */
msleep(IAVF_RESET_WAIT_MS);
reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
if (reg_val == VIRTCHNL_VFR_VFACTIVE)
break;
}
pci_set_master(adapter->pdev);
pci_restore_msi_state(adapter->pdev);
if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
reg_val);
iavf_disable_vf(adapter);
return;
}
iavf_misc_irq_disable(adapter);
iavf_irq_disable(adapter);
/* We don't use netif_running() because it may be true prior to
* ndo_open() returning, so we can't assume it means all our open
* tasks have finished, since we're not holding the rtnl_lock here.
*/
running = (adapter->last_state == __IAVF_RUNNING);
if (running) {
netdev->flags &= ~IFF_UP;
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
adapter->link_up = false;
iavf_napi_disable_all(adapter);
}
adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
/* free the Tx/Rx rings and descriptors, might be better to just
* re-use them sometime in the future
*/
iavf_free_all_rx_resources(adapter);
iavf_free_all_tx_resources(adapter);
/* Set the queues_disabled flag when VF is going through reset
* to avoid a race condition especially for ADQ i.e. when a VF ADQ is
* configured, PF resets the VF to allocate ADQ resources. When this
* happens there's a possibility to hit a condition where VF is in
* running state but the queues haven't been enabled yet. So wait for
* virtchnl success message for enable queues and then unset this flag.
* Don't allow the link to come back up until that happens.
*/
adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
/* kill and reinit the admin queue */
iavf_shutdown_adminq(hw);
adapter->current_op = VIRTCHNL_OP_UNKNOWN;
err = iavf_init_adminq(hw);
if (err)
dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
err);
adapter->aq_required = 0;
if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
(adapter->flags & IAVF_FLAG_REINIT_CHNL_NEEDED) ||
(adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
err = iavf_reinit_interrupt_scheme(adapter);
if (err)
goto reset_err;
}
if (RSS_AQ(adapter)) {
adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
} else {
err = iavf_init_rss(adapter);
if (err)
goto reset_err;
}
adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
/* Certain capabilities require an extended negotiation process using
* extra messages that must be processed after getting the VF
* configuration. The related checks such as VLAN_V2_ALLOWED() are not
* reliable here, since the configuration has not yet been negotiated.
*
* Always set these flags, since them related VIRTCHNL messages won't
* be sent until after VIRTCHNL_OP_GET_VF_RESOURCES.
*/
adapter->aq_required |= IAVF_FLAG_AQ_EXTENDED_CAPS;
iavf_misc_irq_enable(adapter);
/* We were running when the reset started, so we need to restore some
* state here.
*/
if (running) {
/* allocate transmit descriptors */
err = iavf_setup_all_tx_resources(adapter);
if (err)
goto reset_err;
/* allocate receive descriptors */
err = iavf_setup_all_rx_resources(adapter);
if (err)
goto reset_err;
if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
(adapter->flags & IAVF_FLAG_REINIT_CHNL_NEEDED) ||
(adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
err = iavf_request_traffic_irqs(adapter, netdev->name);
if (err)
goto reset_err;
adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
}
iavf_configure(adapter);
/* iavf_up_complete() will switch device back
* to __IAVF_RUNNING
*/
iavf_up_complete(adapter);
netdev->flags |= IFF_UP;
} else {
iavf_change_state(adapter, __IAVF_DOWN);
wake_up(&adapter->down_waitqueue);
}
adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
adapter->flags &= ~IAVF_FLAG_REINIT_CHNL_NEEDED;
return;
reset_err:
if (running) {
iavf_change_state(adapter, __IAVF_RUNNING);
netdev->flags |= IFF_UP;
}
dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
iavf_close(netdev);
}
/**
* iavf_adminq_task - worker thread to clean the admin queue
* @work: pointer to work_struct containing our data
**/
static void iavf_adminq_task(struct work_struct *work)
{
struct iavf_adapter *adapter =
container_of(work, struct iavf_adapter, adminq_task);
struct iavf_hw *hw = &adapter->hw;
struct iavf_arq_event_info event;
enum virtchnl_ops v_op;
enum iavf_status ret, v_ret;
u32 val, oldval;
u16 pending;
/* If the driver is in the process of being removed then return
* immediately and don't re-enable the Admin Queue interrupt.
*/
if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
return;
if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
goto out;
event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
if (!event.msg_buf)
goto out;
do {
ret = iavf_clean_arq_element(hw, &event, &pending);
v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
if (ret || !v_op)
break; /* No event to process or error cleaning ARQ */
while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
&adapter->crit_section))
usleep_range(500, 1000);
iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
event.msg_len);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
if (pending != 0)
memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
} while (pending);
if ((adapter->flags &
(IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
adapter->state == __IAVF_RESETTING)
goto freedom;
/* check for error indications */
val = rd32(hw, hw->aq.arq.len);
if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
goto freedom;
oldval = val;
if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
}
if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
}
if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
}
if (oldval != val)
wr32(hw, hw->aq.arq.len, val);
val = rd32(hw, hw->aq.asq.len);
oldval = val;
if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
}
if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
}
if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
}
if (oldval != val)
wr32(hw, hw->aq.asq.len, val);
freedom:
kfree(event.msg_buf);
out:
/* re-enable Admin queue interrupt cause */
iavf_misc_irq_enable(adapter);
}
/**
* iavf_free_all_tx_resources - Free Tx Resources for All Queues
* @adapter: board private structure
*
* Free all transmit software resources
**/
void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
{
int i;
if (!adapter->tx_rings)
return;
for (i = 0; i < adapter->num_active_queues; i++)
if (adapter->tx_rings[i].desc)
iavf_free_tx_resources(&adapter->tx_rings[i]);
}
/**
* iavf_setup_all_tx_resources - allocate all queues Tx resources
* @adapter: board private structure
*
* If this function returns with an error, then it's possible one or
* more of the rings is populated (while the rest are not). It is the
* callers duty to clean those orphaned rings.
*
* Return 0 on success, negative on failure
**/
static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
{
int i, err = 0;
for (i = 0; i < adapter->num_active_queues; i++) {
adapter->tx_rings[i].count = adapter->tx_desc_count;
err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
if (!err)
continue;
dev_err(&adapter->pdev->dev,
"Allocation for Tx Queue %u failed\n", i);
break;
}
return err;
}
/**
* iavf_setup_all_rx_resources - allocate all queues Rx resources
* @adapter: board private structure
*
* If this function returns with an error, then it's possible one or
* more of the rings is populated (while the rest are not). It is the
* callers duty to clean those orphaned rings.
*
* Return 0 on success, negative on failure
**/
static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
{
int i, err = 0;
for (i = 0; i < adapter->num_active_queues; i++) {
adapter->rx_rings[i].count = adapter->rx_desc_count;
err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
if (!err)
continue;
dev_err(&adapter->pdev->dev,
"Allocation for Rx Queue %u failed\n", i);
break;
}
return err;
}
/**
* iavf_free_all_rx_resources - Free Rx Resources for All Queues
* @adapter: board private structure
*
* Free all receive software resources
**/
void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
{
int i;
if (!adapter->rx_rings)
return;
for (i = 0; i < adapter->num_active_queues; i++)
if (adapter->rx_rings[i].desc)
iavf_free_rx_resources(&adapter->rx_rings[i]);
}
#ifdef HAVE_SETUP_TC
#ifdef HAVE_NDO_SETUP_TC_REMOVE_TC_TO_NETDEV
#ifdef __TC_MQPRIO_MODE_MAX
/**
* iavf_validate_tx_bandwidth - validate the max Tx bandwidth
* @adapter: board private structure
* @max_tx_rate: max Tx bw for a tc
**/
static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
u64 max_tx_rate)
{
int speed = 0, ret = 0;
#ifdef VIRTCHNL_VF_CAP_ADV_LINK_SPEED
if (ADV_LINK_SUPPORT(adapter)) {
if (adapter->link_speed_mbps < U32_MAX) {
speed = adapter->link_speed_mbps;
goto validate_bw;
} else {
dev_err(&adapter->pdev->dev, "Unknown link speed\n");
return -EINVAL;
}
}
#endif /* VIRTCHNL_VF_CAP_ADV_LINK_SPEED */
switch (adapter->link_speed) {
case VIRTCHNL_LINK_SPEED_40GB:
speed = SPEED_40000;
break;
case VIRTCHNL_LINK_SPEED_25GB:
speed = SPEED_25000;
break;
case VIRTCHNL_LINK_SPEED_20GB:
speed = SPEED_20000;
break;
case VIRTCHNL_LINK_SPEED_10GB:
speed = SPEED_10000;
break;
case VIRTCHNL_LINK_SPEED_5GB:
speed = SPEED_5000;
break;
case VIRTCHNL_LINK_SPEED_2_5GB:
speed = SPEED_2500;
break;
case VIRTCHNL_LINK_SPEED_1GB:
speed = SPEED_1000;
break;
case VIRTCHNL_LINK_SPEED_100MB:
speed = SPEED_100;
break;
default:
break;
}
#ifdef VIRTCHNL_VF_CAP_ADV_LINK_SPEED
validate_bw:
#endif /* VIRTCHNL_VF_CAP_ADV_LINK_SPEED */
if (max_tx_rate > speed) {
dev_err(&adapter->pdev->dev, "Invalid tx rate specified\n");
ret = -EINVAL;
}
return ret;
}
/**
* iavf_validate_ch_config - validate queue mapping info
* @adapter: board private structure
* @mqprio_qopt: queue parameters
* @max_tc_allowed: MAX TC allowed, it could be 4 or 16 depends.
*
* This function validates if the config provided by the user to
* configure queue channels is valid or not. Returns 0 on a valid
* config.
**/
static int iavf_validate_ch_config(struct iavf_adapter *adapter,
struct tc_mqprio_qopt_offload *mqprio_qopt,
u8 max_tc_allowed)
{
u32 tc, qcount, non_power_2_qcount = 0;
u64 total_max_rate = 0;
int i, num_qps = 0;
u64 tx_rate = 0;
if (mqprio_qopt->qopt.num_tc > max_tc_allowed ||
mqprio_qopt->qopt.num_tc < 1)
return -EINVAL;
/* for ADQ there are few rules on queue allocation for each TC
* 1. Number of queues for TC0 should always be a power of 2
* 2. Number of queues for rest of TCs can be non-power of 2
* 3. If the previous TC has non-power of 2 queues, then all the
* following TCs should be either
* a. same number of queues as that of the previous non-power
* of 2 or
* b. less than previous non-power of 2 and power of 2
* ex: 1@0 2@1 3@3 4@6 - Invalid
* 1@0 2@1 3@3 3@6 - Valid
* 1@0 2@1 3@3 2@6 - Valid
* 1@0 2@1 3@3 1@6 - Valid
*/
for (tc = 0; tc < mqprio_qopt->qopt.num_tc; tc++) {
qcount = mqprio_qopt->qopt.count[tc];
/* case 1. check for first TC to be always power of 2 in ADQ */
if (!tc && !is_power_of_2(qcount)) {
dev_err(&adapter->pdev->dev,
"TC0:qcount[%d] must be a power of 2\n",
qcount);
return -EINVAL;
}
/* case 2 & 3, check for non-power of 2 number of queues */
if (tc && non_power_2_qcount) {
if (qcount > non_power_2_qcount) {
dev_err(&adapter->pdev->dev,
"TC%d has %d qcount cannot be > non_power_of_2 qcount [%d]\n",
tc, qcount, non_power_2_qcount);
return -EINVAL;
} else if (qcount < non_power_2_qcount) {
/* it must be power of 2, otherwise fail */
if (!is_power_of_2(qcount)) {
dev_err(&adapter->pdev->dev,
"TC%d has %d qcount must be a power of 2 < non_power_of_2 qcount [%d]\n",
tc, qcount, non_power_2_qcount);
return -EINVAL;
}
}
} else if (tc && !is_power_of_2(qcount)) {
/* this is the first TC to have a non-power of 2 queue
* count and the code is going to enter this section
* only once. The qcount for this TC will serve as
* our reference/guide to allocate number of queues
* for all the further TCs as per section a. and b. in
* case 3 mentioned above.
*/
non_power_2_qcount = qcount;
dev_dbg(&adapter->pdev->dev,
"TC%d:count[%d] non power of 2\n", tc,
qcount);
}
}
for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
if (!mqprio_qopt->qopt.count[i] ||
mqprio_qopt->qopt.offset[i] != num_qps)
return -EINVAL;
if (mqprio_qopt->min_rate[i]) {
dev_err(&adapter->pdev->dev,
"Invalid min tx rate (greater than 0) specified\n");
return -EINVAL;
}
/*convert to Mbps */
tx_rate = div_u64(mqprio_qopt->max_rate[i],
IAVF_MBPS_DIVISOR);
total_max_rate += tx_rate;
num_qps += mqprio_qopt->qopt.count[i];
}
if (num_qps > adapter->num_active_queues) {
dev_err(&adapter->pdev->dev,
"Cannot support requested number of queues\n");
return -EINVAL;
}
/* no point in validating TX bandwidth rate limit if the user hasn't
* specified any rate limit for any TCs, so validate only if it's set.
*/
if (total_max_rate)
return iavf_validate_tx_bandwidth(adapter, total_max_rate);
else
return 0;
}
/**
* iavf_del_all_cloud_filters - delete all cloud filters
* on the traffic classes
* @adapter: board private structure
*
* This function will loop through the list of cloud filters and
* deletes them.
**/
static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
{
struct iavf_cloud_filter *cf, *cftmp;
spin_lock_bh(&adapter->cloud_filter_list_lock);
list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
list) {
list_del(&cf->list);
kfree(cf);
adapter->num_cloud_filters--;
}
spin_unlock_bh(&adapter->cloud_filter_list_lock);
}
/**
*__iavf_setup_tc - configure multiple traffic classes
* @netdev: network interface device structure
* @type_data: tc offload data
*
* This function processes the config information provided by the
* user to configure traffic classes/queue channels and packages the
* information to request the PF to setup traffic classes.
*
* Returns 0 on success.
**/
static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
{
struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
struct iavf_adapter *adapter = netdev_priv(netdev);
u8 num_tc = 0, total_qps = 0;
int ret = 0, netdev_tc = 0;
u8 max_tc_allowed;
u64 max_tx_rate;
u16 mode;
int i;
num_tc = mqprio_qopt->qopt.num_tc;
mode = mqprio_qopt->mode;
/* delete queue_channel */
if (!mqprio_qopt->qopt.hw) {
if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
/* reset the tc configuration */
netdev_reset_tc(netdev);
adapter->num_tc = 0;
netif_tx_stop_all_queues(netdev);
netif_tx_disable(netdev);
iavf_del_all_cloud_filters(adapter);
adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
goto exit;
} else {
return -EINVAL;
}
}
/* add queue channel */
if (mode == TC_MQPRIO_MODE_CHANNEL) {
if (!ADQ_ALLOWED(adapter)) {
dev_err(&adapter->pdev->dev, "ADQ not supported\n");
return -EOPNOTSUPP;
}
if (adapter->ch_config.state != __IAVF_TC_INVALID) {
dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
return -EINVAL;
}
/* if negotiated capability between VF and PF indicated that
* ADQ_V2 is enabled, means it's OK to allow max_tc
* to be 16. This is needed to handle the case where iAVF
* is newer but PF is older or different generation
*/
if (ADQ_V2_ALLOWED(adapter))
max_tc_allowed = VIRTCHNL_MAX_ADQ_V2_CHANNELS;
else
max_tc_allowed = VIRTCHNL_MAX_ADQ_CHANNELS;
ret = iavf_validate_ch_config(adapter, mqprio_qopt,
max_tc_allowed);
if (ret)
return ret;
/* Return if same TC config is requested */
if (adapter->num_tc == num_tc)
return 0;
adapter->num_tc = num_tc;
for (i = 0; i < max_tc_allowed; i++) {
if (i < num_tc) {
adapter->ch_config.ch_info[i].count =
mqprio_qopt->qopt.count[i];
adapter->ch_config.ch_info[i].offset =
mqprio_qopt->qopt.offset[i];
total_qps += mqprio_qopt->qopt.count[i];
max_tx_rate = mqprio_qopt->max_rate[i];
/* convert to Mbps */
max_tx_rate = div_u64(max_tx_rate,
IAVF_MBPS_DIVISOR);
adapter->ch_config.ch_info[i].max_tx_rate =
max_tx_rate;
adapter->ch_config.ch_ex_info[i].num_rxq =
mqprio_qopt->qopt.count[i];
adapter->ch_config.ch_ex_info[i].base_q =
mqprio_qopt->qopt.offset[i];
} else {
adapter->ch_config.ch_info[i].count = 1;
adapter->ch_config.ch_info[i].offset = 0;
}
}
/* Take snapshot of original config such as "num_active_queues"
* It is used later when delete ADQ flow is exercised, so that
* once delete ADQ flow completes, VF shall go back to its
* original queue configuration
*/
adapter->orig_num_active_queues = adapter->num_active_queues;
/* Store queue infor based on TC so that, VF gets configured
* with correct number of queues when VF completes ADQ config
* flow
*/
adapter->ch_config.total_qps = total_qps;
netif_tx_stop_all_queues(netdev);
netif_tx_disable(netdev);
adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
netdev_reset_tc(netdev);
/* Report the tc mapping up the stack */
netdev_set_num_tc(adapter->netdev, num_tc);
for (i = 0; i < max_tc_allowed; i++) {
u16 qcount = mqprio_qopt->qopt.count[i];
u16 qoffset = mqprio_qopt->qopt.offset[i];
if (i < num_tc)
netdev_set_tc_queue(netdev, netdev_tc++, qcount,
qoffset);
}
}
exit:
return ret;
}
/**
* iavf_is_vlan_tc_filter_allowed - allowed to add tc-filter using VLAN
* @adapter: board private structure
* @vlan: VLAN to verify
*
* Using specified "vlan" ID, there must be active VLAN filter in VF's
* MAC-VLAN filter list.
*/
static bool
iavf_is_vlan_tc_filter_allowed(struct iavf_adapter *adapter, u16 vlan)
{
struct iavf_vlan_filter *f;
bool allowed;
spin_lock_bh(&adapter->mac_vlan_list_lock);
f = iavf_find_vlan(adapter, IAVF_VLAN(vlan, ETH_P_8021Q));
allowed = (f && !f->add && !f->remove);
spin_unlock_bh(&adapter->mac_vlan_list_lock);
return allowed;
}
/**
* iavf_is_mac_tc_filter_allowed - allowed to add tc-filter using MAC addr
* @adapter: board private structure
* @macaddr: MAC address
*
* Using specified MAC address, there must be active MAC filter in VF's
* MAC-VLAN filter list.
*/
static bool
iavf_is_mac_tc_filter_allowed(struct iavf_adapter *adapter, const u8 *macaddr)
{
struct iavf_mac_filter *f;
bool allowed;
spin_lock_bh(&adapter->mac_vlan_list_lock);
f = iavf_find_filter(adapter, macaddr);
allowed = (f && !f->add && !f->is_new_mac && !f->remove);
spin_unlock_bh(&adapter->mac_vlan_list_lock);
return allowed;
}
/**
* iavf_parse_cls_flower - Parse tc flower filters provided by kernel
* @adapter: board private structure
* @f: pointer to struct flow_cls_offload
* @filter: pointer to cloud filter structure
*/
static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
struct flow_cls_offload *f,
struct iavf_cloud_filter *filter)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(f);
struct flow_dissector *dissector = rule->match.dissector;
struct virtchnl_l4_spec *d_spec, *m_spec;
struct virtchnl_filter *cf = &filter->f;
enum virtchnl_flow_type flow_type;
u16 n_proto_mask = 0;
u16 n_proto_key = 0;
u8 field_flags = 0;
u16 addr_type = 0;
u16 n_proto = 0;
u8 ip_proto = 0;
int i = 0;
if (dissector->used_keys &
~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
BIT(FLOW_DISSECTOR_KEY_BASIC) |
BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_VLAN) |
BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
#ifdef HAVE_TC_FLOWER_ENC
BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) |
#endif /* HAVE_TC_FLOWER_ENC */
BIT(FLOW_DISSECTOR_KEY_PORTS))) {
dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
dissector->used_keys);
return -EOPNOTSUPP;
}
#ifdef HAVE_TC_FLOWER_ENC
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
struct flow_match_enc_keyid match;
flow_rule_match_enc_keyid(rule, &match);
if (match.mask->keyid != 0)
field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
}
#endif /* HAVE_TC_FLOWER_ENC */
/* even though following code refers as "tcp_sec", it is not
* just for TCP but a generic struct representing
* L2, L3 + L4 fields if specified
*/
m_spec = &cf->mask.tcp_spec;
d_spec = &cf->data.tcp_spec;
/* determine flow type, TCP/UDP_V4[6]_FLOW based on
* L2 proto (aka ETH proto) and L3 proto (aka IP_PROTO)
*/
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_match_basic match;
flow_rule_match_basic(rule, &match);
n_proto_key = ntohs(match.key->n_proto);
n_proto_mask = ntohs(match.mask->n_proto);
if (n_proto_key == ETH_P_ALL) {
n_proto_key = 0;
n_proto_mask = 0;
}
n_proto = n_proto_key & n_proto_mask;
if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
return -EINVAL;
if (iavf_is_adq_v2_enabled(adapter)) {
if (match.key->ip_proto != IPPROTO_TCP &&
match.key->ip_proto != IPPROTO_UDP) {
dev_err(&adapter->pdev->dev,
"Only TCP or UDP transport is supported\n");
return -EINVAL;
}
} else if (match.key->ip_proto != IPPROTO_TCP) {
dev_err(&adapter->pdev->dev,
"Only TCP transport is supported\n");
return -EINVAL;
}
ip_proto = match.key->ip_proto;
/* determine VIRTCHNL flow_type based on L3 and L4 protocol */
if (n_proto == ETH_P_IP)
flow_type = (ip_proto == IPPROTO_TCP) ?
VIRTCHNL_TCP_V4_FLOW :
VIRTCHNL_UDP_V4_FLOW;
else /* means IPV6 */
flow_type = (ip_proto == IPPROTO_TCP) ?
VIRTCHNL_TCP_V6_FLOW :
VIRTCHNL_UDP_V6_FLOW;
cf->flow_type = flow_type;
filter->f.flow_type = flow_type;
}
/* process Ethernet header fields */
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
struct flow_match_eth_addrs match;
flow_rule_match_eth_addrs(rule, &match);
/* use is_broadcast and is_zero to check for all 0xf or 0 */
if (!is_zero_ether_addr(match.mask->dst)) {
if (ADQ_V2_ALLOWED(adapter) ||
is_broadcast_ether_addr(match.mask->dst)) {
field_flags |= IAVF_CLOUD_FIELD_OMAC;
} else {
dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
match.mask->dst);
return -EINVAL;
}
}
if (!is_zero_ether_addr(match.mask->src)) {
if (ADQ_V2_ALLOWED(adapter) ||
is_broadcast_ether_addr(match.mask->src)) {
field_flags |= IAVF_CLOUD_FIELD_IMAC;
} else {
dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
match.mask->src);
return -EINVAL;
}
}
if (!is_zero_ether_addr(match.key->dst)) {
if (!iavf_is_mac_tc_filter_allowed(adapter,
match.key->dst)) {
dev_err(&adapter->pdev->dev,
"Dest MAC %pM doesn't belong to this VF\n",
match.key->dst);
return -EINVAL;
}
if (is_valid_ether_addr(match.key->dst) ||
is_multicast_ether_addr(match.key->dst)) {
/* set the mask if a valid dst_mac address */
if (ADQ_V2_ALLOWED(adapter))
ether_addr_copy(m_spec->dst_mac,
match.mask->dst);
else
eth_broadcast_addr(m_spec->dst_mac);
ether_addr_copy(d_spec->dst_mac,
match.key->dst);
}
}
if (!is_zero_ether_addr(match.key->src))
if (is_valid_ether_addr(match.key->src) ||
is_multicast_ether_addr(match.key->src)) {
/* set the mask if a valid src_mac address */
if (ADQ_V2_ALLOWED(adapter))
ether_addr_copy(m_spec->src_mac,
match.mask->src);
else
eth_broadcast_addr(m_spec->src_mac);
ether_addr_copy(d_spec->src_mac,
match.key->src);
}
}
/* process VLAN header for single VLAN (type could be S/C-tag) */
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
struct flow_match_vlan match;
flow_rule_match_vlan(rule, &match);
if (match.mask->vlan_id) {
u16 vlan = match.key->vlan_id & VLAN_VID_MASK;
if (match.mask->vlan_id != VLAN_VID_MASK) {
dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
match.mask->vlan_id);
return -EINVAL;
}
if (!iavf_is_vlan_tc_filter_allowed(adapter, vlan)) {
dev_err(&adapter->pdev->dev,
"VLAN %u doesn't belong to this VF\n",
vlan);
return -EINVAL;
}
field_flags |= IAVF_CLOUD_FIELD_IVLAN;
m_spec->vlan_id = cpu_to_be16(match.mask->vlan_id);
d_spec->vlan_id = cpu_to_be16(match.key->vlan_id);
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
struct flow_match_control match;
flow_rule_match_control(rule, &match);
addr_type = match.key->addr_type;
}
/* process IPv4 header */
if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
struct flow_match_ipv4_addrs match;
flow_rule_match_ipv4_addrs(rule, &match);
if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
dev_info(&adapter->pdev->dev,
"Tenant id not allowed for ip filter\n");
return -EINVAL;
}
if (match.mask->dst) {
if (ADQ_V2_ALLOWED(adapter) ||
match.mask->dst == cpu_to_be32(0xffffffff)) {
field_flags |= IAVF_CLOUD_FIELD_IIP;
} else {
dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
be32_to_cpu(match.mask->dst));
return -EINVAL;
}
}
if (match.mask->src) {
if (ADQ_V2_ALLOWED(adapter) ||
match.mask->src == cpu_to_be32(0xffffffff)) {
field_flags |= IAVF_CLOUD_FIELD_IIP;
} else {
dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
be32_to_cpu(match.mask->dst));
return -EINVAL;
}
}
if (match.key->dst) {
if (ADQ_V2_ALLOWED(adapter))
m_spec->dst_ip[0] = match.mask->dst;
else
m_spec->dst_ip[0] = cpu_to_be32(0xffffffff);
d_spec->dst_ip[0] = match.key->dst;
}
if (match.key->src) {
if (ADQ_V2_ALLOWED(adapter))
m_spec->src_ip[0] = match.mask->src;
else
m_spec->src_ip[0] = cpu_to_be32(0xffffffff);
d_spec->src_ip[0] = match.key->src;
}
}
/* process IPv6 header */
if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
struct flow_match_ipv6_addrs match;
flow_rule_match_ipv6_addrs(rule, &match);
/* validate mask, make sure it is not IPV6_ADDR_ANY */
if (ipv6_addr_any(&match.mask->dst)) {
dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
IPV6_ADDR_ANY);
return -EINVAL;
}
/* src and dest IPv6 address should not be LOOPBACK
* (0:0:0:0:0:0:0:1) which can be represented as ::1
*/
if (ipv6_addr_loopback(&match.key->dst) ||
ipv6_addr_loopback(&match.key->src)) {
dev_err(&adapter->pdev->dev,
"ipv6 addr should not be loopback\n");
return -EINVAL;
}
if (!ipv6_addr_any(&match.mask->dst) ||
!ipv6_addr_any(&match.mask->src))
field_flags |= IAVF_CLOUD_FIELD_IIP;
/* copy dest IPv6 mask and address */
if (ADQ_V2_ALLOWED(adapter)) {
memcpy(&m_spec->dst_ip, &match.mask->dst.s6_addr32,
sizeof(m_spec->dst_ip));
} else {
for (i = 0; i < 4; i++)
m_spec->dst_ip[i] = cpu_to_be32(0xffffffff);
}
memcpy(&d_spec->dst_ip, &match.key->dst.s6_addr32,
sizeof(d_spec->dst_ip));
/* copy source IPv6 mask and address */
if (ADQ_V2_ALLOWED(adapter)) {
memcpy(&m_spec->src_ip, &match.mask->src.s6_addr32,
sizeof(m_spec->src_ip));
} else {
for (i = 0; i < 4; i++)
m_spec->src_ip[i] = cpu_to_be32(0xffffffff);
}
memcpy(&d_spec->src_ip, &match.key->src.s6_addr32,
sizeof(d_spec->src_ip));
}
/* process L4 header, supported L4 protocols are TCP and UDP */
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
struct flow_match_ports match;
flow_rule_match_ports(rule, &match);
if (match.key->dst) {
if (ADQ_V2_ALLOWED(adapter) ||
match.mask->dst == cpu_to_be16(0xffff)) {
m_spec->dst_port = match.mask->dst;
d_spec->dst_port = match.key->dst;
} else {
dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
be16_to_cpu(match.mask->dst));
return -EINVAL;
}
}
if (match.key->src) {
if (ADQ_V2_ALLOWED(adapter) ||
match.mask->src == cpu_to_be16(0xffff)) {
m_spec->src_port = match.mask->src;
d_spec->src_port = match.key->src;
} else {
dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
be16_to_cpu(match.mask->src));
return -EINVAL;
}
}
}
cf->field_flags = field_flags;
return 0;
}
/**
* iavf_handle_tclass - Forward to a traffic class on the device
* @adapter: board private structure
* @tc: traffic class index on the device
* @filter: pointer to cloud filter structure
*
* Return 0 on success, negative on failure
*/
static int iavf_handle_tclass(struct iavf_adapter *adapter, int tc,
struct iavf_cloud_filter *filter)
{
if (tc < 0)
return -EINVAL;
if (tc < adapter->num_tc && (!iavf_is_adq_v2_enabled(adapter)) &&
!filter->f.data.tcp_spec.dst_port) {
dev_err(&adapter->pdev->dev,
"Specify destination port to redirect to traffic classother than TC0\n");
return -EINVAL;
}
/* redirect to a traffic class on the same device */
filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
filter->f.action_meta = tc;
return 0;
}
/* iavf_find_cf - Find the cloud filter in the list
* @adapter: Board private structure
* @cookie: filter specific cookie
*
* Returns ptr to the filter object or NULL. Must be called while holding the
* cloud_filter_list_lock.
*/
static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
unsigned long *cookie)
{
struct iavf_cloud_filter *filter = NULL;
if (!cookie)
return NULL;
list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
return filter;
}
return NULL;
}
/**
* iavf_configure_clsflower - Add tc flower filters
* @adapter: board private structure
* @cls_flower: Pointer to struct flow_cls_offload
*/
static int iavf_configure_clsflower(struct iavf_adapter *adapter,
struct flow_cls_offload *cls_flower)
{
int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
struct iavf_cloud_filter *filter = NULL;
int err = -EINVAL, count = 50;
if (tc < 0) {
dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
return -EINVAL;
}
if (adapter->num_cloud_filters >= IAVF_MAX_CLOUD_ADQ_FILTERS) {
dev_err(&adapter->pdev->dev,
"Unable to add filter (action is forward to TC) because VF reached the limit of max allowed filters (%u)\n",
IAVF_MAX_CLOUD_ADQ_FILTERS);
return -ENOSPC;
}
/* bail out here if filter already exists */
spin_lock_bh(&adapter->cloud_filter_list_lock);
if (iavf_find_cf(adapter, &cls_flower->cookie)) {
dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
spin_unlock_bh(&adapter->cloud_filter_list_lock);
return -EEXIST;
}
spin_unlock_bh(&adapter->cloud_filter_list_lock);
filter = kzalloc(sizeof(*filter), GFP_KERNEL);
if (!filter)
return -ENOMEM;
while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
&adapter->crit_section)) {
if (--count == 0) {
kfree(filter);
return err;
}
udelay(1);
}
filter->cookie = cls_flower->cookie;
/* set the mask to all zeroes to begin with */
memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
/* start out with flow type and eth type IPv4 to begin with */
filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
err = iavf_parse_cls_flower(adapter, cls_flower, filter);
if (err)
goto err;
err = iavf_handle_tclass(adapter, tc, filter);
if (err)
goto err;
/* store "channel" as back ptr to filter and it is applicable
* only if filter is for ADQ TC, where "hw_tc <n>"
*/
if (tc >= IAVF_START_CHNL_TC &&
tc < ARRAY_SIZE(adapter->ch_config.ch_ex_info))
filter->ch = &adapter->ch_config.ch_ex_info[tc];
else
filter->ch = NULL;
/* add filter to the list */
spin_lock_bh(&adapter->cloud_filter_list_lock);
list_add_tail(&filter->list, &adapter->cloud_filter_list);
adapter->num_cloud_filters++;
filter->add = true;
adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
spin_unlock_bh(&adapter->cloud_filter_list_lock);
/* instead of waiting for the timer to expire (which could be as long as
* 1 sec), trigger the watchdog_task so that filter add command can be
* sent immediately. This will also reduce the time lag between when
* the filter add user command 'completes' and when the filter is
* actually added in HW.
*/
if (filter && filter->add)
mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
err:
if (err && filter)
kfree(filter);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
return err;
}
/**
* iavf_delete_clsflower - Remove tc flower filters
* @adapter: board private structure
* @cls_flower: Pointer to struct flow_cls_offload
*/
static int iavf_delete_clsflower(struct iavf_adapter *adapter,
struct flow_cls_offload *cls_flower)
{
struct iavf_cloud_filter *filter = NULL;
int err = 0;
spin_lock_bh(&adapter->cloud_filter_list_lock);
filter = iavf_find_cf(adapter, &cls_flower->cookie);
if (filter) {
filter->del = true;
adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
} else if (adapter->num_cloud_filters) {
/* "num_cloud_filters" can become zero if egress qdisc is
* detached as per design, driver deletes related filters
* when qdisc is detached to avoid stale filters, hence
* num_cloud_filters can become zero. But since netdev
* layer doesn't know that filters are deleted by driver
* implictly when egress qdisc is deleted, it sees filters
* being present and "in_hw". User can request delete
* of specific filter of detach ingress qdisc - in either of
* those operation, filter(s) won't be found in driver cache,
* hence instead if returning, let this function return SUCCESS
* Returning of err as -EINVAL is only applicable when
* unable to find filter and num_cloud_filters is non-zero
*/
err = -EINVAL;
}
spin_unlock_bh(&adapter->cloud_filter_list_lock);
/* instead of waiting for the timer to expire (which could be as long as
* 1 sec), trigger the watchdog_task so that filter delete command can
* be sent immediately. This will also reduce the time lag between when
* the filter delete user command 'completes' and when the filter is
* actually deleted from HW.
*/
if (filter && filter->del)
mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
return err;
}
/**
* iavf_setup_tc_cls_flower - flower classifier offloads
* @adapter: board private structure
* @cls_flower: pointer to struct flow_cls_offload
*/
static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
struct flow_cls_offload *cls_flower)
{
if (cls_flower->common.chain_index)
return -EOPNOTSUPP;
switch (cls_flower->command) {
case FLOW_CLS_REPLACE:
return iavf_configure_clsflower(adapter, cls_flower);
case FLOW_CLS_DESTROY:
return iavf_delete_clsflower(adapter, cls_flower);
case FLOW_CLS_STATS:
return -EOPNOTSUPP;
default:
return -EINVAL;
}
}
/**
* iavf_setup_tc_block_cb - block callback for tc
* @type: type of offload
* @type_data: offload data
* @cb_priv:
*
* This function is the block callback for traffic classes
**/
static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
void *cb_priv)
{
switch (type) {
case TC_SETUP_CLSFLOWER:
return iavf_setup_tc_cls_flower(cb_priv, type_data);
default:
return -EOPNOTSUPP;
}
}
static LIST_HEAD(iavf_block_cb_list);
/**
* iavf_setup_tc - configure multiple traffic classes
* @dev: network interface device structure
* @type: type of offload
* @type_data: tc offload data
*
* This function is the callback to ndo_setup_tc in the
* netdev_ops.
*
* Returns 0 on success
**/
static int iavf_setup_tc(struct net_device *dev, enum tc_setup_type type,
void *type_data)
{
struct iavf_adapter *adapter = netdev_priv(dev);
switch (type) {
case TC_SETUP_QDISC_MQPRIO:
return __iavf_setup_tc(dev, type_data);
case TC_SETUP_BLOCK:
return flow_block_cb_setup_simple(type_data,
&iavf_block_cb_list,
iavf_setup_tc_block_cb,
adapter, adapter, true);
default:
return -EOPNOTSUPP;
}
}
#endif /* __TC_MQPRIO_MODE_MAX */
#endif /* HAVE_NDO_SETUP_TC_REMOVE_TC_TO_NETDEV */
#endif /* HAVE_SETUP_TC */
/**
* iavf_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog is started,
* and the stack is notified that the interface is ready.
**/
static int iavf_open(struct net_device *netdev)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
int err;
while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
&adapter->crit_section))
usleep_range(500, 1000);
if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
err = -EIO;
goto err_unlock;
}
if (adapter->state != __IAVF_DOWN) {
err = -EBUSY;
goto err_unlock;
}
/* allocate transmit descriptors */
err = iavf_setup_all_tx_resources(adapter);
if (err)
goto err_setup_tx;
/* allocate receive descriptors */
err = iavf_setup_all_rx_resources(adapter);
if (err)
goto err_setup_rx;
/* clear any pending interrupts, may auto mask */
err = iavf_request_traffic_irqs(adapter, netdev->name);
if (err)
goto err_req_irq;
spin_lock_bh(&adapter->mac_vlan_list_lock);
iavf_add_filter(adapter, adapter->hw.mac.addr);
spin_unlock_bh(&adapter->mac_vlan_list_lock);
/* Restore VLAN and Cloud filters that were removed with IFF_DOWN */
iavf_restore_filters(adapter);
iavf_configure(adapter);
iavf_up_complete(adapter);
iavf_irq_enable(adapter, true);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
return 0;
err_req_irq:
iavf_down(adapter);
iavf_free_traffic_irqs(adapter);
err_setup_rx:
iavf_free_all_rx_resources(adapter);
err_setup_tx:
iavf_free_all_tx_resources(adapter);
err_unlock:
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
return err;
}
/**
* iavf_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
* are freed, along with all transmit and receive resources.
**/
static int iavf_close(struct net_device *netdev)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
int status;
while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
&adapter->crit_section))
usleep_range(500, 1000);
if (adapter->state <= __IAVF_DOWN_PENDING) {
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
return 0;
}
set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
iavf_down(adapter);
iavf_change_state(adapter, __IAVF_DOWN_PENDING);
iavf_free_traffic_irqs(adapter);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
/* If we're closing the interface as part of driver removal then don't
* wait. The VF resources will be reinitialized when the hardware is
* reset.
*/
if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
return 0;
/* We explicitly don't free resources here because the hardware is
* still active and can DMA into memory. Resources are cleared in
* iavf_virtchnl_completion() after we get confirmation from the PF
* driver that the rings have been stopped.
*
* Also, we wait for state to transition to __IAVF_DOWN before
* returning. State change occurs in iavf_virtchnl_completion() after
* VF resources are released (which occurs after PF driver processes and
* responds to admin queue commands).
*/
status = wait_event_timeout(adapter->down_waitqueue,
adapter->state == __IAVF_DOWN,
msecs_to_jiffies(500));
if (!status)
netdev_dbg(netdev, "Device resources not yet released\n");
return 0;
}
/**
* iavf_get_stats - Get System Network Statistics
* @netdev: network interface device structure
*
* Returns the address of the device statistics structure.
* The statistics are actually updated from the watchdog task.
**/
static struct net_device_stats *iavf_get_stats(struct net_device *netdev)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
/* only return the current stats */
return &adapter->net_stats;
}
/**
* iavf_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
**/
static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
int max_frame = new_mtu + IAVF_PACKET_HDR_PAD;
if ((new_mtu < 68) || (max_frame > IAVF_MAX_RXBUFFER))
return -EINVAL;
#ifndef HAVE_NDO_FEATURES_CHECK
/* MTU < 576 causes problems with TSO */
if (new_mtu < 576) {
netdev->features &= ~NETIF_F_TSO;
netdev->features &= ~NETIF_F_TSO6;
#ifdef HAVE_NDO_SET_FEATURES
} else {
#ifndef HAVE_RHEL6_NET_DEVICE_OPS_EXT
if (netdev->wanted_features & NETIF_F_TSO)
netdev->features |= NETIF_F_TSO;
if (netdev->wanted_features & NETIF_F_TSO6)
netdev->features |= NETIF_F_TSO6;
#else
if (netdev_extended(netdev)->wanted_features & NETIF_F_TSO)
netdev->features |= NETIF_F_TSO;
if (netdev_extended(netdev)->wanted_features & NETIF_F_TSO6)
netdev->features |= NETIF_F_TSO6;
#endif /* HAVE_RHEL6_NET_DEVICE_OPS_EXT */
#endif /* HAVE_NDO_SET_FEATURES */
}
#endif /* !HAVE_NDO_FEATURES_CHECK */
netdev_info(netdev, "changing MTU from %d to %d\n",
netdev->mtu, new_mtu);
netdev->mtu = new_mtu;
iavf_schedule_reset(adapter);
return 0;
}
#ifdef NETIF_F_HW_VLAN_CTAG_RX
#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
NETIF_F_HW_VLAN_CTAG_TX | \
NETIF_F_HW_VLAN_STAG_RX | \
NETIF_F_HW_VLAN_STAG_TX)
#else
#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_RX | \
NETIF_F_HW_VLAN_TX)
#endif
/**
* iavf_set_features - set the netdev feature flags
* @netdev: ptr to the netdev being adjusted
* @features: the feature set that the stack is suggesting
* Note: expects to be called while under rtnl_lock()
**/
#ifdef HAVE_RHEL6_NET_DEVICE_OPS_EXT
static int iavf_set_features(struct net_device *netdev, u32 features)
#else
static int iavf_set_features(struct net_device *netdev,
netdev_features_t features)
#endif
{
struct iavf_adapter *adapter = netdev_priv(netdev);
/* trigger update on any VLAN feature change */
if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
(features & NETIF_VLAN_OFFLOAD_FEATURES))
iavf_set_vlan_offload_features(adapter, netdev->features,
features);
return 0;
}
#ifdef HAVE_NDO_FEATURES_CHECK
/**
* iavf_features_check - Validate encapsulated packet conforms to limits
* @skb: skb buff
* @dev: This physical port's netdev
* @features: Offload features that the stack believes apply
**/
static netdev_features_t iavf_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
size_t len;
/* No point in doing any of this if neither checksum nor GSO are
* being requested for this frame. We can rule out both by just
* checking for CHECKSUM_PARTIAL
*/
if (skb->ip_summed != CHECKSUM_PARTIAL)
return features;
/* We cannot support GSO if the MSS is going to be less than
* 64 bytes. If it is then we need to drop support for GSO.
*/
if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
features &= ~NETIF_F_GSO_MASK;
/* MACLEN can support at most 63 words */
len = skb_network_header(skb) - skb->data;
if (len & ~(63 * 2))
goto out_err;
/* IPLEN and EIPLEN can support at most 127 dwords */
len = skb_transport_header(skb) - skb_network_header(skb);
if (len & ~(127 * 4))
goto out_err;
if (skb->encapsulation) {
/* L4TUNLEN can support 127 words */
len = skb_inner_network_header(skb) - skb_transport_header(skb);
if (len & ~(127 * 2))
goto out_err;
/* IPLEN can support at most 127 dwords */
len = skb_inner_transport_header(skb) -
skb_inner_network_header(skb);
if (len & ~(127 * 4))
goto out_err;
}
/* No need to validate L4LEN as TCP is the only protocol with a
* a flexible value and we support all possible values supported
* by TCP, which is at most 15 dwords
*/
return features;
out_err:
return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
}
#endif /* HAVE_NDO_FEATURES_CHECK */
/**
* iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features
* @adapter: board private structure
*
* Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
* were negotiated determine the VLAN features that can be toggled on and off.
**/
#ifdef HAVE_RHEL6_NET_DEVICE_OPS_EXT
static u32 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
#else
static netdev_features_t
iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
#endif
{
#ifdef HAVE_RHEL6_NET_DEVICE_OPS_EXT
u32 hw_features = 0;
#else
netdev_features_t hw_features = 0;
#endif /* HAVE_RHEL6_NET_DEVICE_OPS_EXT */
if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
return hw_features;
/* Enable VLAN features if supported */
if (VLAN_ALLOWED(adapter)) {
hw_features |= (IAVF_NETIF_F_HW_VLAN_CTAG_TX |
IAVF_NETIF_F_HW_VLAN_CTAG_RX);
} else if (VLAN_V2_ALLOWED(adapter)) {
struct virtchnl_vlan_caps *vlan_v2_caps =
&adapter->vlan_v2_caps;
struct virtchnl_vlan_supported_caps *stripping_support =
&vlan_v2_caps->offloads.stripping_support;
struct virtchnl_vlan_supported_caps *insertion_support =
&vlan_v2_caps->offloads.insertion_support;
if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
if (stripping_support->outer & VIRTCHNL_VLAN_ETHERTYPE_8100)
hw_features |= IAVF_NETIF_F_HW_VLAN_CTAG_RX;
#ifdef NETIF_F_HW_VLAN_STAG_RX
if (stripping_support->outer & VIRTCHNL_VLAN_ETHERTYPE_88A8)
hw_features |= NETIF_F_HW_VLAN_STAG_RX;
#endif /* NETIF_F_HW_VLAN_STAG_RX */
} else if (stripping_support->inner != VIRTCHNL_VLAN_UNSUPPORTED &&
stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
if (stripping_support->inner & VIRTCHNL_VLAN_ETHERTYPE_8100)
hw_features |= IAVF_NETIF_F_HW_VLAN_CTAG_RX;
}
if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
if (insertion_support->outer & VIRTCHNL_VLAN_ETHERTYPE_8100)
hw_features |= IAVF_NETIF_F_HW_VLAN_CTAG_TX;
#ifdef NETIF_F_HW_VLAN_STAG_TX
if (insertion_support->outer & VIRTCHNL_VLAN_ETHERTYPE_88A8)
hw_features |= NETIF_F_HW_VLAN_STAG_TX;
#endif /* NETIF_F_HW_VLAN_STAG_TX */
} else if (insertion_support->inner &&
insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
if (insertion_support->inner & VIRTCHNL_VLAN_ETHERTYPE_8100)
hw_features |= IAVF_NETIF_F_HW_VLAN_CTAG_TX;
}
}
return hw_features;
}
/**
* iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
* @adapter: board private structure
*
* Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
* were negotiated determine the VLAN features that are enabled by default.
**/
#ifdef HAVE_RHEL6_NET_DEVICE_OPS_EXT
static u32 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
#else
static netdev_features_t
iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
#endif
{
#ifdef HAVE_RHEL6_NET_DEVICE_OPS_EXT
u32 features = 0;
#else
netdev_features_t features = 0;
#endif
if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
return features;
if (VLAN_ALLOWED(adapter)) {
features |= IAVF_NETIF_F_HW_VLAN_CTAG_FILTER |
IAVF_NETIF_F_HW_VLAN_CTAG_RX |
IAVF_NETIF_F_HW_VLAN_CTAG_TX;
} else if (VLAN_V2_ALLOWED(adapter)) {
struct virtchnl_vlan_caps *vlan_v2_caps =
&adapter->vlan_v2_caps;
struct virtchnl_vlan_supported_caps *filtering_support =
&vlan_v2_caps->filtering.filtering_support;
struct virtchnl_vlan_supported_caps *stripping_support =
&vlan_v2_caps->offloads.stripping_support;
struct virtchnl_vlan_supported_caps *insertion_support =
&vlan_v2_caps->offloads.insertion_support;
u32 ethertype_init;
/* give priority to outer stripping and don't support both outer
* and inner stripping
*/
ethertype_init = vlan_v2_caps->offloads.ethertype_init;
if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
if (stripping_support->outer & VIRTCHNL_VLAN_ETHERTYPE_8100 &&
ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
features |= IAVF_NETIF_F_HW_VLAN_CTAG_RX;
#ifdef NETIF_F_HW_VLAN_STAG_RX
else if (stripping_support->outer & VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
features |= NETIF_F_HW_VLAN_STAG_RX;
#endif /* NETIF_F_HW_VLAN_STAG_RX */
} else if (stripping_support->inner != VIRTCHNL_VLAN_UNSUPPORTED) {
if (stripping_support->inner & VIRTCHNL_VLAN_ETHERTYPE_8100 &&
ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
features |= IAVF_NETIF_F_HW_VLAN_CTAG_RX;
}
/* give priority to outer insertion and don't support both outer
* and inner insertion
*/
if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
if (insertion_support->outer & VIRTCHNL_VLAN_ETHERTYPE_8100 &&
ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
features |= IAVF_NETIF_F_HW_VLAN_CTAG_TX;
#ifdef NETIF_F_HW_VLAN_STAG_TX
else if (insertion_support->outer & VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
features |= NETIF_F_HW_VLAN_STAG_TX;
#endif /* NETIF_F_HW_VLAN_STAG_TX */
} else if (insertion_support->inner != VIRTCHNL_VLAN_UNSUPPORTED) {
if (insertion_support->inner & VIRTCHNL_VLAN_ETHERTYPE_8100 &&
ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
features |= IAVF_NETIF_F_HW_VLAN_CTAG_TX;
}
/* give priority to outer filtering and don't bother if both
* outer and inner filtering are enabled
*/
ethertype_init = vlan_v2_caps->filtering.ethertype_init;
if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
if (filtering_support->outer & VIRTCHNL_VLAN_ETHERTYPE_8100 &&
ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
features |= IAVF_NETIF_F_HW_VLAN_CTAG_FILTER;
#ifdef NETIF_F_HW_VLAN_STAG_FILTER
if (filtering_support->outer & VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
features |= NETIF_F_HW_VLAN_STAG_FILTER;
#endif /* NETIF_F_HW_VLAN_STAG_FILTER */
} else if (filtering_support->inner != VIRTCHNL_VLAN_UNSUPPORTED) {
if (filtering_support->inner & VIRTCHNL_VLAN_ETHERTYPE_8100 &&
ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
features |= IAVF_NETIF_F_HW_VLAN_CTAG_FILTER;
#ifdef NETIF_F_HW_VLAN_STAG_FILTER
if (filtering_support->inner & VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
features |= NETIF_F_HW_VLAN_STAG_FILTER;
#endif /* NETIF_F_HW_VLAN_STAG_FILTER */
}
}
return features;
}
#ifdef HAVE_NDO_SET_FEATURES
#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
(!(((requested) & (feature_bit)) && \
!((allowed) & (feature_bit))))
/**
* iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
* @adapter: board private structure
* @requested_features: stack requested NETDEV features
**/
#ifdef HAVE_RHEL6_NET_DEVICE_OPS_EXT
static u32
iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
u32 requested_features)
#else
static netdev_features_t
iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
netdev_features_t requested_features)
#endif
{
#ifdef HAVE_RHEL6_NET_DEVICE_OPS_EXT
u32 allowed_features;
#else
netdev_features_t allowed_features;
#endif
allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
iavf_get_netdev_vlan_features(adapter);
if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
allowed_features,
IAVF_NETIF_F_HW_VLAN_CTAG_TX))
requested_features &= ~IAVF_NETIF_F_HW_VLAN_CTAG_TX;
if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
allowed_features,
IAVF_NETIF_F_HW_VLAN_CTAG_RX))
requested_features &= ~IAVF_NETIF_F_HW_VLAN_CTAG_RX;
#ifdef NETIF_F_HW_VLAN_STAG_TX
if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
allowed_features,
NETIF_F_HW_VLAN_STAG_TX))
requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
#endif /* NETIF_F_HW_VLAN_STAG_TX */
#ifdef NETIF_F_HW_VLAN_STAG_RX
if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
allowed_features,
NETIF_F_HW_VLAN_STAG_RX))
requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
#endif /* NETIF_F_HW_VLAN_STAG_RX */
if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
allowed_features,
IAVF_NETIF_F_HW_VLAN_CTAG_FILTER))
requested_features &= ~IAVF_NETIF_F_HW_VLAN_CTAG_FILTER;
#ifdef NETIF_F_HW_VLAN_STAG_FILTER
if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
allowed_features,
NETIF_F_HW_VLAN_STAG_FILTER))
requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
#endif /* NETIF_F_HW_VLAN_STAG_FILTER */
#if defined(NETIF_F_HW_VLAN_STAG_RX) && defined(NETIF_F_HW_VLAN_STAG_TX)
if ((requested_features &
(NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
(requested_features &
(NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
(adapter->vlan_v2_caps.offloads.ethertype_match ==
VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION)) {
netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
NETIF_F_HW_VLAN_STAG_TX);
}
#endif /* NETIF_F_HW_VLAN_STAG_RX && NETIF_F_HW_VLAN_STAG_TX */
return requested_features;
}
/**
* iavf_fix_features - fix up the netdev feature bits
* @netdev: our net device
* @features: desired feature bits
*
* Returns fixed-up features bits
**/
#ifdef HAVE_RHEL6_NET_DEVICE_OPS_EXT
static u32 iavf_fix_features(struct net_device *netdev, u32 features)
#else
static netdev_features_t iavf_fix_features(struct net_device *netdev,
netdev_features_t features)
#endif
{
struct iavf_adapter *adapter = netdev_priv(netdev);
return iavf_fix_netdev_vlan_features(adapter, features);
}
#endif /* HAVE_NDO_SET_FEATURES */
/**
* iavf_do_ioctl - Handle network device specific ioctls
* @netdev: network interface device structure
* @ifr: interface request data
* @cmd: ioctl command
*
* Callback to handle the networking device specific ioctls. Used to handle
* the SIOCGHWTSTAMP and SIOCSHWTSTAMP ioctl requests that configure Tx and Rx
* timstamping support.
*/
static int iavf_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
switch (cmd) {
#ifdef SIOCGHWTSTAMP
case SIOCGHWTSTAMP:
return iavf_ptp_get_ts_config(adapter, ifr);
#endif
case SIOCSHWTSTAMP:
return iavf_ptp_set_ts_config(adapter, ifr);
default:
return -EOPNOTSUPP;
}
}
static const struct net_device_ops iavf_netdev_ops = {
#ifdef HAVE_RHEL7_NET_DEVICE_OPS_EXT
/* RHEL7 requires this to be defined to enable extended ops. RHEL7 uses the
* function get_ndo_ext to retrieve offsets for extended fields from with the
* net_device_ops struct and ndo_size is checked to determine whether or not
* the offset is valid.
*/
.ndo_size = sizeof(const struct net_device_ops),
#endif
.ndo_open = iavf_open,
.ndo_stop = iavf_close,
.ndo_start_xmit = iavf_lan_xmit_frame,
.ndo_get_stats = iavf_get_stats,
.ndo_set_rx_mode = iavf_set_rx_mode,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = iavf_set_mac,
.ndo_do_ioctl = iavf_do_ioctl,
#ifdef HAVE_RHEL7_EXTENDED_MIN_MAX_MTU
.extended.ndo_change_mtu = iavf_change_mtu,
#else
.ndo_change_mtu = iavf_change_mtu,
#endif /* HAVE_RHEL7_EXTENDED_MIN_MAX_MTU */
.ndo_tx_timeout = iavf_tx_timeout,
#ifdef HAVE_VLAN_RX_REGISTER
.ndo_vlan_rx_register = iavf_vlan_rx_register,
#endif
.ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
#ifdef HAVE_SETUP_TC
#ifdef HAVE_NDO_SETUP_TC_REMOVE_TC_TO_NETDEV
#ifdef __TC_MQPRIO_MODE_MAX
#ifdef HAVE_RHEL7_NETDEV_OPS_EXT_NDO_SETUP_TC
.extended.ndo_setup_tc_rh = iavf_setup_tc,
#else
.ndo_setup_tc = iavf_setup_tc,
#endif /* HAVE_RHEL7_NETDEV_OPS_EXT_NDO_SETUP_TC */
#endif /* __TC_MQPRIO_MODE_MAX */
#endif /* HAVE_NDO_SETUP_TC_REMOVE_TC_TO_NETDEV */
#endif /* HAVE_SETUP_TC */
#ifdef HAVE_NDO_FEATURES_CHECK
.ndo_features_check = iavf_features_check,
#endif /* HAVE_NDO_FEATURES_CHECK */
#ifdef HAVE_RHEL6_NET_DEVICE_OPS_EXT
};
/* RHEL6 keeps these operations in a separate structure */
static const struct net_device_ops_ext iavf_netdev_ops_ext = {
.size = sizeof(struct net_device_ops_ext),
#endif /* HAVE_RHEL6_NET_DEVICE_OPS_EXT */
#ifdef HAVE_NDO_SET_FEATURES
.ndo_fix_features = iavf_fix_features,
.ndo_set_features = iavf_set_features,
#endif /* HAVE_NDO_SET_FEATURES */
};
/**
* iavf_check_reset_complete - check that VF reset is complete
* @hw: pointer to hw struct
*
* Returns 0 if device is ready to use, or -EBUSY if it's in reset.
**/
static int iavf_check_reset_complete(struct iavf_hw *hw)
{
u32 rstat;
int i;
for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
(rstat == VIRTCHNL_VFR_COMPLETED))
return 0;
usleep_range(10, 20);
}
return -EBUSY;
}
/**
* iavf_process_config - Process the config information we got from the PF
* @adapter: board private structure
*
* Verify that we have a valid config struct, and set up our netdev features
* and our VSI struct.
**/
int iavf_process_config(struct iavf_adapter *adapter)
{
struct virtchnl_vf_resource *vfres = adapter->vf_res;
#ifdef HAVE_RHEL6_NET_DEVICE_OPS_EXT
u32 hw_vlan_features, vlan_features;
#else
netdev_features_t hw_vlan_features, vlan_features;
#endif
struct net_device *netdev = adapter->netdev;
netdev_features_t hw_enc_features;
netdev_features_t hw_features;
hw_enc_features = NETIF_F_SG |
NETIF_F_IP_CSUM |
#ifdef NETIF_F_IPV6_CSUM
NETIF_F_IPV6_CSUM |
#endif
NETIF_F_HIGHDMA |
#ifdef NETIF_F_SOFT_FEATURES
NETIF_F_SOFT_FEATURES |
#endif
NETIF_F_TSO |
NETIF_F_TSO_ECN |
NETIF_F_TSO6 |
NETIF_F_SCTP_CRC |
#ifdef NETIF_F_RXHASH
NETIF_F_RXHASH |
#endif
#ifdef HAVE_NDO_SET_FEATURES
NETIF_F_RXCSUM |
#endif
0;
#ifdef HAVE_ENCAP_CSUM_OFFLOAD
/* advertise to stack only if offloads for encapsulated packets is
* supported
*/
if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
#ifdef HAVE_ENCAP_TSO_OFFLOAD
hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
#ifdef HAVE_GRE_ENCAP_OFFLOAD
NETIF_F_GSO_GRE |
#ifdef NETIF_F_GSO_PARTIAL
NETIF_F_GSO_GRE_CSUM |
NETIF_F_GSO_PARTIAL |
#endif
NETIF_F_GSO_UDP_TUNNEL_CSUM |
#ifdef NETIF_F_GSO_IPXIP4
NETIF_F_GSO_IPXIP4 |
#ifdef NETIF_F_GSO_IPXIP6
NETIF_F_GSO_IPXIP6 |
#endif
#else /* NETIF_F_GSO_IPXIP4 */
#ifdef NETIF_F_GSO_IPIP
NETIF_F_GSO_IPIP |
#endif
#ifdef NETIF_F_GSO_SIT
NETIF_F_GSO_SIT |
#endif
#endif /* NETIF_F_GSO_IPXIP4 */
#endif /* NETIF_F_GRE_ENCAP_OFFLOAD */
0;
if (!(vfres->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
#ifndef NETIF_F_GSO_PARTIAL
hw_enc_features ^= NETIF_F_GSO_UDP_TUNNEL_CSUM;
#else
netdev->gso_partial_features |=
NETIF_F_GSO_UDP_TUNNEL_CSUM;
netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
#endif /* !NETIF_F_GSO_PARTIAL */
#endif /* HAVE_ENCAP_TSO_OFFLOAD */
netdev->hw_enc_features |= hw_enc_features;
}
#endif /* HAVE_ENCAP_CSUM_OFFLOAD */
#ifdef HAVE_NETDEV_VLAN_FEATURES
/* record features VLANs can make use of */
#ifdef NETIF_F_GSO_PARTIAL
netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
#else
netdev->vlan_features |= hw_enc_features;
#endif
#endif
/* Write features and hw_features separately to avoid polluting
* with, or dropping, features that are set when we registered.
*/
hw_features = hw_enc_features;
/* get HW VLAN features that can be toggled */
hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
#ifdef NETIF_F_HW_TC
/* Enable cloud filter if ADQ is supported */
if (ADQ_ALLOWED(adapter))
hw_features |= NETIF_F_HW_TC;
#endif
#ifdef NETIF_F_GSO_UDP_L4
if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
hw_features |= NETIF_F_GSO_UDP_L4;
#endif /* NETIF_F_GSO_UDP_L4 */
#ifdef HAVE_NDO_SET_FEATURES
#ifdef HAVE_RHEL6_NET_DEVICE_OPS_EXT
hw_features |= get_netdev_hw_features(netdev);
set_netdev_hw_features(netdev, hw_features | hw_vlan_features);
#else
netdev->hw_features |= hw_features | hw_vlan_features;
#endif
#endif /* HAVE_NDO_SET_FEATURES */
/* get VLAN features that cannot be toggled */
vlan_features = iavf_get_netdev_vlan_features(adapter);
netdev->features |= hw_features | vlan_features;
#ifdef IFF_UNICAST_FLT
netdev->priv_flags |= IFF_UNICAST_FLT;
#endif
/* Do not turn on offloads when they are requested to be turned off.
* TSO needs minimum 576 bytes to work correctly.
*/
#ifndef HAVE_RHEL6_NET_DEVICE_OPS_EXT
if (netdev->wanted_features) {
if (!(netdev->wanted_features & NETIF_F_TSO) ||
netdev->mtu < 576)
netdev->features &= ~NETIF_F_TSO;
if (!(netdev->wanted_features & NETIF_F_TSO6) ||
netdev->mtu < 576)
netdev->features &= ~NETIF_F_TSO6;
if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
netdev->features &= ~NETIF_F_TSO_ECN;
if (!(netdev->wanted_features & NETIF_F_GRO))
netdev->features &= ~NETIF_F_GRO;
if (!(netdev->wanted_features & NETIF_F_GSO))
netdev->features &= ~NETIF_F_GSO;
#else
if (netdev_extended(netdev)->wanted_features) {
if (!(netdev_extended(netdev)->wanted_features &
NETIF_F_TSO) || netdev->mtu < 576)
netdev->features &= ~NETIF_F_TSO;
if (!(netdev_extended(netdev)->wanted_features &
NETIF_F_TSO6) || netdev->mtu < 576)
netdev->features &= ~NETIF_F_TSO6;
if (!(netdev_extended(netdev)->wanted_features &
NETIF_F_TSO_ECN))
netdev->features &= ~NETIF_F_TSO_ECN;
if (!(netdev_extended(netdev)->wanted_features & NETIF_F_GRO))
netdev->features &= ~NETIF_F_GRO;
if (!(netdev_extended(netdev)->wanted_features & NETIF_F_GSO))
netdev->features &= ~NETIF_F_GSO;
#endif /* HAVE_RHEL6_NET_DEVICE_OPS_EXT */
}
return 0;
}
/**
* iavf_shutdown - Shutdown the device in preparation for a reboot
* @pdev: pci device structure
**/
static void iavf_shutdown(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct iavf_adapter *adapter = netdev_priv(netdev);
netif_device_detach(netdev);
if (netif_running(netdev))
iavf_close(netdev);
/* Prevent the watchdog from running. */
iavf_change_state(adapter, __IAVF_REMOVE);
adapter->aq_required = 0;
#ifdef CONFIG_PM
pci_save_state(pdev);
#endif
pci_disable_device(pdev);
}
/**
* iavf_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in iavf_pci_tbl
*
* Returns 0 on success, negative on failure
*
* iavf_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
**/
#ifdef HAVE_CONFIG_HOTPLUG
static int __devinit iavf_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
#else
static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
#endif
{
struct net_device *netdev;
struct iavf_adapter *adapter = NULL;
struct iavf_hw *hw = NULL;
int err;
err = pci_enable_device(pdev);
if (err)
return err;
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (err) {
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev,
"DMA configuration failed: 0x%x\n", err);
goto err_dma;
}
}
err = pci_request_regions(pdev, iavf_driver_name);
if (err) {
dev_err(pci_dev_to_dev(pdev),
"pci_request_regions failed 0x%x\n", err);
goto err_pci_reg;
}
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
IAVF_MAX_REQ_QUEUES);
if (!netdev) {
err = -ENOMEM;
goto err_alloc_etherdev;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
hw = &adapter->hw;
hw->back = adapter;
adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
iavf_change_state(adapter, __IAVF_STARTUP);
/* Call save state here because it relies on the adapter struct. */
pci_save_state(pdev);
hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!hw->hw_addr) {
err = -EIO;
goto err_ioremap;
}
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_device_id = pdev->subsystem_device;
hw->bus.device = PCI_SLOT(pdev->devfn);
hw->bus.func = PCI_FUNC(pdev->devfn);
hw->bus.bus_id = pdev->bus->number;
/* set up the spinlocks for the AQ, do this only once in probe
* and destroy them only once in remove
*/
iavf_init_spinlock_d(&hw->aq.asq_spinlock);
iavf_init_spinlock_d(&hw->aq.arq_spinlock);
spin_lock_init(&adapter->mac_vlan_list_lock);
spin_lock_init(&adapter->cloud_filter_list_lock);
spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
INIT_LIST_HEAD(&adapter->mac_filter_list);
INIT_LIST_HEAD(&adapter->vlan_filter_list);
INIT_LIST_HEAD(&adapter->cloud_filter_list);
INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
queue_delayed_work(iavf_wq, &adapter->watchdog_task,
msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
/* Setup the wait queue for indicating transition to down status */
init_waitqueue_head(&adapter->down_waitqueue);
INIT_LIST_HEAD(&adapter->ptp.aq_cmds);
init_waitqueue_head(&adapter->ptp.phc_time_waitqueue);
spin_lock_init(&adapter->ptp.aq_cmd_lock);
/* By default, start the value of priv flags
* "channel-pkt-inspect-optimize" as ON. It's not in effect,
* unless ADQ type of filter is added and ADQ_V2 capability
* is negotiated
*/
adapter->flags |= IAVF_FLAG_CHNL_PKT_OPT_ENA;
return 0;
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_regions(pdev);
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
#ifdef CONFIG_PM
/**
* iavf_suspend - Power management suspend routine
* @dev_d: device information struct
*
* Called when the system (VM) is entering sleep/suspend.
**/
static int iavf_suspend(struct device *dev_d)
{
struct net_device *netdev = dev_get_drvdata(dev_d);
struct iavf_adapter *adapter = netdev_priv(netdev);
netif_device_detach(netdev);
while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
&adapter->crit_section))
usleep_range(500, 1000);
if (netif_running(netdev)) {
rtnl_lock();
iavf_down(adapter);
rtnl_unlock();
}
iavf_free_misc_irq(adapter);
iavf_reset_interrupt_capability(adapter);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
return 0;
}
/**
* iavf_resume - Power management resume routine
* @dev_d: device information struct
*
* Called when the system (VM) is resumed from sleep/suspend.
**/
static int iavf_resume(struct device *dev_d)
{
struct pci_dev *pdev = to_pci_dev(dev_d);
struct net_device *netdev = pci_get_drvdata(pdev);
struct iavf_adapter *adapter = netdev_priv(netdev);
u32 err;
pci_set_master(pdev);
rtnl_lock();
err = iavf_set_interrupt_capability(adapter);
if (err) {
dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
return err;
}
err = iavf_request_misc_irq(adapter);
rtnl_unlock();
if (err) {
dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
return err;
}
iavf_schedule_reset(adapter);
netif_device_attach(netdev);
return err;
}
#ifdef USE_LEGACY_PM_SUPPORT
/**
* iavf_suspend_legacy - Power management suspend routine
* @pdev: PCI device information struct
* @state: unused
*
* Called when the system (VM) is entering sleep/suspend.
**/
static int iavf_suspend_legacy(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct iavf_adapter *adapter = netdev_priv(netdev);
int retval = 0;
netif_device_detach(netdev);
while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
&adapter->crit_section))
usleep_range(500, 1000);
if (netif_running(netdev)) {
rtnl_lock();
iavf_down(adapter);
rtnl_unlock();
}
iavf_free_misc_irq(adapter);
iavf_reset_interrupt_capability(adapter);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
retval = pci_save_state(pdev);
if (retval)
return retval;
pci_disable_device(pdev);
return 0;
}
/**
* iavf_resume_legacy - Power management resume routine
* @pdev: PCI device information struct
*
* Called when the system (VM) is resumed from sleep/suspend.
**/
static int iavf_resume_legacy(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct iavf_adapter *adapter = netdev_priv(netdev);
u32 err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
/* pci_restore_state clears dev->state_saved so call
* pci_save_state to restore it.
*/
pci_save_state(pdev);
err = pci_enable_device_mem(pdev);
if (err) {
dev_err(&pdev->dev, "Cannot enable PCI device from suspend.\n");
return err;
}
pci_set_master(pdev);
rtnl_lock();
err = iavf_set_interrupt_capability(adapter);
if (err) {
dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
return err;
}
err = iavf_request_misc_irq(adapter);
rtnl_unlock();
if (err) {
dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
return err;
}
iavf_schedule_reset(adapter);
netif_device_attach(netdev);
return err;
}
#endif /* USE_LEGACY_PM_SUPPORT */
#endif /* CONFIG_PM */
/**
* iavf_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* iavf_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
#ifdef HAVE_CONFIG_HOTPLUG
static void __devexit iavf_remove(struct pci_dev *pdev)
#else
static void iavf_remove(struct pci_dev *pdev)
#endif
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct iavf_adapter *adapter = netdev_priv(netdev);
struct iavf_vlan_filter *vlf, *vlftmp;
struct iavf_cloud_filter *cf, *cftmp;
struct iavf_mac_filter *f, *ftmp;
struct iavf_hw *hw = &adapter->hw;
/* Indicate we are in remove and not to run/schedule any driver tasks */
set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
cancel_work_sync(&adapter->adminq_task);
cancel_delayed_work_sync(&adapter->watchdog_task);
iavf_misc_irq_disable(adapter);
if (adapter->netdev_registered) {
/* This will call iavf_close if the device was open previously.
* The Admin Queue and watchdog tasks have already been shut
* down at this point so the driver will rely on
* iavf_request_reset below to disable the queues and handle
* any other Admin Queue-based cleanup normally done as part of
* iavf_close.
*/
unregister_netdev(netdev);
adapter->netdev_registered = false;
}
dev_info(&adapter->pdev->dev, "Removing device\n");
iavf_ptp_release(adapter);
/* Shut down all the garbage mashers on the detention level */
iavf_change_state(adapter, __IAVF_REMOVE);
adapter->aq_required = 0;
adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
iavf_request_reset(adapter);
msleep(50);
/* If the FW isn't responding, kick it once, but only once. */
if (!iavf_asq_done(hw)) {
iavf_request_reset(adapter);
msleep(50);
}
iavf_free_all_tx_resources(adapter);
iavf_free_all_rx_resources(adapter);
iavf_free_misc_irq(adapter);
iavf_reset_interrupt_capability(adapter);
iavf_free_q_vectors(adapter);
iavf_free_rss(adapter);
if (hw->aq.asq.count)
iavf_shutdown_adminq(hw);
/* destroy the locks only once, here */
iavf_destroy_spinlock_d(&hw->aq.arq_spinlock);
iavf_destroy_spinlock_d(&hw->aq.asq_spinlock);
iounmap(hw->hw_addr);
pci_release_regions(pdev);
iavf_free_queues(adapter);
kfree(adapter->vf_res);
adapter->vf_res = NULL;
spin_lock_bh(&adapter->mac_vlan_list_lock);
/* If we got removed before an up/down sequence, we've got a filter
* hanging out there that we need to get rid of.
*/
list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
list_del(&f->list);
kfree(f);
}
list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
list) {
list_del(&vlf->list);
kfree(vlf);
}
spin_unlock_bh(&adapter->mac_vlan_list_lock);
spin_lock_bh(&adapter->cloud_filter_list_lock);
list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
list_del(&cf->list);
kfree(cf);
}
spin_unlock_bh(&adapter->cloud_filter_list_lock);
free_netdev(netdev);
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
#if defined(CONFIG_PM) && !defined(USE_LEGACY_PM_SUPPORT)
static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
#endif /* CONFIG_PM && !USE_LEGACY_PM_SUPPORT */
static struct pci_driver iavf_driver = {
.name = iavf_driver_name,
.id_table = iavf_pci_tbl,
.probe = iavf_probe,
#ifdef HAVE_CONFIG_HOTPLUG
.remove = __devexit_p(iavf_remove),
#else
.remove = iavf_remove,
#endif
#ifdef CONFIG_PM
#ifdef USE_LEGACY_PM_SUPPORT
.suspend = iavf_suspend_legacy,
.resume = iavf_resume_legacy,
#else
.driver.pm = &iavf_pm_ops,
#endif /* USE_LEGACY_PM_SUPPORT */
#endif /* CONFIG_PM */
.shutdown = iavf_shutdown,
};
/**
* iavf_init_module - Driver Registration Routine
*
* iavf_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
**/
static int __init iavf_init_module(void)
{
int ret;
pr_info("iavf: %s - version %s\n", iavf_driver_string,
iavf_driver_version);
pr_info("%s\n", iavf_copyright);
iavf_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
iavf_driver_name);
if (!iavf_wq) {
pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
return -ENOMEM;
}
ret = pci_register_driver(&iavf_driver);
return ret;
}
module_init(iavf_init_module);
/**
* iavf_exit_module - Driver Exit Cleanup Routine
*
* iavf_exit_module is called just before the driver is removed
* from memory.
**/
static void __exit iavf_exit_module(void)
{
pci_unregister_driver(&iavf_driver);
destroy_workqueue(iavf_wq);
}
module_exit(iavf_exit_module);
/* iavf_main.c */